单层石墨烯氧化物

University of Pennsylvania

ScholarlyCommons

Department of Physics Papers

Department of Physics

3-19-2009

Photoluminescence and Band Gap Modulation inGraphene Oxide

Zhengtang Luo

University of Pennsylvania, [email protected]

Patrick Vora

University of Pennsylvania, [email protected]

Eugene J. Mele

University of Pennsylvania, [email protected]

A.T. Charlie Johnson Jr.

University of Pennsylvania, [email protected]

James M. Kikkawa

University of Pennsylvania, [email protected]

Suggested Citation:

Luo, Z., P.M. Vora, E.J. Mele, A.T.C. Johnson and J.M. Kikkawa. (2009). "Photoluminescence and band gap modulation in graphene oxide."AppliedPhysics Letters.94, 111909.

Copyright 2009 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of theauthor and the American Institute of Physics. The following article appeared inApplied Physics Letters.and may be found at http://dx.doi.org/10.1063/1.3098358.

This paper is posted at ScholarlyCommons.http://repository.upenn.edu/physics_papers/64For more information, please [email protected].

APPLIEDPHYSICSLETTERS94,111909͑2009͒

Photoluminescenceandbandgapmodulationingrapheneoxide

ZhengtangLuo,PatrickM.Vora,EugeneJ.Mele,A.T.CharlieJohnson,andJamesM.Kikkawaa͒

DepartmentofPhysicsandAstronomy,TheUniversityofPennsylvania,209South33rdStreet,Philadelphia,Pennsylvania19104,USA

͑Received21January2009;accepted21February2009;publishedonline19March2009͒Wereportbroadbandvisiblephotoluminescencefromsolidgrapheneoxide,andmodificationsoftheemissionspectrumbyprogressivechemicalreduction.Thedatasuggestagappingofthetwo-dimensionalelectronicsystembyremovalof␲-electrons.Wediscusspossiblegappingmechanisms,andproposethataKekulepatternofbonddistortionsmayaccountfortheobservedbehavior.2009AmericanInstituteofPhysics.͓DOI:10.1063/1.3098358͔

Singlelayerandbilayergraphenesystemscanexhibitaremarkablediversityofphenomena,includingobservationsofaroom-temperature,unconventionalquantumHalleffect,1–3predictionsofthequantumspinHalleffect,4brokenspin5,6orpseudospin7symmetries,andfinitesizeeffectsthatcanbeusedtocontrolbandstructure5,6,8,9andmagnetism.5,6,9,10Takentogether,thesepropertiessuggestthatgrapheneisapromisingplatformforseamlesslyex-changinginformationbetweendifferentdegreesoffreedom.Anoutstandingchallengeinthisregardisphotonicintegra-tionandbandgapmanipulation.Severaltheoreticalworkspredictthatadirectgapinthevisiblewouldoccurforsuffi-cientlysmallgraphenenanoribbons,5,6,8,9butnoobservationsofthisfinitesizeeffecthavebeenreported.Additionally,modificationsofthegraphenesheetbyoxidationcanintro-ducedirectgapbehavior.11

Hereweshowthatgraphene,althoughintrinsicallyazero-gapsemimetal,maybeoxidizedinamannerthatpro-ducesphotoluminescence͑PL͒forsolid,drop-castsamples.Wefindthatdespitethehighsurfaceareaofgrapheneoxide͑GO͒andinmarkedcontrasttocarbonnanotubes,thestrengthofPLfromGOflakesdoesnotdiffersignificantlybetweenaqueousanddrop-castsamples.TheresilienceofPLforsolidGOsamplesisencouragingfortechnologicalapplications,implyingthatGOmaybeausefulphotonicmaterialwhenincorporatedinsolidstatedevices.Thelargeobservedgapcreatesthepossibilityforspatiallymodulatingthebandstructurewithinasinglegrapheneflakebylocalcontroloftheoxidationprofile.StudiesofprogressivechemicalreductionshowquenchingofPLforbothdrop-castandaqueoussamples,coordinatedwithchangesinabsorp-tion.Thesestudiesalsofindsignaturesofbandgapmanipu-lation,albeitwithdifferentcharacterforsolidandliquidsamples.

AqueousdispersionsofsinglelayerGOwithanaverageareaofϳ100␮m2weresynthesizedfollowingaproceduredescribedelsewhere.12Solidsamples͑s-GO͒wereobtainedbydrop-castingtheconcentratedGOsolutionresultingfromthisprocedureontopolished,lowauto-fluorescence,Suprasil-2substratesandthenbakingat95°Cfor30min.Liquidsamples͑l-GO͒wereheldinquartzcuvettes,dilutedahundredfoldormoreasnecessarytoadjustopticaldensity.PLforbothl-GOands-GOwascollectedat90°degreesto

theexcitation,andthereflection͑transmission͒geometryfors-GOcorrespondedtocollectiononthesame͑opposite͒sideofthefilm.PLspectrawereexcitedbyXelamppassedthroughamonochrometer,andadditionalfilterswereem-ployedonexcitationandcollectiontorejectexcitationscat-ter,secondordergratingeffects,andleakageofXelampspikes.Spectrawerespectrallycorrectedfordetectoreffi-ciencies,andnormalizedbyexcitationpower.AllPLdatashownhere͑bothmapsandsinglespectra͒arefurthernor-malizedtoamaximumvalueofunityandtakenat300K.

Figure1͑a͒comparesPLforbothl-GOands-GOsamples.Bothpeaksinthevisiblewithalonginfraredemis-siontail.Differencesinmeasurementgeometrymakequan-titativecomparisonsofthequantumyieldimpossible,butgenerallylittledifferencewasseeninPLintensity.Aninter-estingquestioniswhetherenergyrelaxationandspectraldif-fusionarequalitativelyalteredbyaggregation.Forisolatedflakesinl-GO,diffusionoffreecarriersorboundexcitonsshouldbeconfinedtothetwodimensionalGOplane.How-ever,fors-GO,atomicforceandopticalmicroscopy,bothindicatefilmsoflayeredGOflakes,whichcouldgiverisetoadditionalinterflakerelaxationpathways.Ifinterlayercou-plingisstrongenough,theemissionspectrumcouldredshift.s-GOindeedshowsmorePLspectralweightintheinfrared,buttheredshiftinthePLpeakpositionisnotarobustfeatureoftheexperimentandwasinconsistentfromsampletosampleperhapsduetovariationsintheoxidationdensity.Inadditiontoexcitondiffusion,severalplausiblechangescould

1

(a)

l-GOs-GO

(b)

1

1

l-GOs-GO

0600

800

Wavelength(nm)

10001200

0400

Wavelength(nm)

500

0600

Electronicmail:[email protected].

FIG.1.͑Coloronline͒͑a͒NormalizedPLspectraexcitedat500nm͑s-GOtakenintransmission͒.͑b͒Absorption͑leftaxis,solid͒andPLintensitydetectedat752nm͑rightaxis,dashed͒,asafunctionofexcitationwavelength.

2009AmericanInstituteofPhysics

0003-6951/2009/94͑11͒/111909/3/$25.0094,111909-1

NormalizedPL(arb.units)

NormalizedPL(arb.units)

l-GOs-GO

Absorption

111909-2

600

Luoetal.Appl.Phys.Lett.94,111909͑2009͒

NormalizedPL(arb.units)

1.00.80.60.40.20.0600

ExcitationWavelength(nm)

500600

0s5s1min8min18min

(a)

500600

NormalizedPL(arb.units)

800

10001200Wavelength(nm)

1400

500

800

10001200EmissionWavelength(nm)

1400

1.00.8

0.6

FIG.2.͑Color͒NormalizedPLexcitation-emissionmapsfors-GOtakenintransmissionduringhydrazinevaporexposure.

0.40.2

alsoinfluencethepeakposition,includingmodificationsofthedielectricenvironment,spectralreabsorption,andvaria-tionsinoxidationdensity.

TheGOabsorption͓Fig.1͑b͔͒increaseswithenergyfromthenearinfraredto3.1eV,andprovidesaninterestingcontrasttothenonmonotonicPLspectrum.WefurthernotethatPLexcitation͑PLE͒spectradonotmirrortheabsor-banceincreasesathigherenergies.Tothecontrary,asshowninFig.1͑b͒,astheexcitationenergyincreases,PLintensitydetectedatafixedwavelengthdecreases.Thelatterindicatesthepresenceofnonradiativeenergyrelaxationpathways,butalsocallsintoquestiontherelevanceoftheabsorbancespec-trumtotheemissiveprocess.Withthesedatainmind,onemustconsiderthepossibilitythattheelectronicstructurewithintheflakesisheterogeneous,andthatPLemissionoriginatesfromabsorbanceintoexcitedstateswhosetotalabsorptivecross-sectionis,nevertheless,onlyasmallcon-tributortothetotalabsorptivespectrum.Absolutevaluesfortheemissivequantumyieldwouldhelptoilluminatethisdiscussion,butaccuratemeasurementsofthisquantityareproblematicforensemblesofheterogeneousnanomaterialsandarebeyondthescopeofthiswork.Neverthelesswemayqualitativelysaythattheobservedquantumyieldsappeartobefarlessthanunity.

Tostudytherelationshipbetweenoxidationdensityandtheopticalgap,weperformedexperimentstovarytheoxi-dationdensityandwhilemonitoringchangesinthePLspec-trum.s-GOsampleswereplacedinacoveredPetridishwithacontainerofhydrazine,heatedto50°C,andtheirPLmapscharacterizedinthetransmissiongeometry.Theprocesswasrepeatedseveraltimestoprogressivelyreducethesample,resultinginamarkedredshift͑Fig.2͒.Modelingshowsthatchangesintheabsorptivespectrum͑notshown͒couldalsoproducethesespectralshiftsthroughreabsorptionoftheemittedlight.Tobettercontroltheseeffects,werepeatedthisstudyonadifferentsampleinthereflectiongeometry,whilealsocontinuallymonitoringchangesinabsorption.Penetra-tionoftheexcitingandemittinglightwasthenestimatedusingtherelationshipImeas͑1−T1͒ln͑T1T2͒=IPL͑1−T1T2͒lnT1,whereT1͑T2͒isthefilmtransmissionfortheexcitation͑emission͒wavelength,ImeasandIPLaretherawandabsorbance-correctedintensities,respectively,andmul-

0.0600

900

1000

700

800

Wavelength(nm)

FIG.3.͑Coloronline͒NormalizedPLspectraduringhydrazineexposurefor͑a͒s-GOinareflectiongeometryand͑b͒l-GO,excitedat488nm.Datain͑a͒havebeencorrectedforreabsorptionasdescribedinthetext,whereas͑b͒doesnotrequireacorrection.͑Inset͒ChangesinintegratedPLintensityI͑t͒asafunctionofcumulativehydrazineexposuretforl-GO.LegendindicatesspectralregionsoverwhichI͑t͒wasintegrated.

tiplereflectionsareignored.IPLshowsasignificantredshiftinthePLemissionforincreasedexposuretimes͓Fig.3͑a͔͒,consistentwithanincreaseinthedisorderlengthscaleuponreduction.

Wealsostudiedchemicalreductioninl-GO,wherere-absorptioneffectscouldbebroughttoanegligiblelevel.l-GOwasreducedandheldinsuspensionfollowingthepro-cedureintroducedbyLietal.,13whichmayinvolveelectro-staticstabilization.Duringreduction,l-GOtransmissionre-mainedϾ80%relativetowaterfora1cmpathlength.Tofurtherminimizereabsorption,l-GOwasexcitedwithin1mmofthecollectionwindow.Figure3͑b͒showsthedevel-opmentofaflatterspectralprofileasafunctionofreductiontime.Currently,differencesbetweens-GOandl-GOreduc-tionstudiesarenotunderstood,butthedatadoholdcertainfeaturesincommon.Inallcases,therelativeintensityofPLintheinfraredincreases.However,theabsoluteintensityofPLwasalwaysseentodecreasewithreductioneverywhereinthespectrum,includingtheinfrared͓Fig.3͑b͒inset͔.

Atheoreticalframeworkforinterpretingthesedataisonlyjustemerging.Itcanbeexpectedthatoxidationpro-ducesadisruptionofthe␲networkandcanopenadirectelectronicbandgapforsinglesheetgrapheneinoneoftwoways.Thefirstisaquantumconfinementeffectwherebythe␲-electronwavefunctionsoccupyapotentiallandscapewithstronglyrepulsivehardwallbarriersatoxidizedsites.Intheinfinitepotentiallimit,adelocalized␲-electronwavefunc-tionwilldevelopnodesateachofthesesites.Thepresenceorabsenceofagapforasamplewithmanysuchoxidizedsitesthendependsonthespatialdistributionofthesenodes.Forexample,ingrapheneribbonswheretheedgesbreakthesublatticesymmetry,thelateralconfinementofthewave

111909-3Luoetal.Appl.Phys.Lett.94,111909͑2009͒

functionproducesabandgapatitschargeneutralitylevel.Alternatively,forthespecialedgethatpreservessublatticesymmetry͑a“zig-zag”ribbon͒onefindsinsteadaresonantelectronicstateexactlyatzeroenergy.Theseresultsgeneral-izetoadisorderedpotentiallandscapewherethenodesoccurintheinteriorofthesample.Pereiraetal.14modeledtheeffectoflatticevacanciesinasinglevalleypicture,andfoundthatahardgapopensonlyinthespecialsituationwherethereiscompletesublatticeasymmetryinthevacancydistribution.Forintermediateasymmetrieswhereunequalfractionsofthedefectsresideondifferentsublattices,theyfindafinite,butreduced,densityofstates͑asoftgap͒inanenergyintervaloforderបvFͱn,wherenisthevacancyden-sityandvFistheFermivelocity.Inthelimitoffullsublatticesymmetry,theyfindaresonantstateatthechargeneutralitypoint.UsuallytheobservationofPLimpliesahardgap,sinceasoftgappermitsnonradiativeenergyrelaxationun-lessapeculiarbottleneckexists.Moreover,despitealackofconsensusastothestructuralmotifinGO,15–17thereisnotyetanyobservationorcalculationsuggestingacompletesublatticeasymmetryintheoxidationprofile.

Asecondgappingmechanismariseswhenoneconsiders,inaddition,theeffectsofintervalleyscatteringfromtheshortrangepotentialoftheoxidizedcarbons.IntervalleyscatteringproducesacoherentsuperpositionofBlochwavesneartheKandKЈpointsoftheBrillouinzone,givingrisetoaͱ3ϫͱ3modulationofthechargedensity,whichhasbeenim-agedbyscanningtunnelmicroscope.18Forabond-centeredscatteringpotential,thisdescribesamodulation͑alternation͒ofthebondchargedensityandaself-consistentpotentialwiththisspatialsymmetry.Theamplitudeofthismodulationisdeterminedbythescatteringstrength,directandexchangeelectron-electroninteractions,andtheelectron-phononcou-pling.Thelatterislikelytoproducesomedegreeofbondalternationinthegraphiticregionsnearanoxidizedsite,whichmighteventemplatefurtheroxidationinsuchawayastoreinforcethispatternofdistortions.Inthiswaya“Kekulepattern”emergesnaturallyintheelectronicpoten-tial,andprovidesaspatiallymodulatedintervalleygappa-rameteroftheformenvisionedbyHouetal.19Notethatbondalternationinconjugatedpolymerssuchaspolyphene-lynevinylenegivesrisetogapsofasimilarenergyscale.20

Withinacontextofbonddisorderinducedenergygaps,oneregardstheGOplaneasalandscapecontainingawiderangeoflocalbandgapminima.Thisnotionisconsistentwiththeverybroadrangeofobservedemissionenergies.Ifthereductionprocedureforl-GOdoesindeedpreventaggre-gation,asclaimedinRef.13,thentheobservationofPLquenchingacrosstheentirespectrumfortheliquidsampleindicatesthatinterflakeorsubstratecontactisnotvitalforquenchingofPL.NeithertheoreticalframeworkdiscussedaboveaccountsforalossofquantumyieldunlessthereissignificantinhomogeneityoftheoxidationprofilewithintheGOplane.Ifoneimaginesthatchemicalreductionresultsinthenucleationand/orgrowthofregionswhereGOisfullyreducedtographene,thenmigrationofnonequilibriumcar-rierstothesezerogapregionscouldprovideanefficientroutefornonradiativerecombination.Inthispicture,thereisnosimplerelationshipbetweentheoxidationdensityandthelengthscalebetweenoxidationsiteswithingapped,oxidizedregions.

Insummary,wedemonstratethats-GOemitsPL,andthatGOPLcanbealteredbychemicalreduction.BroadPLsuggestsadispersionofhardgaps,whichmayarisefrombondalternationwithintheGOplanegivingrisetointerval-leyscattering.Thelossofquantumyieldduringreductioninourexperimentssuggeststhatsomeregionsmightremainheavilyoxidized.Inthiscase,restorationofelectricalcon-ductivityresemblesapercolationproblemandgivesverylittleinformationaboutthegrowthoftheseregionsbelowthepercolationthreshold.Futurestudiesmightusecomplemen-tarymethodssuchasRamanscattering,21infraredLandaulevelspectroscopy,22,23ormagneticanisotropy24toquantifytheemergenceofgraphenelikeregionsinreducedGO.Op-ticalanisotropymeasurements24mayhelptoassesstheim-portanceofchargetransfertransitions,whichwehaveex-cludedfromthediscussionhereandshouldhavemarkedlydifferentopticalpolarizationanisotropieswhencomparedtotransitionsnativetothetwo-dimensionalGOplane.P.V.andJ.K.supportedbyNSFMRSECunderGrantNo.DMR05–20020,Z.L.andA.J.supportedbytheJSTODTRAandAROunderGrantNo.W911NF-06–1-0462,andE.M.supportedbyDOEunderGrantNo.DE-FG02-ER45118.

K.Novoselov,A.Geim,S.Morozov,D.Jiang,M.Katsnelson,I.Grig-orieva,S.Dubonos,andA.Firsov,Nature͑London͒438,197͑2005͒.2

K.Novoselov,E.McCann,S.Morozov,V.Fal’ko,M.Katnelson,U.Zeitler,D.Jiang,F.Schedin,andA.Geim,Nat.Phys.2,177͑2006͒.3

Y.Zhang,Y.Tan,H.Stormer,andP.Kim,Nature͑London͒438,201͑2005͒.4

C.L.KaneandE.J.Mele,Phys.Rev.Lett.95,226801͑2005͒.5

K.NomuraandA.H.MacDonald,Phys.Rev.Lett.96,256602͑2006͒.6

Y.-W.Son,M.Cohen,andS.Louie,Nature͑London͒444,347͑2006͒.7

M.Katsnelson,K.Novoselov,andA.Geim,Nat.Phys.2,620͑2006͒.8

L.BreyandH.Fertig,Phys.Rev.B73,235411͑2006͒.9

K.KusakabeandM.Maruyama,Phys.Rev.B67,092406͑2003͒.10

N.M.R.Peres,F.Guinea,andA.H.C.Neto,Phys.Rev.B73,125411͑2006͒.11

X.Sun,Z.Liu,K.Welsher,J.T.Robinson,A.Goodwin,S.Zaric,andH.Dai,NanoRes.1,203͑2008͒.12

Z.Luo,Y.Lu,L.A.Somers,andA.T.C.Johnson,J.Am.Chem.Soc.131,898͑2009͒.13

D.Li,M.B.Mueller,S.Gilje,R.B.Kaner,andG.G.Wallace,Nat.Nanotechnol.3,101͑2008͒.14

V.M.Pereira,J.M.B.L.dosSantos,andA.H.C.Neto,Phys.Rev.B77,115109͑2008͒.15

W.Cai,R.D.Piner,F.J.Stadermann,S.Park,M.A.Shaibat,Y.Ishii,D.Yang,A.Velamakanni,S.J.An,M.Stoller,J.An,D.Chen,andR.S.Ruoff,Science321,1815͑2008͒.16

H.He,J.Klinowski,M.Forster,andA.Lerf,Chem.Phys.Lett.287,53͑1998͒.17

T.Szabo,O.Berkesi,P.Forgo,K.Josepovits,Y.Sanakis,D.Petridis,andI.Dekany,Chem.Mater.18,2740͑2006͒.18

P.Mallet,F.Varchon,C.Naud,L.Magaud,C.Berger,andJ.-Y.Veuillen,Phys.Rev.B76,041403͑2007͒.19

C.-Y.Hou,C.Chamon,andC.Mudry,Phys.Rev.Lett.98,186809͑2007͒.20

J.H.Burroughes,D.D.C.Bradley,A.R.Brown,R.N.Marks,K.Mackay,R.H.Friend,P.L.Burns,andA.B.Holmes,Nature͑London͒347,539͑1990͒.21

A.C.Ferrari,J.C.Meyer,V.Scardaci,C.Casiraghi,M.Lazzeri,F.Mauri,S.Piscanec,D.Jiang,K.S.Novoselov,S.Roth,andA.K.Geim,Phys.Rev.Lett.97,187401͑2006͒.22

M.DresselhausandG.Dresselhaus,Adv.Phys.30,139͑1981͒.23

P.Plochocka,C.Faugeras,M.Orlita,M.L.Sadowski,G.Martinez,M.Potemski,M.O.Goerbig,J.-N.Fuchs,C.Berger,andW.A.deHeer,Phys.Rev.Lett.100,087401͑2008͒.24

O.N.Torrens,D.E.Milkie,H.Y.Ban,M.Zheng,G.B.Onoa,T.D.Gierke,andJ.M.Kikkawa,J.Am.Chem.Soc.129,252͑2007͒.

1

University of Pennsylvania

ScholarlyCommons

Department of Physics Papers

Department of Physics

3-19-2009

Photoluminescence and Band Gap Modulation inGraphene Oxide

Zhengtang Luo

University of Pennsylvania, [email protected]

Patrick Vora

University of Pennsylvania, [email protected]

Eugene J. Mele

University of Pennsylvania, [email protected]

A.T. Charlie Johnson Jr.

University of Pennsylvania, [email protected]

James M. Kikkawa

University of Pennsylvania, [email protected]

Suggested Citation:

Luo, Z., P.M. Vora, E.J. Mele, A.T.C. Johnson and J.M. Kikkawa. (2009). "Photoluminescence and band gap modulation in graphene oxide."AppliedPhysics Letters.94, 111909.

Copyright 2009 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of theauthor and the American Institute of Physics. The following article appeared inApplied Physics Letters.and may be found at http://dx.doi.org/10.1063/1.3098358.

This paper is posted at ScholarlyCommons.http://repository.upenn.edu/physics_papers/64For more information, please [email protected].

APPLIEDPHYSICSLETTERS94,111909͑2009͒

Photoluminescenceandbandgapmodulationingrapheneoxide

ZhengtangLuo,PatrickM.Vora,EugeneJ.Mele,A.T.CharlieJohnson,andJamesM.Kikkawaa͒

DepartmentofPhysicsandAstronomy,TheUniversityofPennsylvania,209South33rdStreet,Philadelphia,Pennsylvania19104,USA

͑Received21January2009;accepted21February2009;publishedonline19March2009͒Wereportbroadbandvisiblephotoluminescencefromsolidgrapheneoxide,andmodificationsoftheemissionspectrumbyprogressivechemicalreduction.Thedatasuggestagappingofthetwo-dimensionalelectronicsystembyremovalof␲-electrons.Wediscusspossiblegappingmechanisms,andproposethataKekulepatternofbonddistortionsmayaccountfortheobservedbehavior.2009AmericanInstituteofPhysics.͓DOI:10.1063/1.3098358͔

Singlelayerandbilayergraphenesystemscanexhibitaremarkablediversityofphenomena,includingobservationsofaroom-temperature,unconventionalquantumHalleffect,1–3predictionsofthequantumspinHalleffect,4brokenspin5,6orpseudospin7symmetries,andfinitesizeeffectsthatcanbeusedtocontrolbandstructure5,6,8,9andmagnetism.5,6,9,10Takentogether,thesepropertiessuggestthatgrapheneisapromisingplatformforseamlesslyex-changinginformationbetweendifferentdegreesoffreedom.Anoutstandingchallengeinthisregardisphotonicintegra-tionandbandgapmanipulation.Severaltheoreticalworkspredictthatadirectgapinthevisiblewouldoccurforsuffi-cientlysmallgraphenenanoribbons,5,6,8,9butnoobservationsofthisfinitesizeeffecthavebeenreported.Additionally,modificationsofthegraphenesheetbyoxidationcanintro-ducedirectgapbehavior.11

Hereweshowthatgraphene,althoughintrinsicallyazero-gapsemimetal,maybeoxidizedinamannerthatpro-ducesphotoluminescence͑PL͒forsolid,drop-castsamples.Wefindthatdespitethehighsurfaceareaofgrapheneoxide͑GO͒andinmarkedcontrasttocarbonnanotubes,thestrengthofPLfromGOflakesdoesnotdiffersignificantlybetweenaqueousanddrop-castsamples.TheresilienceofPLforsolidGOsamplesisencouragingfortechnologicalapplications,implyingthatGOmaybeausefulphotonicmaterialwhenincorporatedinsolidstatedevices.Thelargeobservedgapcreatesthepossibilityforspatiallymodulatingthebandstructurewithinasinglegrapheneflakebylocalcontroloftheoxidationprofile.StudiesofprogressivechemicalreductionshowquenchingofPLforbothdrop-castandaqueoussamples,coordinatedwithchangesinabsorp-tion.Thesestudiesalsofindsignaturesofbandgapmanipu-lation,albeitwithdifferentcharacterforsolidandliquidsamples.

AqueousdispersionsofsinglelayerGOwithanaverageareaofϳ100␮m2weresynthesizedfollowingaproceduredescribedelsewhere.12Solidsamples͑s-GO͒wereobtainedbydrop-castingtheconcentratedGOsolutionresultingfromthisprocedureontopolished,lowauto-fluorescence,Suprasil-2substratesandthenbakingat95°Cfor30min.Liquidsamples͑l-GO͒wereheldinquartzcuvettes,dilutedahundredfoldormoreasnecessarytoadjustopticaldensity.PLforbothl-GOands-GOwascollectedat90°degreesto

theexcitation,andthereflection͑transmission͒geometryfors-GOcorrespondedtocollectiononthesame͑opposite͒sideofthefilm.PLspectrawereexcitedbyXelamppassedthroughamonochrometer,andadditionalfilterswereem-ployedonexcitationandcollectiontorejectexcitationscat-ter,secondordergratingeffects,andleakageofXelampspikes.Spectrawerespectrallycorrectedfordetectoreffi-ciencies,andnormalizedbyexcitationpower.AllPLdatashownhere͑bothmapsandsinglespectra͒arefurthernor-malizedtoamaximumvalueofunityandtakenat300K.

Figure1͑a͒comparesPLforbothl-GOands-GOsamples.Bothpeaksinthevisiblewithalonginfraredemis-siontail.Differencesinmeasurementgeometrymakequan-titativecomparisonsofthequantumyieldimpossible,butgenerallylittledifferencewasseeninPLintensity.Aninter-estingquestioniswhetherenergyrelaxationandspectraldif-fusionarequalitativelyalteredbyaggregation.Forisolatedflakesinl-GO,diffusionoffreecarriersorboundexcitonsshouldbeconfinedtothetwodimensionalGOplane.How-ever,fors-GO,atomicforceandopticalmicroscopy,bothindicatefilmsoflayeredGOflakes,whichcouldgiverisetoadditionalinterflakerelaxationpathways.Ifinterlayercou-plingisstrongenough,theemissionspectrumcouldredshift.s-GOindeedshowsmorePLspectralweightintheinfrared,buttheredshiftinthePLpeakpositionisnotarobustfeatureoftheexperimentandwasinconsistentfromsampletosampleperhapsduetovariationsintheoxidationdensity.Inadditiontoexcitondiffusion,severalplausiblechangescould

1

(a)

l-GOs-GO

(b)

1

1

l-GOs-GO

0600

800

Wavelength(nm)

10001200

0400

Wavelength(nm)

500

0600

Electronicmail:[email protected].

FIG.1.͑Coloronline͒͑a͒NormalizedPLspectraexcitedat500nm͑s-GOtakenintransmission͒.͑b͒Absorption͑leftaxis,solid͒andPLintensitydetectedat752nm͑rightaxis,dashed͒,asafunctionofexcitationwavelength.

2009AmericanInstituteofPhysics

0003-6951/2009/94͑11͒/111909/3/$25.0094,111909-1

NormalizedPL(arb.units)

NormalizedPL(arb.units)

l-GOs-GO

Absorption

111909-2

600

Luoetal.Appl.Phys.Lett.94,111909͑2009͒

NormalizedPL(arb.units)

1.00.80.60.40.20.0600

ExcitationWavelength(nm)

500600

0s5s1min8min18min

(a)

500600

NormalizedPL(arb.units)

800

10001200Wavelength(nm)

1400

500

800

10001200EmissionWavelength(nm)

1400

1.00.8

0.6

FIG.2.͑Color͒NormalizedPLexcitation-emissionmapsfors-GOtakenintransmissionduringhydrazinevaporexposure.

0.40.2

alsoinfluencethepeakposition,includingmodificationsofthedielectricenvironment,spectralreabsorption,andvaria-tionsinoxidationdensity.

TheGOabsorption͓Fig.1͑b͔͒increaseswithenergyfromthenearinfraredto3.1eV,andprovidesaninterestingcontrasttothenonmonotonicPLspectrum.WefurthernotethatPLexcitation͑PLE͒spectradonotmirrortheabsor-banceincreasesathigherenergies.Tothecontrary,asshowninFig.1͑b͒,astheexcitationenergyincreases,PLintensitydetectedatafixedwavelengthdecreases.Thelatterindicatesthepresenceofnonradiativeenergyrelaxationpathways,butalsocallsintoquestiontherelevanceoftheabsorbancespec-trumtotheemissiveprocess.Withthesedatainmind,onemustconsiderthepossibilitythattheelectronicstructurewithintheflakesisheterogeneous,andthatPLemissionoriginatesfromabsorbanceintoexcitedstateswhosetotalabsorptivecross-sectionis,nevertheless,onlyasmallcon-tributortothetotalabsorptivespectrum.Absolutevaluesfortheemissivequantumyieldwouldhelptoilluminatethisdiscussion,butaccuratemeasurementsofthisquantityareproblematicforensemblesofheterogeneousnanomaterialsandarebeyondthescopeofthiswork.Neverthelesswemayqualitativelysaythattheobservedquantumyieldsappeartobefarlessthanunity.

Tostudytherelationshipbetweenoxidationdensityandtheopticalgap,weperformedexperimentstovarytheoxi-dationdensityandwhilemonitoringchangesinthePLspec-trum.s-GOsampleswereplacedinacoveredPetridishwithacontainerofhydrazine,heatedto50°C,andtheirPLmapscharacterizedinthetransmissiongeometry.Theprocesswasrepeatedseveraltimestoprogressivelyreducethesample,resultinginamarkedredshift͑Fig.2͒.Modelingshowsthatchangesintheabsorptivespectrum͑notshown͒couldalsoproducethesespectralshiftsthroughreabsorptionoftheemittedlight.Tobettercontroltheseeffects,werepeatedthisstudyonadifferentsampleinthereflectiongeometry,whilealsocontinuallymonitoringchangesinabsorption.Penetra-tionoftheexcitingandemittinglightwasthenestimatedusingtherelationshipImeas͑1−T1͒ln͑T1T2͒=IPL͑1−T1T2͒lnT1,whereT1͑T2͒isthefilmtransmissionfortheexcitation͑emission͒wavelength,ImeasandIPLaretherawandabsorbance-correctedintensities,respectively,andmul-

0.0600

900

1000

700

800

Wavelength(nm)

FIG.3.͑Coloronline͒NormalizedPLspectraduringhydrazineexposurefor͑a͒s-GOinareflectiongeometryand͑b͒l-GO,excitedat488nm.Datain͑a͒havebeencorrectedforreabsorptionasdescribedinthetext,whereas͑b͒doesnotrequireacorrection.͑Inset͒ChangesinintegratedPLintensityI͑t͒asafunctionofcumulativehydrazineexposuretforl-GO.LegendindicatesspectralregionsoverwhichI͑t͒wasintegrated.

tiplereflectionsareignored.IPLshowsasignificantredshiftinthePLemissionforincreasedexposuretimes͓Fig.3͑a͔͒,consistentwithanincreaseinthedisorderlengthscaleuponreduction.

Wealsostudiedchemicalreductioninl-GO,wherere-absorptioneffectscouldbebroughttoanegligiblelevel.l-GOwasreducedandheldinsuspensionfollowingthepro-cedureintroducedbyLietal.,13whichmayinvolveelectro-staticstabilization.Duringreduction,l-GOtransmissionre-mainedϾ80%relativetowaterfora1cmpathlength.Tofurtherminimizereabsorption,l-GOwasexcitedwithin1mmofthecollectionwindow.Figure3͑b͒showsthedevel-opmentofaflatterspectralprofileasafunctionofreductiontime.Currently,differencesbetweens-GOandl-GOreduc-tionstudiesarenotunderstood,butthedatadoholdcertainfeaturesincommon.Inallcases,therelativeintensityofPLintheinfraredincreases.However,theabsoluteintensityofPLwasalwaysseentodecreasewithreductioneverywhereinthespectrum,includingtheinfrared͓Fig.3͑b͒inset͔.

Atheoreticalframeworkforinterpretingthesedataisonlyjustemerging.Itcanbeexpectedthatoxidationpro-ducesadisruptionofthe␲networkandcanopenadirectelectronicbandgapforsinglesheetgrapheneinoneoftwoways.Thefirstisaquantumconfinementeffectwherebythe␲-electronwavefunctionsoccupyapotentiallandscapewithstronglyrepulsivehardwallbarriersatoxidizedsites.Intheinfinitepotentiallimit,adelocalized␲-electronwavefunc-tionwilldevelopnodesateachofthesesites.Thepresenceorabsenceofagapforasamplewithmanysuchoxidizedsitesthendependsonthespatialdistributionofthesenodes.Forexample,ingrapheneribbonswheretheedgesbreakthesublatticesymmetry,thelateralconfinementofthewave

111909-3Luoetal.Appl.Phys.Lett.94,111909͑2009͒

functionproducesabandgapatitschargeneutralitylevel.Alternatively,forthespecialedgethatpreservessublatticesymmetry͑a“zig-zag”ribbon͒onefindsinsteadaresonantelectronicstateexactlyatzeroenergy.Theseresultsgeneral-izetoadisorderedpotentiallandscapewherethenodesoccurintheinteriorofthesample.Pereiraetal.14modeledtheeffectoflatticevacanciesinasinglevalleypicture,andfoundthatahardgapopensonlyinthespecialsituationwherethereiscompletesublatticeasymmetryinthevacancydistribution.Forintermediateasymmetrieswhereunequalfractionsofthedefectsresideondifferentsublattices,theyfindafinite,butreduced,densityofstates͑asoftgap͒inanenergyintervaloforderបvFͱn,wherenisthevacancyden-sityandvFistheFermivelocity.Inthelimitoffullsublatticesymmetry,theyfindaresonantstateatthechargeneutralitypoint.UsuallytheobservationofPLimpliesahardgap,sinceasoftgappermitsnonradiativeenergyrelaxationun-lessapeculiarbottleneckexists.Moreover,despitealackofconsensusastothestructuralmotifinGO,15–17thereisnotyetanyobservationorcalculationsuggestingacompletesublatticeasymmetryintheoxidationprofile.

Asecondgappingmechanismariseswhenoneconsiders,inaddition,theeffectsofintervalleyscatteringfromtheshortrangepotentialoftheoxidizedcarbons.IntervalleyscatteringproducesacoherentsuperpositionofBlochwavesneartheKandKЈpointsoftheBrillouinzone,givingrisetoaͱ3ϫͱ3modulationofthechargedensity,whichhasbeenim-agedbyscanningtunnelmicroscope.18Forabond-centeredscatteringpotential,thisdescribesamodulation͑alternation͒ofthebondchargedensityandaself-consistentpotentialwiththisspatialsymmetry.Theamplitudeofthismodulationisdeterminedbythescatteringstrength,directandexchangeelectron-electroninteractions,andtheelectron-phononcou-pling.Thelatterislikelytoproducesomedegreeofbondalternationinthegraphiticregionsnearanoxidizedsite,whichmighteventemplatefurtheroxidationinsuchawayastoreinforcethispatternofdistortions.Inthiswaya“Kekulepattern”emergesnaturallyintheelectronicpoten-tial,andprovidesaspatiallymodulatedintervalleygappa-rameteroftheformenvisionedbyHouetal.19Notethatbondalternationinconjugatedpolymerssuchaspolyphene-lynevinylenegivesrisetogapsofasimilarenergyscale.20

Withinacontextofbonddisorderinducedenergygaps,oneregardstheGOplaneasalandscapecontainingawiderangeoflocalbandgapminima.Thisnotionisconsistentwiththeverybroadrangeofobservedemissionenergies.Ifthereductionprocedureforl-GOdoesindeedpreventaggre-gation,asclaimedinRef.13,thentheobservationofPLquenchingacrosstheentirespectrumfortheliquidsampleindicatesthatinterflakeorsubstratecontactisnotvitalforquenchingofPL.NeithertheoreticalframeworkdiscussedaboveaccountsforalossofquantumyieldunlessthereissignificantinhomogeneityoftheoxidationprofilewithintheGOplane.Ifoneimaginesthatchemicalreductionresultsinthenucleationand/orgrowthofregionswhereGOisfullyreducedtographene,thenmigrationofnonequilibriumcar-rierstothesezerogapregionscouldprovideanefficientroutefornonradiativerecombination.Inthispicture,thereisnosimplerelationshipbetweentheoxidationdensityandthelengthscalebetweenoxidationsiteswithingapped,oxidizedregions.

Insummary,wedemonstratethats-GOemitsPL,andthatGOPLcanbealteredbychemicalreduction.BroadPLsuggestsadispersionofhardgaps,whichmayarisefrombondalternationwithintheGOplanegivingrisetointerval-leyscattering.Thelossofquantumyieldduringreductioninourexperimentssuggeststhatsomeregionsmightremainheavilyoxidized.Inthiscase,restorationofelectricalcon-ductivityresemblesapercolationproblemandgivesverylittleinformationaboutthegrowthoftheseregionsbelowthepercolationthreshold.Futurestudiesmightusecomplemen-tarymethodssuchasRamanscattering,21infraredLandaulevelspectroscopy,22,23ormagneticanisotropy24toquantifytheemergenceofgraphenelikeregionsinreducedGO.Op-ticalanisotropymeasurements24mayhelptoassesstheim-portanceofchargetransfertransitions,whichwehaveex-cludedfromthediscussionhereandshouldhavemarkedlydifferentopticalpolarizationanisotropieswhencomparedtotransitionsnativetothetwo-dimensionalGOplane.P.V.andJ.K.supportedbyNSFMRSECunderGrantNo.DMR05–20020,Z.L.andA.J.supportedbytheJSTODTRAandAROunderGrantNo.W911NF-06–1-0462,andE.M.supportedbyDOEunderGrantNo.DE-FG02-ER45118.

K.Novoselov,A.Geim,S.Morozov,D.Jiang,M.Katsnelson,I.Grig-orieva,S.Dubonos,andA.Firsov,Nature͑London͒438,197͑2005͒.2

K.Novoselov,E.McCann,S.Morozov,V.Fal’ko,M.Katnelson,U.Zeitler,D.Jiang,F.Schedin,andA.Geim,Nat.Phys.2,177͑2006͒.3

Y.Zhang,Y.Tan,H.Stormer,andP.Kim,Nature͑London͒438,201͑2005͒.4

C.L.KaneandE.J.Mele,Phys.Rev.Lett.95,226801͑2005͒.5

K.NomuraandA.H.MacDonald,Phys.Rev.Lett.96,256602͑2006͒.6

Y.-W.Son,M.Cohen,andS.Louie,Nature͑London͒444,347͑2006͒.7

M.Katsnelson,K.Novoselov,andA.Geim,Nat.Phys.2,620͑2006͒.8

L.BreyandH.Fertig,Phys.Rev.B73,235411͑2006͒.9

K.KusakabeandM.Maruyama,Phys.Rev.B67,092406͑2003͒.10

N.M.R.Peres,F.Guinea,andA.H.C.Neto,Phys.Rev.B73,125411͑2006͒.11

X.Sun,Z.Liu,K.Welsher,J.T.Robinson,A.Goodwin,S.Zaric,andH.Dai,NanoRes.1,203͑2008͒.12

Z.Luo,Y.Lu,L.A.Somers,andA.T.C.Johnson,J.Am.Chem.Soc.131,898͑2009͒.13

D.Li,M.B.Mueller,S.Gilje,R.B.Kaner,andG.G.Wallace,Nat.Nanotechnol.3,101͑2008͒.14

V.M.Pereira,J.M.B.L.dosSantos,andA.H.C.Neto,Phys.Rev.B77,115109͑2008͒.15

W.Cai,R.D.Piner,F.J.Stadermann,S.Park,M.A.Shaibat,Y.Ishii,D.Yang,A.Velamakanni,S.J.An,M.Stoller,J.An,D.Chen,andR.S.Ruoff,Science321,1815͑2008͒.16

H.He,J.Klinowski,M.Forster,andA.Lerf,Chem.Phys.Lett.287,53͑1998͒.17

T.Szabo,O.Berkesi,P.Forgo,K.Josepovits,Y.Sanakis,D.Petridis,andI.Dekany,Chem.Mater.18,2740͑2006͒.18

P.Mallet,F.Varchon,C.Naud,L.Magaud,C.Berger,andJ.-Y.Veuillen,Phys.Rev.B76,041403͑2007͒.19

C.-Y.Hou,C.Chamon,andC.Mudry,Phys.Rev.Lett.98,186809͑2007͒.20

J.H.Burroughes,D.D.C.Bradley,A.R.Brown,R.N.Marks,K.Mackay,R.H.Friend,P.L.Burns,andA.B.Holmes,Nature͑London͒347,539͑1990͒.21

A.C.Ferrari,J.C.Meyer,V.Scardaci,C.Casiraghi,M.Lazzeri,F.Mauri,S.Piscanec,D.Jiang,K.S.Novoselov,S.Roth,andA.K.Geim,Phys.Rev.Lett.97,187401͑2006͒.22

M.DresselhausandG.Dresselhaus,Adv.Phys.30,139͑1981͒.23

P.Plochocka,C.Faugeras,M.Orlita,M.L.Sadowski,G.Martinez,M.Potemski,M.O.Goerbig,J.-N.Fuchs,C.Berger,andW.A.deHeer,Phys.Rev.Lett.100,087401͑2008͒.24

O.N.Torrens,D.E.Milkie,H.Y.Ban,M.Zheng,G.B.Onoa,T.D.Gierke,andJ.M.Kikkawa,J.Am.Chem.Soc.129,252͑2007͒.

1


相关文章

  • 石墨烯应用
  • 硕士学位论文 功能化石墨烯的制备.结构分析及其PVB纳米复合膜研究 作 学 指 所者科导在姓专教学名业师院周俊文材料学马文石副研究员材料科学与工程学院 2011年5月论文提交日期 Preparation,StructuralAnalysis ...查看


  • 石墨烯的表征方法
  • 彭黎琼等:石墨烯的表征方法 3055 ()文章编号:10019731201321305505--- 石墨烯的表征方法 * 彭黎琼,谢金花,郭 超,张 东 ()同济大学材料科学与工程学院先进土木工程材料教育部重点实验室,上海200092 摘 ...查看


  • 石墨烯的合成
  • 合成化学综述论文 --石墨烯的合成 姓名:常俊玉 学号: 1505120528 学院:化学化工学院 班级:应化1204班 时间:2015-4-19 石墨烯合成综述 应化1204 常俊玉 1505120528 摘要:由于石墨烯优异的电学.光学 ...查看


  • 石墨烯的制备与应用
  • 2010年第2期总第142期 文章编号:1001-8948(2010)02-0033-05 炭素 ・33・ CARBoN 石墨烯的制备与应用 陈红,陈志刚',刘成宝 (江苏大学材料科学与工程学院,江苏镇江212013) 摘要:简要回顾了石墨 ...查看


  • 石墨烯透明导电薄膜的研究进展_刘湘梅
  • 第33卷第4期2013年8月南京邮电大学学报(自然科学版) JournalofNanjingUniversityofPostsandTelecommunications(NaturalScience)Vol.33No.4Aug.2013 石 ...查看


  • 石墨烯制备的研究进展
  • 石墨烯制备的研究进展 摘要 石墨烯具有独特的结构和优异的性能, 近年来在化学.物理和材料学界引起了广泛的研究兴趣,并且在石墨烯的制备上已取得了不少的进展.本文就物理方法和化学方法两方面概述了石墨烯的制备方法, 比较了各种方法的优缺点,并对它 ...查看


  • 石墨烯的化学研究进展
  • 2009年 第54卷 第18期: 2657 ~ 2666 评 述 <中国科学>杂志社 SCIENCE IN CHINA PRESS www.scichina.com csb.scichina.com 石墨烯的化学研究进展 傅强, ...查看


  • 石墨烯的制备方法和应用_陆璐
  • 第41卷第15期2013年8月广州化工 GuangzhouChemicalIndustryVol.41No.15August.2013 石墨烯的制备方法和应用 陆 璐 (中国石油大学(北京)化学工程学院,北京102249) 摘 要:石墨烯( ...查看


  • 化学与材料论文
  • 化学与材料论文 --石墨烯 一. 前言 石墨烯是目前发现的唯一存在的二维自由态原子晶体, 它是构筑零维富勒烯.一维碳纳米管.三维体相石墨等sp2 杂化碳的基本结构单元, 具有很多奇异的电子及机械性能.因而吸引了化学.材料等其他领域科学家的高 ...查看


  • 超越石墨烯_二维纳米材料_常泰维
  • April 大学化学(Daxue Huaxue ) Univ. Chem. 2017, 32(4),79-87 doi:10.3866/PKU.DXHX[1**********]∙未来化学家∙www.dxhx.pku.edu.cn 超越石墨 ...查看


热门内容