化学与材料论文

化学与材料论文

——石墨烯

一. 前言

石墨烯是目前发现的唯一存在的二维自由态原子晶体, 它是构筑零维富勒烯、一维碳纳米管、三维体相石墨等sp2 杂化碳的基本结构单元, 具有很多奇异的电子及机械性能。因而吸引了化学、材料等其他领域科学家的高度关注。本文介绍了近几年石墨烯的研究进展, 包括石墨烯的合成、去氧化、化学修饰及应用前景等方面的内容。石墨烯由于其特殊的电学、热学、力学等性质以及在纳米电子器件、储能材料、光电材料等方面的潜在应用, 引起了科学界新一轮的热潮。

二.石墨烯的生产加工方法及化学原理

物理方法:

1. 微机械剥离法:

通过机械力从新鲜石墨晶体的表面剥离石墨烯片层。

2. 印章切取转移印制法:

在印章突起的表面上涂上一层转换层( 可用树脂类材料通过旋转涂布法均匀涂于表面, 其作用像胶水那样黏附石墨烯) , 在300psi 及室温下, 将这种印章按压在石墨上, 高压下印章边缘产生极大的剪应力, 使得石墨烯层从石墨上分离下来。类似地, 将石墨烯层从印章上转移到器件上同样需要固定层0( 要求这种转换层0与石墨烯间的作用力远大于转换层0与石墨烯间的作用力) , 经类

似的操作使得石墨烯从印章上剥落下来。印章切取转移印制法操作简单, 但难以制备单层石墨烯, Stephen 等[ 23] 通过此方法得到的多为四层的石墨烯( 厚度约为113nm) 。

3. 模板法

1988年京谷隆等利用模板法在蒙脱土的层间形成了石墨烯片层,一旦脱除模板,这些片层就会白组装形成体相石墨 。一些研究小组正在探索如何利用二维模板的孔隙制备可自由存在的单层石墨烯片层,但至今尚无令人满意的结果报道。

化学方法:

1. 氧化-还原法

指将天然石墨与强酸和强氧化性物质反应生成氧化石墨( GO) , 经过超声分散制备成氧化石墨烯(单层氧化石墨) ,加入还原剂去除氧化石墨表面的含氧基团, 如羧基、环氧基和羟基, 得到石墨烯。

2. 溶液剥离法

原理是将少量的石墨分散于溶剂中, 形成低浓度的分散液, 利用超声波的作用破坏石墨层间的范德华力, 此时溶剂可以插入石墨层间, 进行层层剥离, 制备出石墨烯。

3. 加热Si-C 法

加热单晶6H-SiC 脱除Si ,在单晶(0001) 面上分解出石墨烯片层。具体过程是:将经氧气刻蚀的样品在高真空下通过电子轰击,除去氧化物。用俄歇电子能谱确定表面的氧化物完全被移除后,将样品加热使之温度升高至1250-1450℃后恒温1min-20min ,从而形成极薄

的石墨层, 从而制备出单层或是多层石墨烯。

4. 化学气相沉积法

使用的是一种以镍为基片的管状简易沉积炉, 通入含碳气体, 例如, 碳氢化合物, 它在高温下分解成碳原子沉积在镍的表面, 形成石墨烯, 通过轻微的化学刻蚀, 使石墨烯薄膜和镍片分离得到石墨烯薄膜。

5. 氧化分散还原法( 含氧化修饰还原法)

这是目前应用最广泛的合成方法。它是将石墨氧化得到溶液中分散( 借助超声、高速离心) 的石墨烯前体, 再用还原剂还原得到单层或多层石墨烯。常见的氧化方法有Brodie 方法以及Staudenmaier 方法[ 34] , 其基本原理均为先用强质子酸处理石墨, 形成石墨层间化合物, 然后加入强氧化剂对其进行氧化。其中, Brodie 方法采用发烟硝酸及KClO3 作为氧化剂。Staudenmaier 法用浓硫酸和发烟硝酸混合酸对石墨进行处理, 同样也是以KClO3 为氧化剂。Hummer 方法则使用浓H2SO4、NaNO3 及KMnO4 作氧化剂, Hummer 的实验表明如果得到的氧化石墨烯含氧量比较高时呈现黄色, 低时则呈现黑色。此外, 间氯过氧苯甲酸(MCPBA) 也可以作为氧化剂。以乙醇和钠为原料通过溶剂热法可制备克量级的石墨烯, 不仅产率提高, 而且也解决了以上这种方法所带来的环境污染问题, 符合绿色化学的要求。

三.石墨烯的结构及特性:

结构:石墨烯是碳原子紧密堆积成单层二维蜂窝状晶格结构的一种碳质新材料,厚度只有0.335纳米, 仅为头发的20万分之一,是构建其它维数碳质材料(如零维富勒烯、一维纳米碳管、三维石墨)的基本

单元,具有极好的结晶性、力学性能和电学质量。

完美的石墨烯是二维的, 它只包括六角元胞(等角六边形) 。如果有五角元胞和七角元胞存在, 那么他们构成石墨烯的缺陷。如果少量的五角元胞细胞会使石墨烯翘曲; 12个五角元胞的会形成富勒烯。碳纳米管也被认为是卷成圆桶的石墨烯。可见,石墨烯是构建其它维数碳质材料(如零维富勒烯、一维纳米碳管、三维石墨)的基本单元。

单原子层石墨晶体薄膜。每个原胞中两个碳原子,每个原子与最相邻三个碳原子形成三个σ键。每个碳原子贡献一个多余p 电子,垂直于graphene 平面,形成未成键的π电子——良好的导电性。 特性:最薄——只有一个原子厚

强度最高—— 美国哥伦比亚大学的专家为了测试石墨烯的强度,先在一块硅晶体板上钻出一些直径一微米的孔,每个小孔上放置一个完好的石墨烯样本,然后用一个带有金刚石探头的工具对样本施加压力。结果显示,在石墨烯样品微粒开始断裂前,每100纳米距离上可承受的最大压力为2.9 微牛左右。按这个结果测算,要使1 米长的石墨烯断裂,需要施加相当于55 牛顿的压力,也就是说,用石墨烯制成的包装袋应该可以承受大约两吨的重量。

没有能隙——良好的半导体

良好的导热性

热稳定性优于石墨

优秀导电性——电子的运动速度达到了光速的1/300,远远超过了电子在一般导体中的运动速度--电子的“光速”移动碳原子有四

个价电子,这样每个碳原子都贡献一个未成键的π电子,这些π电子与平面成垂直的方向可形成轨道,π电子可在晶体中自由移动,赋予石墨烯良好的导电性。此外,石墨烯是具有零带隙的能带结构。说明石墨烯极有可能成为半导体装置使用的最合适材料

室温下的量子霍尔效应(注:这样的测量还需要在接近绝对零度的温度下进行,同时还需施加非常强的磁场,但全世界仅有少数几家专业实验室具备这样的条件。长期来讲,石墨烯倾向于能提供一个更好的标准。)

石墨烯具有明显的二维电子特性。近来所观测到的显著的量子霍尔效应和分数量子霍尔效应

在石墨烯中不具有量子干涉磁阻

四.材料的创新性

1.

2.

应特性

3. 探索单电子器件——在纳电子器件方面的应用。室电子工程领域极具吸引力的室温弹道场效应管 进一步减小器件开关时间,THz 超高频率的操作响

温下石墨烯具有l0倍于商用硅片的高载流子迁移率(约10 am /V·s) ,并且受温度和掺杂效应的影响很小,表现出室温亚微米尺度的弹道传输特性(300 K下可达0.3 m),这是石墨烯作为纳电子器件最突出的优势,使电子工程领域极具吸引力的室温弹道场效应管成为可能。较大的费米速度和低接触电阻则有助于进一步减小器件开关时间,超高频率的操作响应特性是石

墨烯基电子器件的另一显著优势。此外,石墨烯减小到纳米尺度甚至单个苯环同样保持很好的稳定性和电学性能,使探索单电子器件成为可能。

4.

5. 在同一片石墨烯上集成整个电路 其它潜在应用包括:复合材料;作为电池电极材料

以提高 电池效率、储氢材料领域、场发射材料、量子计算机以及超灵敏传感器等领域

6.

7. 可应用于各种器件的特殊性能要被精确的控制 最重要的是石墨烯制备方法的改进,如何大量、低

成本制备高质量的石墨烯材料应该是未来研究的一个重点 石墨烯的出现可能会将摩尔定律延续下去,

8. 2025年以后可能是从“硅”时代跨越到“石墨烯”

时代——代替硅生产超级计算机。科学家发现,石墨烯还是目前已知导电性能最出色的材料。石墨烯的这种特性尤其适合于高频电路。高频电路是现代电子工业的领头羊,一些电子设备,例如手机,由于工程师们正在设法将越来越多的信息填充在信号中,它们被要求使用越来越高的频率,然而手机的工作频率越高,热量也越高,于是,高频的提升便受到很大的限制。由于石墨烯的出现,高频提升的发展前景似乎变得无限广阔了。 这使它在微电子领域也具有巨大的应用潜力。研究人员甚至将石墨烯看作是硅的替代品,能用来生产未来的超级计算机。 光子传感器。石墨烯还可以以光子传感器的面貌出现在更大的

市场上,这种传感器是用于检测光纤中携带的信息的,现在,这个角色还在由硅担当,但硅的时代似乎就要结束。去年10月,IBM 的一个研究小组首次披露了他们研制的石墨烯光电探测器,接下来人们要期待的就是基于石墨烯的太阳能电池和液晶显示屏了。因为石墨烯是透明的,用它制造的电板比其他材料具有更优良的透光性。

五.石墨烯的社会经济效益分析

透明电极——燃料太阳能电池的正极。很多电器里,都需要用到透明的导电材料作为电极,电子表、计算器、电视机、液晶显示器、触摸屏、太阳能电池板等等诸多设备里都无法离开透明电极的存在。传统的透明电极用的是氧化铟锡(简称ITO ),由于铟的价格高昂和供应受限,而且这种材料比较脆,缺乏柔韧性,并且制作电极过程中需要在真空中层沉积而成本比较高,很长时间以来,科学家们都在致力于寻找它的替代品。除了透明、导电性好、容易制备等要求,还需要材料本身的柔韧性比较好而石墨烯正是这么一种材料,非常合适来做透明电极。

韩国三星公司和成均馆大学的研究人员利用化学气相沉积的方法获得了对角长度为30英寸的石墨烯,并将其转移到188微米厚的聚对苯二甲酸乙二酯(Polyethylene terephthalate,简称PET )薄膜上,进而制造出了以石墨烯为基础的触摸屏

电化学生物传感器——石墨烯为电子传输提供了二维环境和在边缘部分快速多相电子转移

超级电容器——高效储存和传递能量的体系, 它具有功率密度大, 容量大, 使用寿命长, 经济环保

复合材料——独特的物理、化学和机械性能为复合材料的开发提供了原动力

氧化石墨烯——Dikin 等制成了无支撑氧化石墨烯纸状材料。氧化石墨烯片是以一种接近平行的方式相互连接或瓦片式连接在一起形成的,拉伸试验表明氧化石墨烯纸具有较高的拉伸模量和断裂强度,其平均模量为32 GPa,性能与用类似方法制备的碳纳米管布基纸相当。

Graphene 晶体管——曼彻斯特的小组采用标准半导体制造技术制作出晶体管。从一小片石墨烯片层开始,采用电子束曝光在材料上刻出沟道。在被称为中央岛的中部位置保持一个带有微小圆笼的量子点。电压可以改变这些量子点的电导率,这样就可以像标准场效应晶体管那样储存逻辑态。

双层石墨烯可降低元器件电噪声——美国IBM 公司T ·J ·沃森研究中心的科学家,最近攻克了在利用石墨构建纳米电路方面最令人困扰的难题,即通过将两层石墨烯片叠加,可以将元器件的电噪声降低10倍,由此可以大幅改善晶体管的性能,这将有助于制造出比硅晶体管速度快、体积小、能耗低的石墨烯晶体管。

石墨烯可作为宇宙学研究的平台——精细结构常数是物理学中一个重要的无量纲数,用希腊字母α表示,它与量子电动力学有着紧密的渊源。它将电动力学中的电荷e 、量子力学中的普朗克常数h 、

相对论中的光速c 联系起来,定义为α=(e^2)/(2ε0*h*c)(其中 e 是电子的电荷, ε0 是真空介电常数, h 是普朗克常数, c 是真空中的光速). 而其大小为什么约等于1/137至今尚未得到令人信服的回答。

Geim 与Rahul.Nair 和Peter.Blake 两位博士一道,首次创造出巨大的悬浮石墨烯薄膜。他们发现,尽管只有单层原子厚度,但石墨烯有相当的不透明度,可以吸收大约2.3%的可见光。而相关的理论研究也表明,如果将这一数字除以圆周率,就会得到较为精确的精细结构常数值。

石墨烯动力锂电池——10分钟就能完成充电,还不损害电池使用寿命 。刘兆平说,利用石墨烯制成的石墨烯动力锂电池,电池极片的导电性能更高,电池内的电阻更小,蓄电能力、快速充放电能力比普通锂电池强得多

杨嘉琦

11级经济与贸易学院

[1**********]

化学与材料论文

——石墨烯

一. 前言

石墨烯是目前发现的唯一存在的二维自由态原子晶体, 它是构筑零维富勒烯、一维碳纳米管、三维体相石墨等sp2 杂化碳的基本结构单元, 具有很多奇异的电子及机械性能。因而吸引了化学、材料等其他领域科学家的高度关注。本文介绍了近几年石墨烯的研究进展, 包括石墨烯的合成、去氧化、化学修饰及应用前景等方面的内容。石墨烯由于其特殊的电学、热学、力学等性质以及在纳米电子器件、储能材料、光电材料等方面的潜在应用, 引起了科学界新一轮的热潮。

二.石墨烯的生产加工方法及化学原理

物理方法:

1. 微机械剥离法:

通过机械力从新鲜石墨晶体的表面剥离石墨烯片层。

2. 印章切取转移印制法:

在印章突起的表面上涂上一层转换层( 可用树脂类材料通过旋转涂布法均匀涂于表面, 其作用像胶水那样黏附石墨烯) , 在300psi 及室温下, 将这种印章按压在石墨上, 高压下印章边缘产生极大的剪应力, 使得石墨烯层从石墨上分离下来。类似地, 将石墨烯层从印章上转移到器件上同样需要固定层0( 要求这种转换层0与石墨烯间的作用力远大于转换层0与石墨烯间的作用力) , 经类

似的操作使得石墨烯从印章上剥落下来。印章切取转移印制法操作简单, 但难以制备单层石墨烯, Stephen 等[ 23] 通过此方法得到的多为四层的石墨烯( 厚度约为113nm) 。

3. 模板法

1988年京谷隆等利用模板法在蒙脱土的层间形成了石墨烯片层,一旦脱除模板,这些片层就会白组装形成体相石墨 。一些研究小组正在探索如何利用二维模板的孔隙制备可自由存在的单层石墨烯片层,但至今尚无令人满意的结果报道。

化学方法:

1. 氧化-还原法

指将天然石墨与强酸和强氧化性物质反应生成氧化石墨( GO) , 经过超声分散制备成氧化石墨烯(单层氧化石墨) ,加入还原剂去除氧化石墨表面的含氧基团, 如羧基、环氧基和羟基, 得到石墨烯。

2. 溶液剥离法

原理是将少量的石墨分散于溶剂中, 形成低浓度的分散液, 利用超声波的作用破坏石墨层间的范德华力, 此时溶剂可以插入石墨层间, 进行层层剥离, 制备出石墨烯。

3. 加热Si-C 法

加热单晶6H-SiC 脱除Si ,在单晶(0001) 面上分解出石墨烯片层。具体过程是:将经氧气刻蚀的样品在高真空下通过电子轰击,除去氧化物。用俄歇电子能谱确定表面的氧化物完全被移除后,将样品加热使之温度升高至1250-1450℃后恒温1min-20min ,从而形成极薄

的石墨层, 从而制备出单层或是多层石墨烯。

4. 化学气相沉积法

使用的是一种以镍为基片的管状简易沉积炉, 通入含碳气体, 例如, 碳氢化合物, 它在高温下分解成碳原子沉积在镍的表面, 形成石墨烯, 通过轻微的化学刻蚀, 使石墨烯薄膜和镍片分离得到石墨烯薄膜。

5. 氧化分散还原法( 含氧化修饰还原法)

这是目前应用最广泛的合成方法。它是将石墨氧化得到溶液中分散( 借助超声、高速离心) 的石墨烯前体, 再用还原剂还原得到单层或多层石墨烯。常见的氧化方法有Brodie 方法以及Staudenmaier 方法[ 34] , 其基本原理均为先用强质子酸处理石墨, 形成石墨层间化合物, 然后加入强氧化剂对其进行氧化。其中, Brodie 方法采用发烟硝酸及KClO3 作为氧化剂。Staudenmaier 法用浓硫酸和发烟硝酸混合酸对石墨进行处理, 同样也是以KClO3 为氧化剂。Hummer 方法则使用浓H2SO4、NaNO3 及KMnO4 作氧化剂, Hummer 的实验表明如果得到的氧化石墨烯含氧量比较高时呈现黄色, 低时则呈现黑色。此外, 间氯过氧苯甲酸(MCPBA) 也可以作为氧化剂。以乙醇和钠为原料通过溶剂热法可制备克量级的石墨烯, 不仅产率提高, 而且也解决了以上这种方法所带来的环境污染问题, 符合绿色化学的要求。

三.石墨烯的结构及特性:

结构:石墨烯是碳原子紧密堆积成单层二维蜂窝状晶格结构的一种碳质新材料,厚度只有0.335纳米, 仅为头发的20万分之一,是构建其它维数碳质材料(如零维富勒烯、一维纳米碳管、三维石墨)的基本

单元,具有极好的结晶性、力学性能和电学质量。

完美的石墨烯是二维的, 它只包括六角元胞(等角六边形) 。如果有五角元胞和七角元胞存在, 那么他们构成石墨烯的缺陷。如果少量的五角元胞细胞会使石墨烯翘曲; 12个五角元胞的会形成富勒烯。碳纳米管也被认为是卷成圆桶的石墨烯。可见,石墨烯是构建其它维数碳质材料(如零维富勒烯、一维纳米碳管、三维石墨)的基本单元。

单原子层石墨晶体薄膜。每个原胞中两个碳原子,每个原子与最相邻三个碳原子形成三个σ键。每个碳原子贡献一个多余p 电子,垂直于graphene 平面,形成未成键的π电子——良好的导电性。 特性:最薄——只有一个原子厚

强度最高—— 美国哥伦比亚大学的专家为了测试石墨烯的强度,先在一块硅晶体板上钻出一些直径一微米的孔,每个小孔上放置一个完好的石墨烯样本,然后用一个带有金刚石探头的工具对样本施加压力。结果显示,在石墨烯样品微粒开始断裂前,每100纳米距离上可承受的最大压力为2.9 微牛左右。按这个结果测算,要使1 米长的石墨烯断裂,需要施加相当于55 牛顿的压力,也就是说,用石墨烯制成的包装袋应该可以承受大约两吨的重量。

没有能隙——良好的半导体

良好的导热性

热稳定性优于石墨

优秀导电性——电子的运动速度达到了光速的1/300,远远超过了电子在一般导体中的运动速度--电子的“光速”移动碳原子有四

个价电子,这样每个碳原子都贡献一个未成键的π电子,这些π电子与平面成垂直的方向可形成轨道,π电子可在晶体中自由移动,赋予石墨烯良好的导电性。此外,石墨烯是具有零带隙的能带结构。说明石墨烯极有可能成为半导体装置使用的最合适材料

室温下的量子霍尔效应(注:这样的测量还需要在接近绝对零度的温度下进行,同时还需施加非常强的磁场,但全世界仅有少数几家专业实验室具备这样的条件。长期来讲,石墨烯倾向于能提供一个更好的标准。)

石墨烯具有明显的二维电子特性。近来所观测到的显著的量子霍尔效应和分数量子霍尔效应

在石墨烯中不具有量子干涉磁阻

四.材料的创新性

1.

2.

应特性

3. 探索单电子器件——在纳电子器件方面的应用。室电子工程领域极具吸引力的室温弹道场效应管 进一步减小器件开关时间,THz 超高频率的操作响

温下石墨烯具有l0倍于商用硅片的高载流子迁移率(约10 am /V·s) ,并且受温度和掺杂效应的影响很小,表现出室温亚微米尺度的弹道传输特性(300 K下可达0.3 m),这是石墨烯作为纳电子器件最突出的优势,使电子工程领域极具吸引力的室温弹道场效应管成为可能。较大的费米速度和低接触电阻则有助于进一步减小器件开关时间,超高频率的操作响应特性是石

墨烯基电子器件的另一显著优势。此外,石墨烯减小到纳米尺度甚至单个苯环同样保持很好的稳定性和电学性能,使探索单电子器件成为可能。

4.

5. 在同一片石墨烯上集成整个电路 其它潜在应用包括:复合材料;作为电池电极材料

以提高 电池效率、储氢材料领域、场发射材料、量子计算机以及超灵敏传感器等领域

6.

7. 可应用于各种器件的特殊性能要被精确的控制 最重要的是石墨烯制备方法的改进,如何大量、低

成本制备高质量的石墨烯材料应该是未来研究的一个重点 石墨烯的出现可能会将摩尔定律延续下去,

8. 2025年以后可能是从“硅”时代跨越到“石墨烯”

时代——代替硅生产超级计算机。科学家发现,石墨烯还是目前已知导电性能最出色的材料。石墨烯的这种特性尤其适合于高频电路。高频电路是现代电子工业的领头羊,一些电子设备,例如手机,由于工程师们正在设法将越来越多的信息填充在信号中,它们被要求使用越来越高的频率,然而手机的工作频率越高,热量也越高,于是,高频的提升便受到很大的限制。由于石墨烯的出现,高频提升的发展前景似乎变得无限广阔了。 这使它在微电子领域也具有巨大的应用潜力。研究人员甚至将石墨烯看作是硅的替代品,能用来生产未来的超级计算机。 光子传感器。石墨烯还可以以光子传感器的面貌出现在更大的

市场上,这种传感器是用于检测光纤中携带的信息的,现在,这个角色还在由硅担当,但硅的时代似乎就要结束。去年10月,IBM 的一个研究小组首次披露了他们研制的石墨烯光电探测器,接下来人们要期待的就是基于石墨烯的太阳能电池和液晶显示屏了。因为石墨烯是透明的,用它制造的电板比其他材料具有更优良的透光性。

五.石墨烯的社会经济效益分析

透明电极——燃料太阳能电池的正极。很多电器里,都需要用到透明的导电材料作为电极,电子表、计算器、电视机、液晶显示器、触摸屏、太阳能电池板等等诸多设备里都无法离开透明电极的存在。传统的透明电极用的是氧化铟锡(简称ITO ),由于铟的价格高昂和供应受限,而且这种材料比较脆,缺乏柔韧性,并且制作电极过程中需要在真空中层沉积而成本比较高,很长时间以来,科学家们都在致力于寻找它的替代品。除了透明、导电性好、容易制备等要求,还需要材料本身的柔韧性比较好而石墨烯正是这么一种材料,非常合适来做透明电极。

韩国三星公司和成均馆大学的研究人员利用化学气相沉积的方法获得了对角长度为30英寸的石墨烯,并将其转移到188微米厚的聚对苯二甲酸乙二酯(Polyethylene terephthalate,简称PET )薄膜上,进而制造出了以石墨烯为基础的触摸屏

电化学生物传感器——石墨烯为电子传输提供了二维环境和在边缘部分快速多相电子转移

超级电容器——高效储存和传递能量的体系, 它具有功率密度大, 容量大, 使用寿命长, 经济环保

复合材料——独特的物理、化学和机械性能为复合材料的开发提供了原动力

氧化石墨烯——Dikin 等制成了无支撑氧化石墨烯纸状材料。氧化石墨烯片是以一种接近平行的方式相互连接或瓦片式连接在一起形成的,拉伸试验表明氧化石墨烯纸具有较高的拉伸模量和断裂强度,其平均模量为32 GPa,性能与用类似方法制备的碳纳米管布基纸相当。

Graphene 晶体管——曼彻斯特的小组采用标准半导体制造技术制作出晶体管。从一小片石墨烯片层开始,采用电子束曝光在材料上刻出沟道。在被称为中央岛的中部位置保持一个带有微小圆笼的量子点。电压可以改变这些量子点的电导率,这样就可以像标准场效应晶体管那样储存逻辑态。

双层石墨烯可降低元器件电噪声——美国IBM 公司T ·J ·沃森研究中心的科学家,最近攻克了在利用石墨构建纳米电路方面最令人困扰的难题,即通过将两层石墨烯片叠加,可以将元器件的电噪声降低10倍,由此可以大幅改善晶体管的性能,这将有助于制造出比硅晶体管速度快、体积小、能耗低的石墨烯晶体管。

石墨烯可作为宇宙学研究的平台——精细结构常数是物理学中一个重要的无量纲数,用希腊字母α表示,它与量子电动力学有着紧密的渊源。它将电动力学中的电荷e 、量子力学中的普朗克常数h 、

相对论中的光速c 联系起来,定义为α=(e^2)/(2ε0*h*c)(其中 e 是电子的电荷, ε0 是真空介电常数, h 是普朗克常数, c 是真空中的光速). 而其大小为什么约等于1/137至今尚未得到令人信服的回答。

Geim 与Rahul.Nair 和Peter.Blake 两位博士一道,首次创造出巨大的悬浮石墨烯薄膜。他们发现,尽管只有单层原子厚度,但石墨烯有相当的不透明度,可以吸收大约2.3%的可见光。而相关的理论研究也表明,如果将这一数字除以圆周率,就会得到较为精确的精细结构常数值。

石墨烯动力锂电池——10分钟就能完成充电,还不损害电池使用寿命 。刘兆平说,利用石墨烯制成的石墨烯动力锂电池,电池极片的导电性能更高,电池内的电阻更小,蓄电能力、快速充放电能力比普通锂电池强得多

杨嘉琦

11级经济与贸易学院

[1**********]


相关文章

  • 组合化学在功能材料合成方面的应用
  • 第13卷第5期 2001年9月 化 学进展 VoI.13No.5 Sep.,2001 PROGRESSINCHEMISTRY 组合化学在功能材料合成方面的应用 孙小琳洪广言 (中国科学院长春应用化学研究所稀土物理与化学开放实验室 长春J30 ...查看


  • 材料化学毕业论文选题
  • 毕业论文(设计) 题 目 学 院 学 院 专 业 学生姓名 学 号 年级 级 指导教师 教务处制表 二〇一三 年 三月 二十 日 材料化学毕业论文选题 本团队专业从事论文写作与论文发表服务,擅长案例分析.仿真编程.数据统计.图表绘制以及相关 ...查看


  • 2016_化学与材料前言科学
  • 1.1 化学Top 10热点前沿发展态势 其中,发光材料研究"白光LED 用荧光粉"是唯一一个连续两年进入Top 10热点前沿的研究方向.纳米材料方面有石墨烯.纳米催化剂和摩擦纳米发电机三个方向的研究入选.石墨烯研究的热 ...查看


  • 化学工程与技术毕业论文题目
  • 毕业论文(设计) 题 目 学 院 学 院 专 业 学生姓名 学 号 年级 级 指导教师 毕业教务处制表 毕业 毕业二〇一五年 九月二十 日 一.论文说明 本团队专注于原创毕业论文写作与辅导服务,擅长案例分析.编程仿真.图表绘制.理论分析等, ...查看


  • 世界上最好的大学排名
  • 世界上最好的大学排名 http://edu.QQ.com 2003年11月14日 12:10 来源:自定义来源 1----哈佛大学 (8: 数学, 分子生物学及遗传学, 生物学及生物化学, 微生物学, 神经科学 及行为学, 免疫学, 精神病 ...查看


  • 化学化工催化期刊
  • 中文化学化工核心期刊 一.化学类核心期刊: 1.高等学校化学学报 2.分析化学 3.化学学报 4.化学通报 5.中国科学.B辑,化学 6.物理化学学报 7.光谱学与光谱分析 8.催化学报 9.理化检验.化学分册 10.应用化学 11.高分子 ...查看


  • LiMn2O4的结晶度对电化学性能的影响
  • 第36卷第4期电 池 V01.36,No.4 2006年8月 BATTERY BIM'ONTHLY Aug.,2006 LiM n2 04的结晶度对电化学性能的影响 刘 昊,何涌,包鲁明,李芳芳,杨眉 (中国地质大学材料科学与化学工程学院, ...查看


  • 毕业论文-任务书
  • 毕业论文任务书 课题名称 姓 名 学 号 系(分院) 专 业 班 级 指导教师 企业指导教师 改性聚苯胺的研究 应用化工系 应用化工技术 2015年月日 一.设计(论文)的教学目的 1.了解本课题研究领域国内外的最新科研动态,通过文献资料的 ...查看


  • 耐高温耐烧灼热固性硼酚醛树脂的合成
  • 合成化学 Chinese JournaI of Synthetic Chemistry -77- 耐高温耐烧灼热固性硼酚醛树脂的合成 2 张 敏1,,魏俊发1,谢俊杰2 * (1. 陕西师范大学化学与材料科学学院,陕西西安 710062: ...查看


  • 职称论文发表认定刊物
  • 甘肃省职称评定中论文要求 及刊物级别认定办法 各市 (州)人事局.职改办,省直各部门人事处.职改办,中央在甘有关单位人事处: 为了在职称评审中客观.准确地评价专业技术人员的学术理论水平,进一步提高我省专业技术人员队伍素质,按照国家人事部和一 ...查看


热门内容