5微生物的代谢知识点整理

第五章 微生物的代谢

第一节 微生物的产能代谢

产能代谢:物质在生物体内经过一系列连续的氧化还原反应,逐步分解并释放能量的过程,又称生物氧化。

光能营养型

化能营养型

化能无机营养型:自养微生物

化能有机营养型:异养微生物 呼吸 有氧呼吸

发酵 1发酵

定义:微生物细胞将有机物氧化释放的电子直接交给底物本身未完全氧化的某种中间产物,同时释放能量并产生各种不同的代谢产物。 电子受体:内源的有机物

1.1 发酵的途径 (糖酵解:葡萄糖-----丙酮酸)

☐ EMP 途径(糖酵解途径,二磷酸己糖途径)

☐ HMP 途径(一磷酸己糖途径,磷酸戊糖支路)

☐ ED 途径(2-酮-3-脱氧-6-磷酸葡萄糖酸裂解途径) ☐ 磷酸解酮酶途径

>>EMP途径 (识别标志:生成两分子主要中间产物:甘油醛3磷酸)

>>HM途径 (识别标志:4-磷酸赤藓糖 、7-磷酸景天庚酮糖)

>>ED途径(识别标志:2-酮-3-脱氢-6-磷酸葡糖酸)

EMP 途径 丙酮酸

>>磷酸解酮酶途径(识别标志:磷酸无糖解酮酶——PK 途径

磷酸己糖解酮酶——HK 途径)

1.2 发酵的类型

乙醇发酵

酵母菌的乙醇发酵 →乙醇——一型发酵; →甘油——二型发酵

→乙醇、乙酸、甘油——三型发酵

细菌的乙醇发酵ED 途径: 运动发酵单胞菌、厌氧发酵单胞菌 EMP 途径:胃八叠球菌、肠杆菌

乳酸发酵 同型乳酸发酵:EMP 途径

异型乳酸发酵 : PK 途径与HK 途径

双歧发酵

混合酸发酵:埃希氏菌属、沙门氏菌属、志贺氏菌属、肠杆菌、欧文氏菌属 >>分辨大肠杆菌与志贺氏菌

加入甲酸,大肠杆菌中有甲酸氢解酶,可生成CO2与H2,冒气泡;而志贺氏菌

没有。

>>大肠杆菌和产气杆菌

有一些细菌如产气杆菌,在发酵的时候,可以将丙酮酸缩合,脱羧成3羟基丁

酮,它在碱性条件下被氧化成乙二酰,乙二酰可以与蛋白胨中的胍基作用,形成红色化合物。红色是阳性的,无色是阴性的。产气杆菌呈阳性,大肠杆菌是阴性。

Stickland 反应(氨基酸发酵)

2呼吸

定义:微生物在降解底物的过程中,将释放出的电子交给NAD(P)+、FAD 或FMN 等电子载体,在经过电子传递系统传给外源电子受体,从而生成水或其他还原性产物并释放能量的过程。

分类:有氧呼吸——以氧分子作为最终电子受体

无氧呼吸——以氧化型化合物作为最终电子受体

有氧呼吸 三羧酸循环图

无氧呼吸 硝酸盐呼吸

硫酸盐呼吸 碳酸盐呼吸 硫呼吸 铁呼吸

延胡索酸呼吸

3自养微生物的生物氧化

3.1硝化细菌 –氨的氧化:NH3(硝化细菌) 、NO2-(亚硝化细菌)→ NO3-

3.2硫化细菌—硫的氧化:S →SO42-

3.3 氢细菌– 氢的氧化:2H2+O2---2H2O 3.4铁细菌– 铁的氧化

4光能自养微生物

4.1细菌的光合作用

环式光合磷酸化--依赖菌绿素的光合作用——光合细菌,不产氧

非环式光合磷酸化--依赖叶绿素的光合作用——蓝藻,绿色植物,产氧

嗜盐菌紫膜的光合作用--依赖细菌视紫红质 ——嗜盐菌,不产氧

4.2能量转换

产能微生物通过以下这三种方式把能量转化成ATP

底物水平磷酸化 物质在氧化过程中,产生含有高能键的化合物,这些化合物可以直接偶联ATP 或GTP 的合成

氧化磷酸化 物质在生物氧化过程中形成的NADH 和FADH2可通过位于线粒体内膜或细菌质膜上的电子传递系统将电子传递给氧或其它氧化型物质,在这个过程中偶联ATP 的形成 光合磷酸化 如4.1

第二节 耗能代谢

合成代谢:微生物利用能量代谢所产生的能量、中间产物以及从外界吸收的小分子,合成复杂的细胞物质的过程。

细胞物质的合成 CO2的固定

生物固氮

二碳化合物的同化 糖类的合成 氨基酸的合成 核苷酸的合成

其他耗能反应:运输、运动、生物发光

2.1 生物固氮

定义:微生物将氮还原为氨的过程。

2.1.1 固氮微生物

1. 自生固氮微生物

能独立进行固氮的微生物 eg 固氮菌属, 梭菌属等 2. 共生固氮微生物

必须与它种生物共生在一起时才能固氮 的微生物 eg 根瘤菌 3. 联合固氮微生物

必须生活在植物根际、叶面或动物肠 道等处才能进行固氮的微生物 eg 固氮 螺菌 2.1.2固氮作用机理

1. 固氮作用机理:固氮的生物化学途径

2. 固氮六要素:

ATP

还原力和传递载体

固氮酶:有两种主要蛋白组成,铁钼蛋白和铁蛋白

严格厌氧

N2、Mg2+、厌氧微环境

3. 好氧固氮菌防止氧伤害固氮酶的机制

呼吸保护:固氮菌科菌

构象保护:维涅兰德固氮菌

蓝细菌固氮酶的抗氧保护机制(异形胞、SOD )

豆科植物固氮酶的抗氧保护机制(豆血红蛋白调节氧浓度)

2.2糖类的合成 肽聚糖的合成

在细胞之中

在细胞膜上

在细胞膜外

第五章 微生物的代谢

第一节 微生物的产能代谢

产能代谢:物质在生物体内经过一系列连续的氧化还原反应,逐步分解并释放能量的过程,又称生物氧化。

光能营养型

化能营养型

化能无机营养型:自养微生物

化能有机营养型:异养微生物 呼吸 有氧呼吸

发酵 1发酵

定义:微生物细胞将有机物氧化释放的电子直接交给底物本身未完全氧化的某种中间产物,同时释放能量并产生各种不同的代谢产物。 电子受体:内源的有机物

1.1 发酵的途径 (糖酵解:葡萄糖-----丙酮酸)

☐ EMP 途径(糖酵解途径,二磷酸己糖途径)

☐ HMP 途径(一磷酸己糖途径,磷酸戊糖支路)

☐ ED 途径(2-酮-3-脱氧-6-磷酸葡萄糖酸裂解途径) ☐ 磷酸解酮酶途径

>>EMP途径 (识别标志:生成两分子主要中间产物:甘油醛3磷酸)

>>HM途径 (识别标志:4-磷酸赤藓糖 、7-磷酸景天庚酮糖)

>>ED途径(识别标志:2-酮-3-脱氢-6-磷酸葡糖酸)

EMP 途径 丙酮酸

>>磷酸解酮酶途径(识别标志:磷酸无糖解酮酶——PK 途径

磷酸己糖解酮酶——HK 途径)

1.2 发酵的类型

乙醇发酵

酵母菌的乙醇发酵 →乙醇——一型发酵; →甘油——二型发酵

→乙醇、乙酸、甘油——三型发酵

细菌的乙醇发酵ED 途径: 运动发酵单胞菌、厌氧发酵单胞菌 EMP 途径:胃八叠球菌、肠杆菌

乳酸发酵 同型乳酸发酵:EMP 途径

异型乳酸发酵 : PK 途径与HK 途径

双歧发酵

混合酸发酵:埃希氏菌属、沙门氏菌属、志贺氏菌属、肠杆菌、欧文氏菌属 >>分辨大肠杆菌与志贺氏菌

加入甲酸,大肠杆菌中有甲酸氢解酶,可生成CO2与H2,冒气泡;而志贺氏菌

没有。

>>大肠杆菌和产气杆菌

有一些细菌如产气杆菌,在发酵的时候,可以将丙酮酸缩合,脱羧成3羟基丁

酮,它在碱性条件下被氧化成乙二酰,乙二酰可以与蛋白胨中的胍基作用,形成红色化合物。红色是阳性的,无色是阴性的。产气杆菌呈阳性,大肠杆菌是阴性。

Stickland 反应(氨基酸发酵)

2呼吸

定义:微生物在降解底物的过程中,将释放出的电子交给NAD(P)+、FAD 或FMN 等电子载体,在经过电子传递系统传给外源电子受体,从而生成水或其他还原性产物并释放能量的过程。

分类:有氧呼吸——以氧分子作为最终电子受体

无氧呼吸——以氧化型化合物作为最终电子受体

有氧呼吸 三羧酸循环图

无氧呼吸 硝酸盐呼吸

硫酸盐呼吸 碳酸盐呼吸 硫呼吸 铁呼吸

延胡索酸呼吸

3自养微生物的生物氧化

3.1硝化细菌 –氨的氧化:NH3(硝化细菌) 、NO2-(亚硝化细菌)→ NO3-

3.2硫化细菌—硫的氧化:S →SO42-

3.3 氢细菌– 氢的氧化:2H2+O2---2H2O 3.4铁细菌– 铁的氧化

4光能自养微生物

4.1细菌的光合作用

环式光合磷酸化--依赖菌绿素的光合作用——光合细菌,不产氧

非环式光合磷酸化--依赖叶绿素的光合作用——蓝藻,绿色植物,产氧

嗜盐菌紫膜的光合作用--依赖细菌视紫红质 ——嗜盐菌,不产氧

4.2能量转换

产能微生物通过以下这三种方式把能量转化成ATP

底物水平磷酸化 物质在氧化过程中,产生含有高能键的化合物,这些化合物可以直接偶联ATP 或GTP 的合成

氧化磷酸化 物质在生物氧化过程中形成的NADH 和FADH2可通过位于线粒体内膜或细菌质膜上的电子传递系统将电子传递给氧或其它氧化型物质,在这个过程中偶联ATP 的形成 光合磷酸化 如4.1

第二节 耗能代谢

合成代谢:微生物利用能量代谢所产生的能量、中间产物以及从外界吸收的小分子,合成复杂的细胞物质的过程。

细胞物质的合成 CO2的固定

生物固氮

二碳化合物的同化 糖类的合成 氨基酸的合成 核苷酸的合成

其他耗能反应:运输、运动、生物发光

2.1 生物固氮

定义:微生物将氮还原为氨的过程。

2.1.1 固氮微生物

1. 自生固氮微生物

能独立进行固氮的微生物 eg 固氮菌属, 梭菌属等 2. 共生固氮微生物

必须与它种生物共生在一起时才能固氮 的微生物 eg 根瘤菌 3. 联合固氮微生物

必须生活在植物根际、叶面或动物肠 道等处才能进行固氮的微生物 eg 固氮 螺菌 2.1.2固氮作用机理

1. 固氮作用机理:固氮的生物化学途径

2. 固氮六要素:

ATP

还原力和传递载体

固氮酶:有两种主要蛋白组成,铁钼蛋白和铁蛋白

严格厌氧

N2、Mg2+、厌氧微环境

3. 好氧固氮菌防止氧伤害固氮酶的机制

呼吸保护:固氮菌科菌

构象保护:维涅兰德固氮菌

蓝细菌固氮酶的抗氧保护机制(异形胞、SOD )

豆科植物固氮酶的抗氧保护机制(豆血红蛋白调节氧浓度)

2.2糖类的合成 肽聚糖的合成

在细胞之中

在细胞膜上

在细胞膜外


相关文章

  • 高三生物教学工作计划
  • 2010-2011下学期高三生物备课组工作计划 本学期是高三的最后一学期,还有100多天的时间,高三的孩子即将走进高考的考场接受高考的检阅.进入3月份后,高三第一轮复习已接近尾声,我校高三生物即将进入第二轮复习,摆在我们面前的问题是:如何提 ...查看


  • 高一生物必修一知识点整理 1
  • 高一生物必修(1)知识点整理 1.细胞:是生物体结构和功能的基本单位.除了病毒以外,所有生物都是由细胞构成的. 2.生命系统的结构层次:细胞→组织→器官→系统→个体→种群群落→生态系统→生物圈 (植物没有系统) 其中最基本的生命系统:细胞 ...查看


  • 高一生物必修一知识点总结(整理版)
  • 必修(1)知识点整理 第一章 走近细胞 第一节 从生物圈到细胞 一.相关概念. 细胞:是生物体结构和功能的基本单位.除了病毒以外,所有生物都是由细胞构成的.细胞是地球上最基本的生命系统 生命系统的结构层次: 细胞→组织→器官→系统(植物没有 ...查看


  • 微生物真题名词解释整理汇总
  • 微生物考研名词解释汇总 [2013年] 1. 纯培养物(pure culture):由一种微生物组成的细胞群体,通常是由一个单细胞生长.繁殖所形成.[2章 微生物的纯培养和显微技术] 2. 负染色(negative staining ):染 ...查看


  • 高一生物必修一知识点整理
  • 高一生物必修(1) 1.细胞:是生物体结构和功能的基本单位.除了病毒以外,所有生物都是由细胞构成的. 2.生命系统的结构层次:细胞→组织→器官→系统→个体→种群群落→生态系统→生物圈 (植物没有系统) 其中最基本的生命系统:细胞 最大的生命 ...查看


  • 临床案例在医学生物化学教学中的应用
  • 临床案例在医学生物化学教学中的应用 王琳 (长沙医学院 生物化学教研室 湖南长沙 410219) 摘要:生物化学理论知识较为繁琐.枯燥.将临床案例引入教学,不仅能激发学生学习的积极性,提高教学质量,同时还锻炼了学生自主学习能力.本文就如何在 ...查看


  • 制定学科教学计划的基本要求
  • 制定学科教学计划的基本要求 1.教师制定学科教学工作计划前,要认真领会<课程标准>的精神,通览全册教材,并依据学校工作计划,结合本班.本学科教学.学生实际,制定切实可行的计划. 2.学科教学工作计划主要内容包括:学生基本情况分析 ...查看


  • 药理学知识点整理
  • 简述被动转运及其特点.(各1分) 1.药物依赖膜两侧的浓度差,高→低,达相对平衡: 2.不需要载体,不耗能, 3.无竞争抑制现象及无饱和现象: 4.以简单扩散为主,分子量小,脂溶性大,极性小〈即解离度低〉的药物较易转运: 5.为大多数药物的 ...查看


  • 动物营养学考试内容
  • "动物营养学"考试大纲 适用对象:四年制动物科学专业 一.课程性质.教学目的与要求 该课程是动物科学专业的专业基础课.教学目的和要求是,通过本课程的学习能比较全面系统地掌握动物营养原理及有关基本理论.基本知识和基本方法, ...查看


热门内容