40+72+40m连续梁0#计算书

90+180+90m连续梁

边跨现浇段支架方案及计算书

流溪河特大桥40+72+40m连续梁,84#墩高12.5m,87#墩高13m ,边跨处高度为4.5m ,长度为6.8m ,宽14.2m 。连续梁边跨现浇段支架拟采用钢管柱+贝雷梁支架体系。 1.施工方案

边跨现浇段长度6.8m, 其中支撑在墩顶的部分长度为2.3m ,外挑部分长4.5m ;边跨现浇段设两排支架,靠墩身一排支架设在承台上,另外一排支承在条形基础上。

(1)支柱采取大型钢管支柱,直径为630mm ,厚为10mm 的钢管,下部焊接于承台预埋钢板上,支柱连接桁架采用[10槽钢架。预埋钢板于承台浇筑时先进行预埋,钢板采用厚10mm ,采用螺栓预埋式或进行焊接将钢板固定在承台钢筋上,承台混凝土施工时,预埋钢板与承台混凝土必须密贴。共设两排支架,每排3根钢管柱,横向柱间距5.2m ,纵向柱间距4m 。

外侧钢管柱支撑在C25混凝土条形基础上,条形基础长12m ,宽2m ,厚1m ,地梁内采用构造配筋。

(2)钢管支柱顶部设厚20mm 钢板为法兰盘,钢管之间的连接采用法兰连接。钢管柱顶横向分配梁为两根I45a 工字钢,工字钢上下顶板每隔40cm 焊接20cm ,将两根工字钢焊接成整体,并在贝雷梁对应的位置焊接加劲板。

(3)纵梁采用321军用贝雷梁,横断面设17榀,单侧腹板下设2~3榀,单箱室底板下设4榀,单侧翼板下设1榀。

(4)箱梁底模采用15cm 竹胶板,其下纵向设置10*10cm方木,方木在腹板下中心间距为15cm ,在底板下的间距为30cm ;方木下的纵向分配梁采用12m 长I12.6工字钢,间距为75cm 。

(5)箱梁内模加固:箱梁内顶模采用竹胶板,板厚15mm ,支撑采用υ48mm ,厚3.5mm 钢管进行支撑, 支撑横向间距为60cm, 纵向间距

为60cm, 步距为120cm ,根据实际情况进行调整。箱梁内侧模采用15mm 竹胶板,以10×10cm 方木做为竖肋,以双根υ48mm 钢管作背肋,以蝴蝶扣件穿拉杆加固,拉杆为υ22mm 的钢筋制成, 竖向间距为60cm, 纵向间距为60cm ,并利用水平横撑对腹板处进行支撑。

(6)翼板及外侧模加固:翼板及箱梁外侧模采用定制钢模板加固处理,支撑架采用定制支架,并在支架外侧用钢管加固。 在内模腔内采用υ25mm 以上的钢筋将两侧腹板纵向钢管背肋进行对拉,对拉布置间距竖向为180cm, 水平为180cm 。 在顶板混凝土面以上设水平拉杆, 纵向间距为90cm 。 支架图附后:

边跨现浇支架纵断面图

边跨现浇支架横断面图

2 支架计算荷载分布图:

支架计算荷载分布图式:(等效截面)

2.1支架荷载

通过计算,支架计算荷载分布等效截面如上图所示: 单侧翼缘板混凝土每米面积为:1.098 m2; 单侧腹板混凝土每米面积为:6.953 m2;

单侧顶板及底板混凝土每米面积为:3.163+5.34=8.503 m2; 混凝土容重采用26KN/m³,施工荷载按混凝土重量荷载系数为1.2计算;

模板自重每延米为2.5KN/m2,模板及支架荷载分项系数取1.2; 等效断面:

单侧翼缘板混凝土每延米均布荷载为:(1.098×26×1.2+2.5×2. 8×1.2)/2.8=42.657/2.8=15.23KN/m;

单侧腹板混凝土每延米均布荷载为:(6.953×26×1.2+2.5×1.2×1.2)/1.2=220.533/1.2=183.77KN/m;

单侧底板段混凝土每延米均布荷载为:(3.163×26×1.2+2.5×4×1.2)/4=110/4=27.67KN/m;

单侧内模顶板段混凝土每延米均布荷载为:(5.34×26×1.2+2.5×45×1.2)/4=178.6/4=44.65KN/m。

0#块荷载横向分布图

2.2.支架检算:

边跨采取钢管支架现浇施工, 支架布置型式详见附后的钢管支架布置图。边跨现浇段总长6.8m ,现浇段对应的墩身顺桥向长2.3m ,因此在计算中假定:与墩身相对应的部分2.3m 直接作用于墩身上,

外侧的4.5m 梁段通过钢管支架施工。

由于截面形式变化,在支架受力范围内,本次计算取等效箱梁截面,总面积23.97m 2。 2.2.1腹板下方木检算

腹板下10×10cm 方木。方木下I10工字钢分配梁最大间距为0. 6米。

方木弹性模量E=1.0×104Mpa, [σ]=13Mpa/1.3=10Mpa(取自《木结构规范》,红松);

按均布荷载考虑,横向取1m 计算。 (1)弯矩

根据荷载加载情况进行求解得到如下图所示的弯矩图,最大弯矩为6.75KN.m 。

方木下工字钢间距为60cm 。

Mx 6. 75⨯103

σ===6.07Mpa

Wx 166. 7⨯100÷15

(2)剪力

纵梁所受剪力如上图所示,最大值为Q=64.85KN。

τ=要求。

3Q

=64.85×1000×3÷10000÷2÷100×15=1.45Mpa<1.6Mpa, 满足2A

(3)支座反力

(3)位移

方木最大扰度为0.28mm <600/400=1.5mm。满足要求

方木支撑在工字钢分配梁之上,支座反力实际上就是分配梁受到的压力,在上部荷载作用下,其支座反力最大值122.58KN ,即由内往外第8排分配梁受力最大。

2.2.2空箱下方木检算

腹板下10×10cm 方木。方木下I10工字钢分配梁最大间距为0. 6米。

方木弹性模量E=1.0×104Mpa, [σ]=13Mpa/1.3=10Mpa(取自《木结构规范》,红松);

按均布荷载考虑,横向取1m 计算。

(1)弯矩

根据荷载加载情况进行求解得到如下图所示的弯矩图,最大弯矩为2.66KN.m 。

方木下工字钢间距为60cm 。

Mx 2. 66⨯103

σ===3.98Mpa

Wx 166. 7⨯4

(2)剪力

方木所受剪力如上图所示,最大值为Q=25.525KN。

τ=

3Q

=25.52×1000×3÷10000÷2÷4=0.95Mpa<1.6Mpa, 满足要求。 2A

(3)支座反力

(3)位移

方木最大扰度为0.15mm <600/400=1.5mm。满足要求

方木支撑在工字钢分配梁之上,支座反力实际上就是分配梁受到的压力,在

上部荷载作用下,其支座反力最大值48.24KN ,即由内往外第8排分配梁受力最大。

2.2.3 工字钢分配梁检算

根据2.2.1节与2.2.2算得的方木受力情况,可知方木所受反力所占的比例,可计算得到每排方木传递到分配梁上的力,如下表所示

各排分配梁受力情况表

可知,I8受力最大只需对I8进行检算。

2.2.3.1 I8分配梁检算

横桥向分配梁间距60cm ;分配梁为I10工字钢,分配梁支撑在碗扣架顶托上,腹板下立杆间距0.3米,底板下纵梁间距0.6米,分配梁按连续梁检算。

腹板下均布恒载:q 1=117.47KN /m ; 底板下均布恒载:q 2=45.528KN /m ;

经结构力学求解器计算弯矩如下:

弯矩图(KN*m)

Mx 1. 47 103

最大弯应力σ===30Mpa

Wx 49

经结构力学求解器计算剪力如下:

剪力图(KN )

最大剪应力τ=

Q

=21.24×1000÷85.9÷4.5=54Mpa<85Mpa, 满足要求。 Ix d Sx

挠度检算:

位移图(mm )

最大挠度为0.04mm

荷载反力(KN )

2.2.3.2φ48×3.5mm 立杆承载力检算

由上表可知最大压力为2号杆N=40.13KN 根据压杆稳定条件,

N

≤[f ]ϕA

计算得支撑钢管容许N 值:

直径48.3mm 的钢管的回转半径为:i=1.598 l=1027mm

λ==

l

i

1027

=6. 42159. 8,

查表得Q345的折减系数值为:0.981(《冷弯薄壁型钢结构技术规范》-GB50018)

F 40. 13⨯103

σ===90. 22N /mm 2

ϕA 0. 981⨯453. 4

其中:Q345的强度值f 为300N/mm2(《冷弯薄壁型钢结构技术规

范》-GB50018)

2.2.3.3 I20分配梁检算

纵桥向分配梁间距60cm ;分配梁为I10工字钢,分配梁支撑在贝雷片上,B1、B2间距为45cm ,其余,底板下纵梁间距0.6米,分配梁按连续梁检算。

由力学求解器建立模型如下图:

受力图

由上图可知每片贝雷梁受上部荷载情况,从左至右列表显示如下:

贝雷梁受力情况表

11

编号为B3和B15。 2.2.4贝雷梁纵梁检算

腹板下纵梁受力最大值为69.2KN ,只需检算腹板下纵梁B3进行检算。

贝雷梁自重1KN /m ,则腹板下纵梁B3恒载分布如下:

经结构力学求解器计算弯矩图如下:

最大弯矩167.33KN.m

最大剪力205.31KN

12

最大挠度为0.5mm

荷载反力(KN )

2.2.5 钢管柱顶横向分配梁检算

根据2.2.3节算得的每排贝雷梁受力情况,以及2.2.5节算得的贝雷梁下部反力所占的比例,可计算得到每排贝雷梁传递到横向分配梁上的力,如下表所示

各片贝雷梁受力情况表

13

横向分配梁受力图示

钢管柱顶部的横向分配梁采用双拼I45a 工字钢。 经结构力学求解器计算弯矩图如下:

弯矩图(KN*m)

经结构力学求解器计算剪力如下:

剪力图(KN )

14

足要求。

挠度检算:

位移图(mm )

最大挠度为4.2mm

经结构力学求解器计算反力如下:

荷载反力(KN )

将上表所示内侧分配梁上的力按下图所示加载到横向分配梁上:

横向分配梁受力图示

钢管柱顶部的横向分配梁采用双拼I45a 工字钢。 经结构力学求解器计算弯矩图如下:

15

弯矩图(KN*m)

经结构力学求解器计算剪力如下:

剪力图(KN

足要求。

挠度检算:

位移图(mm )

最大挠度为3.6mm

16

荷载反力(KN )

钢管支柱所受最大力为1119.51KN ,为内侧中间的钢管支柱。 2.2.6、砂筒受力验算

根据贝雷梁传递荷载表(如下表所示),单个砂筒受力最大为R=1119.5KN,取1200KN 进行砂筒设计。

砂筒顶心顶板为20mm 厚钢板,顶心侧壁为10mm 厚钢板,顶心内灌入C40混凝土,增加顶心的刚度,由于顶心刚度较大,此处不予计算。

砂筒外筒侧壁采用12mm 厚钢板进行制作,底板为20mm 厚钢板,砂筒侧壁开80*80mm漏砂口,漏砂口采用12mm 厚钢板配合20mm 直径的螺栓将其固定在砂筒外壁上。由于外筒底板下支垫了30mm 厚的钢板,此处不考虑底板计算,只计算侧壁受力情况。

砂筒图例及计算公式:

17

查国标, 对于钢材的强度设计值, 由δ=10mm≤22mm, 则[σ]钢板=215MPa.

上部结构传到砂筒底部的力由砂筒的侧壁承受,砂筒侧壁承受的最大拉力为

式中:H ——顶心底至底板顶之间的高度,110mm ;

d1——外筒的净宽,350mm ; d0——顶心宽度,340mm ; h0——顶心长度,340mm ;

F ——砂筒受到的外部荷载,1200KN 。

砂筒壁所受到的最大拉应力为

18

(满足)

式中:F ——砂筒所受外力,1200KN ;

δ——钢板厚度,12mm ;

σ——外筒筒壁应力;

[σ]——钢材的设计强度。 (2)外筒侧壁焊缝验算

为安全起见假设上部传下来的力通过顶心挤压砂子而产生的侧压力,全部由侧板两侧的角焊缝来承受,焊条采用E50型,焊脚尺寸

h f =8

mm

砂筒侧壁承受的最大拉力由3.1计算得T =400kN

A =2⨯2⨯0. 7⨯8⨯160=3584mm 2

2.2.7 钢管立柱检算

现浇段设两排立柱,每排立柱采用3根υ630mm ,壁厚10mm 钢管, 第一排支承于承台上,第二排支承在条形基础上,其布置见总图。根据2.2.6节中横向分配梁的反力图,内侧中间的钢管受力最大,单根钢管所承受最大压力F=1119.51KN,υ630mm ,壁厚10mm 钢管截面特性:E=2.1×105Mpa ;I=936155325mm4;i=219mm;A=19478mm2。钢管总长按照84#墩最高钢管柱11m 进行计算,中间设四道连接,见图。 钢管立柱稳定检算:

钢管立柱按一端自由,一端固结考虑。μ=2.0,根据欧拉公式: λ=μL/i=2×11000/219=50.22<150 稳定性满足要求。

查表得:杆件折减系数Φ=0.852

19

单根钢管自重=16.81KN

σ=F/A×Φ=(1119.51+16.81)kN/0.852/19478mm2=68.4Mpa

=170 Mpa;满足要求。

为增加其稳定性,在钢管立柱间增设一道连接,见附图。 2.2.8基底承载力计算

外侧一排支架三根钢管立柱的总受力:P1=509.9×2+870.7+16.81×3=1940.93KN。

C25砼基础尺寸为:12×2.0×1.0m ,基础自重:P2=12×2×1.0×26=624KN。

条形基础总受力:P=P1+P2=1940.93+624=2564.93KN。 基底承载力计算:

σ=P/A=2564.93/10/2=128Kpa。 基底处理方案:

设计地质资料显示该基坑表层为粉质粘土层,需采用碎石进行换填处理,并采用小型打夯机进行夯实,夯实后的地基承载应不小于150kpa 。

为确保基底均匀受力,条形基础顶面底面均采用构造配筋,主筋采用υ20螺纹钢筋,间距20cm, 箍筋采用υ10圆钢,间距25cm 。 2.2.9 内模支架检算

2.2.9.1 内模方木(次楞)检算

内模支架方木间距0.25米,次楞下主楞方木分配梁最大间距为0. 6米。

方木弹性模量E=1.0×104Mpa, [σ]=13Mpa/1.3=10Mpa(取自《木结构规范》,红松)

20

方木w=bh2/6=166.7cm3,I=bh3/12=833.3cm4

恒载自重q 1=23.25×0.25=5.81KN/m

最大弯矩Mmax=1/8×qL 2=1/8×5.81×0.62=0.261kN·m

σMmax/w=0.261kN·m/166.7cm3=1.56Mpa

=5×5.81×0.64/384×1.0×104Mpa ×833.3cm 4=0.11mm

检算剪应力:

Q max =qL /2=5.81×0.6/2=1.74KN

S X =1/4×100×1002=0.25×106mm 3

2.2.9.2 方木分配梁(主楞)检算

横桥向分配梁间距60cm ,纵桥向间距0.6m ;分配梁支撑48×3. 5在架管顶托上,分配梁按简支梁检算。

均布恒载:q =23.25×0.6=13.95KN /m

σ=Mmax/w=0.125×13.95×0.6×0.6kN ·m/166700mm3=3.76Mpa

检算剪应力:

21

Q max =qL /2=13.95×0.6/2=4.18KN

S X =1/4×100×1002=0.25×106mm 3

2.2.9.3 φ48×3.5mm 立杆承载力检算

立杆承载力:

Nmax=13.95×0.6=8.37KN

扣件式脚手架立杆采取对接方式,步距1200mm, 立杆荷载[P]=30KN ,满足要求。

2.2.10 翼板支架检算

翼板支架采用定型钢模,但荷载较小,不再检算。

22

90+180+90m连续梁

边跨现浇段支架方案及计算书

流溪河特大桥40+72+40m连续梁,84#墩高12.5m,87#墩高13m ,边跨处高度为4.5m ,长度为6.8m ,宽14.2m 。连续梁边跨现浇段支架拟采用钢管柱+贝雷梁支架体系。 1.施工方案

边跨现浇段长度6.8m, 其中支撑在墩顶的部分长度为2.3m ,外挑部分长4.5m ;边跨现浇段设两排支架,靠墩身一排支架设在承台上,另外一排支承在条形基础上。

(1)支柱采取大型钢管支柱,直径为630mm ,厚为10mm 的钢管,下部焊接于承台预埋钢板上,支柱连接桁架采用[10槽钢架。预埋钢板于承台浇筑时先进行预埋,钢板采用厚10mm ,采用螺栓预埋式或进行焊接将钢板固定在承台钢筋上,承台混凝土施工时,预埋钢板与承台混凝土必须密贴。共设两排支架,每排3根钢管柱,横向柱间距5.2m ,纵向柱间距4m 。

外侧钢管柱支撑在C25混凝土条形基础上,条形基础长12m ,宽2m ,厚1m ,地梁内采用构造配筋。

(2)钢管支柱顶部设厚20mm 钢板为法兰盘,钢管之间的连接采用法兰连接。钢管柱顶横向分配梁为两根I45a 工字钢,工字钢上下顶板每隔40cm 焊接20cm ,将两根工字钢焊接成整体,并在贝雷梁对应的位置焊接加劲板。

(3)纵梁采用321军用贝雷梁,横断面设17榀,单侧腹板下设2~3榀,单箱室底板下设4榀,单侧翼板下设1榀。

(4)箱梁底模采用15cm 竹胶板,其下纵向设置10*10cm方木,方木在腹板下中心间距为15cm ,在底板下的间距为30cm ;方木下的纵向分配梁采用12m 长I12.6工字钢,间距为75cm 。

(5)箱梁内模加固:箱梁内顶模采用竹胶板,板厚15mm ,支撑采用υ48mm ,厚3.5mm 钢管进行支撑, 支撑横向间距为60cm, 纵向间距

为60cm, 步距为120cm ,根据实际情况进行调整。箱梁内侧模采用15mm 竹胶板,以10×10cm 方木做为竖肋,以双根υ48mm 钢管作背肋,以蝴蝶扣件穿拉杆加固,拉杆为υ22mm 的钢筋制成, 竖向间距为60cm, 纵向间距为60cm ,并利用水平横撑对腹板处进行支撑。

(6)翼板及外侧模加固:翼板及箱梁外侧模采用定制钢模板加固处理,支撑架采用定制支架,并在支架外侧用钢管加固。 在内模腔内采用υ25mm 以上的钢筋将两侧腹板纵向钢管背肋进行对拉,对拉布置间距竖向为180cm, 水平为180cm 。 在顶板混凝土面以上设水平拉杆, 纵向间距为90cm 。 支架图附后:

边跨现浇支架纵断面图

边跨现浇支架横断面图

2 支架计算荷载分布图:

支架计算荷载分布图式:(等效截面)

2.1支架荷载

通过计算,支架计算荷载分布等效截面如上图所示: 单侧翼缘板混凝土每米面积为:1.098 m2; 单侧腹板混凝土每米面积为:6.953 m2;

单侧顶板及底板混凝土每米面积为:3.163+5.34=8.503 m2; 混凝土容重采用26KN/m³,施工荷载按混凝土重量荷载系数为1.2计算;

模板自重每延米为2.5KN/m2,模板及支架荷载分项系数取1.2; 等效断面:

单侧翼缘板混凝土每延米均布荷载为:(1.098×26×1.2+2.5×2. 8×1.2)/2.8=42.657/2.8=15.23KN/m;

单侧腹板混凝土每延米均布荷载为:(6.953×26×1.2+2.5×1.2×1.2)/1.2=220.533/1.2=183.77KN/m;

单侧底板段混凝土每延米均布荷载为:(3.163×26×1.2+2.5×4×1.2)/4=110/4=27.67KN/m;

单侧内模顶板段混凝土每延米均布荷载为:(5.34×26×1.2+2.5×45×1.2)/4=178.6/4=44.65KN/m。

0#块荷载横向分布图

2.2.支架检算:

边跨采取钢管支架现浇施工, 支架布置型式详见附后的钢管支架布置图。边跨现浇段总长6.8m ,现浇段对应的墩身顺桥向长2.3m ,因此在计算中假定:与墩身相对应的部分2.3m 直接作用于墩身上,

外侧的4.5m 梁段通过钢管支架施工。

由于截面形式变化,在支架受力范围内,本次计算取等效箱梁截面,总面积23.97m 2。 2.2.1腹板下方木检算

腹板下10×10cm 方木。方木下I10工字钢分配梁最大间距为0. 6米。

方木弹性模量E=1.0×104Mpa, [σ]=13Mpa/1.3=10Mpa(取自《木结构规范》,红松);

按均布荷载考虑,横向取1m 计算。 (1)弯矩

根据荷载加载情况进行求解得到如下图所示的弯矩图,最大弯矩为6.75KN.m 。

方木下工字钢间距为60cm 。

Mx 6. 75⨯103

σ===6.07Mpa

Wx 166. 7⨯100÷15

(2)剪力

纵梁所受剪力如上图所示,最大值为Q=64.85KN。

τ=要求。

3Q

=64.85×1000×3÷10000÷2÷100×15=1.45Mpa<1.6Mpa, 满足2A

(3)支座反力

(3)位移

方木最大扰度为0.28mm <600/400=1.5mm。满足要求

方木支撑在工字钢分配梁之上,支座反力实际上就是分配梁受到的压力,在上部荷载作用下,其支座反力最大值122.58KN ,即由内往外第8排分配梁受力最大。

2.2.2空箱下方木检算

腹板下10×10cm 方木。方木下I10工字钢分配梁最大间距为0. 6米。

方木弹性模量E=1.0×104Mpa, [σ]=13Mpa/1.3=10Mpa(取自《木结构规范》,红松);

按均布荷载考虑,横向取1m 计算。

(1)弯矩

根据荷载加载情况进行求解得到如下图所示的弯矩图,最大弯矩为2.66KN.m 。

方木下工字钢间距为60cm 。

Mx 2. 66⨯103

σ===3.98Mpa

Wx 166. 7⨯4

(2)剪力

方木所受剪力如上图所示,最大值为Q=25.525KN。

τ=

3Q

=25.52×1000×3÷10000÷2÷4=0.95Mpa<1.6Mpa, 满足要求。 2A

(3)支座反力

(3)位移

方木最大扰度为0.15mm <600/400=1.5mm。满足要求

方木支撑在工字钢分配梁之上,支座反力实际上就是分配梁受到的压力,在

上部荷载作用下,其支座反力最大值48.24KN ,即由内往外第8排分配梁受力最大。

2.2.3 工字钢分配梁检算

根据2.2.1节与2.2.2算得的方木受力情况,可知方木所受反力所占的比例,可计算得到每排方木传递到分配梁上的力,如下表所示

各排分配梁受力情况表

可知,I8受力最大只需对I8进行检算。

2.2.3.1 I8分配梁检算

横桥向分配梁间距60cm ;分配梁为I10工字钢,分配梁支撑在碗扣架顶托上,腹板下立杆间距0.3米,底板下纵梁间距0.6米,分配梁按连续梁检算。

腹板下均布恒载:q 1=117.47KN /m ; 底板下均布恒载:q 2=45.528KN /m ;

经结构力学求解器计算弯矩如下:

弯矩图(KN*m)

Mx 1. 47 103

最大弯应力σ===30Mpa

Wx 49

经结构力学求解器计算剪力如下:

剪力图(KN )

最大剪应力τ=

Q

=21.24×1000÷85.9÷4.5=54Mpa<85Mpa, 满足要求。 Ix d Sx

挠度检算:

位移图(mm )

最大挠度为0.04mm

荷载反力(KN )

2.2.3.2φ48×3.5mm 立杆承载力检算

由上表可知最大压力为2号杆N=40.13KN 根据压杆稳定条件,

N

≤[f ]ϕA

计算得支撑钢管容许N 值:

直径48.3mm 的钢管的回转半径为:i=1.598 l=1027mm

λ==

l

i

1027

=6. 42159. 8,

查表得Q345的折减系数值为:0.981(《冷弯薄壁型钢结构技术规范》-GB50018)

F 40. 13⨯103

σ===90. 22N /mm 2

ϕA 0. 981⨯453. 4

其中:Q345的强度值f 为300N/mm2(《冷弯薄壁型钢结构技术规

范》-GB50018)

2.2.3.3 I20分配梁检算

纵桥向分配梁间距60cm ;分配梁为I10工字钢,分配梁支撑在贝雷片上,B1、B2间距为45cm ,其余,底板下纵梁间距0.6米,分配梁按连续梁检算。

由力学求解器建立模型如下图:

受力图

由上图可知每片贝雷梁受上部荷载情况,从左至右列表显示如下:

贝雷梁受力情况表

11

编号为B3和B15。 2.2.4贝雷梁纵梁检算

腹板下纵梁受力最大值为69.2KN ,只需检算腹板下纵梁B3进行检算。

贝雷梁自重1KN /m ,则腹板下纵梁B3恒载分布如下:

经结构力学求解器计算弯矩图如下:

最大弯矩167.33KN.m

最大剪力205.31KN

12

最大挠度为0.5mm

荷载反力(KN )

2.2.5 钢管柱顶横向分配梁检算

根据2.2.3节算得的每排贝雷梁受力情况,以及2.2.5节算得的贝雷梁下部反力所占的比例,可计算得到每排贝雷梁传递到横向分配梁上的力,如下表所示

各片贝雷梁受力情况表

13

横向分配梁受力图示

钢管柱顶部的横向分配梁采用双拼I45a 工字钢。 经结构力学求解器计算弯矩图如下:

弯矩图(KN*m)

经结构力学求解器计算剪力如下:

剪力图(KN )

14

足要求。

挠度检算:

位移图(mm )

最大挠度为4.2mm

经结构力学求解器计算反力如下:

荷载反力(KN )

将上表所示内侧分配梁上的力按下图所示加载到横向分配梁上:

横向分配梁受力图示

钢管柱顶部的横向分配梁采用双拼I45a 工字钢。 经结构力学求解器计算弯矩图如下:

15

弯矩图(KN*m)

经结构力学求解器计算剪力如下:

剪力图(KN

足要求。

挠度检算:

位移图(mm )

最大挠度为3.6mm

16

荷载反力(KN )

钢管支柱所受最大力为1119.51KN ,为内侧中间的钢管支柱。 2.2.6、砂筒受力验算

根据贝雷梁传递荷载表(如下表所示),单个砂筒受力最大为R=1119.5KN,取1200KN 进行砂筒设计。

砂筒顶心顶板为20mm 厚钢板,顶心侧壁为10mm 厚钢板,顶心内灌入C40混凝土,增加顶心的刚度,由于顶心刚度较大,此处不予计算。

砂筒外筒侧壁采用12mm 厚钢板进行制作,底板为20mm 厚钢板,砂筒侧壁开80*80mm漏砂口,漏砂口采用12mm 厚钢板配合20mm 直径的螺栓将其固定在砂筒外壁上。由于外筒底板下支垫了30mm 厚的钢板,此处不考虑底板计算,只计算侧壁受力情况。

砂筒图例及计算公式:

17

查国标, 对于钢材的强度设计值, 由δ=10mm≤22mm, 则[σ]钢板=215MPa.

上部结构传到砂筒底部的力由砂筒的侧壁承受,砂筒侧壁承受的最大拉力为

式中:H ——顶心底至底板顶之间的高度,110mm ;

d1——外筒的净宽,350mm ; d0——顶心宽度,340mm ; h0——顶心长度,340mm ;

F ——砂筒受到的外部荷载,1200KN 。

砂筒壁所受到的最大拉应力为

18

(满足)

式中:F ——砂筒所受外力,1200KN ;

δ——钢板厚度,12mm ;

σ——外筒筒壁应力;

[σ]——钢材的设计强度。 (2)外筒侧壁焊缝验算

为安全起见假设上部传下来的力通过顶心挤压砂子而产生的侧压力,全部由侧板两侧的角焊缝来承受,焊条采用E50型,焊脚尺寸

h f =8

mm

砂筒侧壁承受的最大拉力由3.1计算得T =400kN

A =2⨯2⨯0. 7⨯8⨯160=3584mm 2

2.2.7 钢管立柱检算

现浇段设两排立柱,每排立柱采用3根υ630mm ,壁厚10mm 钢管, 第一排支承于承台上,第二排支承在条形基础上,其布置见总图。根据2.2.6节中横向分配梁的反力图,内侧中间的钢管受力最大,单根钢管所承受最大压力F=1119.51KN,υ630mm ,壁厚10mm 钢管截面特性:E=2.1×105Mpa ;I=936155325mm4;i=219mm;A=19478mm2。钢管总长按照84#墩最高钢管柱11m 进行计算,中间设四道连接,见图。 钢管立柱稳定检算:

钢管立柱按一端自由,一端固结考虑。μ=2.0,根据欧拉公式: λ=μL/i=2×11000/219=50.22<150 稳定性满足要求。

查表得:杆件折减系数Φ=0.852

19

单根钢管自重=16.81KN

σ=F/A×Φ=(1119.51+16.81)kN/0.852/19478mm2=68.4Mpa

=170 Mpa;满足要求。

为增加其稳定性,在钢管立柱间增设一道连接,见附图。 2.2.8基底承载力计算

外侧一排支架三根钢管立柱的总受力:P1=509.9×2+870.7+16.81×3=1940.93KN。

C25砼基础尺寸为:12×2.0×1.0m ,基础自重:P2=12×2×1.0×26=624KN。

条形基础总受力:P=P1+P2=1940.93+624=2564.93KN。 基底承载力计算:

σ=P/A=2564.93/10/2=128Kpa。 基底处理方案:

设计地质资料显示该基坑表层为粉质粘土层,需采用碎石进行换填处理,并采用小型打夯机进行夯实,夯实后的地基承载应不小于150kpa 。

为确保基底均匀受力,条形基础顶面底面均采用构造配筋,主筋采用υ20螺纹钢筋,间距20cm, 箍筋采用υ10圆钢,间距25cm 。 2.2.9 内模支架检算

2.2.9.1 内模方木(次楞)检算

内模支架方木间距0.25米,次楞下主楞方木分配梁最大间距为0. 6米。

方木弹性模量E=1.0×104Mpa, [σ]=13Mpa/1.3=10Mpa(取自《木结构规范》,红松)

20

方木w=bh2/6=166.7cm3,I=bh3/12=833.3cm4

恒载自重q 1=23.25×0.25=5.81KN/m

最大弯矩Mmax=1/8×qL 2=1/8×5.81×0.62=0.261kN·m

σMmax/w=0.261kN·m/166.7cm3=1.56Mpa

=5×5.81×0.64/384×1.0×104Mpa ×833.3cm 4=0.11mm

检算剪应力:

Q max =qL /2=5.81×0.6/2=1.74KN

S X =1/4×100×1002=0.25×106mm 3

2.2.9.2 方木分配梁(主楞)检算

横桥向分配梁间距60cm ,纵桥向间距0.6m ;分配梁支撑48×3. 5在架管顶托上,分配梁按简支梁检算。

均布恒载:q =23.25×0.6=13.95KN /m

σ=Mmax/w=0.125×13.95×0.6×0.6kN ·m/166700mm3=3.76Mpa

检算剪应力:

21

Q max =qL /2=13.95×0.6/2=4.18KN

S X =1/4×100×1002=0.25×106mm 3

2.2.9.3 φ48×3.5mm 立杆承载力检算

立杆承载力:

Nmax=13.95×0.6=8.37KN

扣件式脚手架立杆采取对接方式,步距1200mm, 立杆荷载[P]=30KN ,满足要求。

2.2.10 翼板支架检算

翼板支架采用定型钢模,但荷载较小,不再检算。

22


相关文章

  • 数据结构选择题集锦
  • 单项选择 ( B ) 1. 通常所说的主机是指∶ A) CPU B) CPU和内存 C) CPU.内存与外存 ( C )2. 在计算机内部,一切信息的存取.处理和传送的形式是∶ A) ACSII码 B) BCD码 C) 二进制 D) 十六进 ...查看


  • 北京市普通高等学校体育(乒乓球)专业 考试细则及评分标准
  • 一.身体素质 1.100米 (1)场地设备:按<田径竞赛规则>的有关规定设置场地. (2)测试要求:由于采取电动计时,考生测试时必须使用起跑器,采用蹲踞式起跑.钉鞋须使用短钉,鞋钉长于9毫米者不能参加测试. (3)测试方式:每位 ...查看


  • 单向板肋形结构设计例题
  • 第二节 单向板肋形结构设计例题 一. 基本情况 某水电站副厂房楼盖,3级水工建筑物,基本组合时的承载力安全系数K=1. 20.其平面尺寸为25m ×21.6m ,平面布置如图9-24所示.楼盖拟采用现浇钢筋混凝土单向板肋形楼盖.试设计该楼盖 ...查看


  • 统计学原理形成性考核册
  • 统计学原理形成性考核册 作业一 (第1-3章) 一.判断题 1.社会经济统计工作的研究对象是社会经济现象总体的数量方面.(× ) 2.统计调查过程中采用的大量观察法,是指必须对研究对象的所有单位进行调查.( × ) 3.全面调查包括普查和统 ...查看


  • 社会经济统计工作的研究对象是社会经济现象总体的数量...
  • 作业一 (第1-3章) 一.判断题 1.社会经济统计工作的研究对象是社会经济现象总体的数量方面.(× ) 2.统计调查过程中采用的大量观察法,是指必须对研究对象的所有单位进行调查.( × ) 3.全面调查包括普查和统计报表.( √ ) 4. ...查看


  • 一年级暑假数学作业
  • 一.填空: 1. 13比7大( ),34比39小( ). 2.个位上是9,十位上是4的数是( ),它再添上( )是50. 3.10个十是( ).46里面有( )个十和( )个一. 63里面有( )个一,4个十和5个十合起来是( ). 4. ...查看


  • 3两位数减一位数和整十数-江门市新会圭峰小学
  • 3 两位数减一位数和整十数 一.算一算. 1.68-5= 97-3= 87-7= 49-3= 56-2= 35-3= 2.68-50= 97-30= 87-70= 49-30= 56-20= 35-30= 3.51-3= 26-8= 67- ...查看


  • 统计学原理作业答案
  • 统计学原理形成性考核册答案 一.判断题 1.社会经济统计工作的研究对象是社会经济现象总体的数量方面.(× ) 2.统计调查过程中采用的大量观察法,是指必须对研究对象的所有单位进行调查.( × ) 3.全面调查包括普查和统计报表.( √ ) ...查看


  • 厂房模板方案
  • 目 录 一.工程概况 二.施工方法及技术措施 三. 模板工程安全技术措施 模板施工方案 一.概况 本工程总建筑面积10325平方米:其中联合站房建筑面积522.6平方米,地上1层,建筑高度7.65m ,全框架现浇结构,砼强度C30,为独立基 ...查看


热门内容