第七章 超静定结构

第七章 超静定结构

授课学时:6学时

一、内容提要

1、 理解超静定结构中的一些基本概念,即:静定与超静定、超静定次数、多余约束、超静定系统(结构)、

基本静定系以及相当系统等。 2、 熟练掌握用力法求解超静定结构。

3、 掌握对称与反对称性质并能熟练应用这些性质求解超静定结构。 4、 了解连续梁的概念以及三弯矩方程。

二、基本内容

1、 超静定系统中的一些基本概念

超静定结构或系统:用静力学平衡方程无法确定全部约束力和内力的结构或结构系统。

静定结构或系统:无多余联系的几何不变的承载结构系统,其全部约束反力与内力都可由静力平衡方程求出的机构或结构系统。

多余约束:在无多余联系的几何不变的静定系统上增加约束或联系。 外超静定:超静定结构的外部约束反力不能全由静力平衡方程求出的情况。

内超静定:超静定结构内部约束(或联系) 形成的内力不能单由静力平衡方程求出的情况。 混合超静定结构:对于内、外超静定兼而有之的结构。

基本静定系:解除超静定结构的某些约束后得到静定结构,称为原超静定结构的基本静定系(简称为静定基)。静定基的选择可根据方便来选取,同一问题可以有不同选择。

相当系统:在静定基上加上外载荷以及多余约束力的系统称为静不定问题的相当系统。

超静定次数:超静定结构的所有未知约束反力和内力的总数与结构所能提供的独立的静力平衡方程数之差。

2、力法与正则方程

力法:以多余约束力为基本未知量,将变形或位移表示为未知力的函数,通过变形协调条件作为补充方程求来解未知约束力,这种方法称为力法,又叫柔度法。

应用力法求解超静定问题的步骤:

1)根据问题,确定其是静定还是超静定问题,如为后者,则确定超静定次数。

2)确定哪些约束是多余约束,分析可供选择的基本静定系,并注意利用对称性,反对称性,选定合适的静定系统,在静定系上加上外力和多余约束力,形成相当系统。

3)比较相当系统与原系统,在多余约束处,确定变形协调条件,并列写正则方程(对有n 个多余约束的结构)

δ11F R 1+δ12F R 2+⋅⋅⋅+δ1n F Rn +∆1F =0

δ21F R 1+δ22F R 2+⋅⋅⋅+δ2n F Rn +∆2F =0

.

δn 1F R 1+δn 2F R 2+⋅⋅⋅+δnn F Rn +∆nF =0

其中F Ri 表示n 个多余约束力,δij 表示F Rj =1引起i 处沿F Ri 方向的位移,∆iF 表示结构所有已知载荷产生的在i 处沿F Ri 方向的位移。

4)用莫尔积分计算δij ,∆iF

在基本系统上的不同多余约束处分别施加单位力(广义力),建立单位载荷系统,作出相应内力图。在基本系统上加上外载荷,作出相应内力图,用图乘法分别求出δij ,∆iF 。

5)求解正则方程,解出未知多余约束力F Ri ,作出载荷及多余约束力作用于基本静定系上引起的内力图,供进一步分析用。 3、对称与反对称性质

对称结构:几何尺寸、形状,构件材料及约束条件均对称于某一轴的结构。

当对称结构受力也对称于结构对称轴,则此结构将产生对称变形。若外力反对称于结构对称轴,则结构将产生反对称变形。

当对称结构上受对称载荷的作用时,在对称截面上,反对称内力为零或已知;当对称结构上作用反对称载荷时,在对称截面上,对称内力为零或已知。当对称结构上作用的载荷不是对称或反对称的,但可把它转化为对称和反对称的两种载荷的叠加,则可求出对称和反对称两种情况的解,叠加后即为原载荷作用下的解。

4、连续梁与三弯矩方程

1)、连续梁及其超静定次数:一简支梁,在其两支座中间增加若干个辊轴铰支座形成的超静定结构,称为连续梁。中间支座的个数即其超静定次数。

2)连续梁的静定系与相当系统:将支座上方梁切开改为铰链连结,每一跨都是一个简支梁,即为连续梁的一种静定系。在静定系上加上外载荷,在中间支座上方铰链处加上一对大小相等、方向相反的力偶矩M 1,M 2,... ,M m (设有个m 中间支座),以多余未知力M 1,M 2,... ,M m 为基本未知量。

3)变形协调条件与三弯矩方程:比较相当系与原系统,中间支座上方梁的两侧截面相对转角为零(原系统是连续的,在支座处不会折断)。据此写出正则方程,即三弯矩方程。

⎛6ωn a n 6ωn +1b n +1⎫

⎪ M n -1l n +2M n (l n +l n +1)+M n +1l n +1=- + l ⎪l n +1⎭⎝n

其中M n 为第n 个中间支座处的弯矩,l n 为第n 个中间支座左段梁的跨度,ωn 为跨度l n 对应的弯矩图的面积,a n 表示外载荷单独作用下,跨度l n 内弯矩图面积ωn 的形心到左端的距离,b n+1表示外载荷单独作用下,跨度l n+1内弯矩图面积ωn+1的形心到右端的距离。

4)求出由m 个中间支座组成的连续梁的联立方程组,解出多余约束力M n (n=1,2,…m )。最后,问题化为基本静定系的求解。

三、典型例题分析

1、 抗弯刚度为EI 的梁AB 的支承及受力情况如图(a )所示,试求约束反力。

解:图(a )所示结构是关于梁中点对称的结构,结构上的载荷既非对称又非反对称,但我们可将其分解成对称和反对称两种载荷的叠加。我们先来研究对称载荷的情况。将图示梁沿对称截面E 切开,对于平面问题,对称截面上将有三对内力。由于对称载荷只有对称内力,则作为反对称的剪力为零。其次,在没有水平方向载荷的情况下,由于梁的弯曲变形很微小,横截面的水平位移为二阶微量,可以忽略,因此,水平方向的约束反力也可忽略不计,于是约束反力仅有一对,即力偶F R1(图(b ))。注意到对称截面的转角为零,研究其中一半,正则方程可写成

F R 1δ11+∆1F =0 (1)

式中,∆1F 是由于F 引起的E 截面的转角;δ11为F R1=1时引起的E 截面的转角,由图(b )不难得到

∆1F

Fa 2

=-,

2EI

δ11=

2a EI

将∆1F 和δ11代入正则方程(1)中,可得

F R 1=

由此求得图(b )中A 点的约束反力

' F A =F (↑)

Fa

4

3Fa

43Fa

4

' M A =

同理可得B 点得约束反力

'

F B =F (↑)

'

M B =

其次,再研究反对称载荷。沿结构得对称截面E 切开,截面只有反对称内力,即剪力F R1(图(c ))。注意到,对称截面得垂直位移为零,研究其中一半结构,其正则方程同(1)式,由图(c )可得

∆1F

将∆1F 和δ11代入正则方程(1)中,可得

5Fa 3

=-,

6EI 8a 3

δ11=

3EI

F R 1=

由此求得图(c )中A 点和B 点的约束反力

5F

16

3Fa

83Fa ' '

M B =

8

' ' M A =

11F

(↑) 1611F ' '

F B =(↓)

16

' ' F A =

由叠加法可知,结构A 端和B 端得约束分别为

' ' '

F A =F A +F A =

27F

(↑) 165F ' ' '

F B =F B +F B =(↑)

169Fa

83Fa ' ' '

M B =M B +M B =

8

' ' '

M A =M A +M A =

2、求解图(a )所示连续梁。

解:支座编号如图所示。l 1=6m,l 2=5m,l 3=4m。基本静定系得每个跨度皆为简支梁,这些简支梁在外载荷作用下得弯矩图如图(c )所示。由此求得

ω1=

1

⨯48⨯6=144kN ⋅m 2 22

ω2=⨯7. 5⨯5=25kN ⋅m 2

31

ω3=⨯30⨯4=60kN ⋅m 2

2

同时可求得以上弯矩图面积得形心得位置

a 1=

6+28

=m 33

5

a 2=b 2=m

24+15b 3==m

33

梁在左端有外伸部分,支座0上梁截面得弯矩显然是

1

M 0=-⨯2⨯22=-4kN ⋅m

2

对跨度l 1和跨度l 2写出三弯矩方程。这时n=1,M n-1=M 0=-4kN ⋅m ,M n =M1,M n+1=M2,l n =l1=6m,l n+1=l2=5m,a n =a1=8/3m,b n+1=b2=5/2m。代入三弯矩方程,得

-4⨯6+2⨯M 1⨯(6+5) +M 2⨯5=

6⨯144⨯86⨯25⨯5

-

6⨯35⨯2

再对跨度l 2和跨度l 3写出三弯矩方程。这时n=2,M n-1=M 1,M n =M2,M n+1=M3=0,l n =l2=5m,l n+1=l3=4m,a n =a2=5/2m,b n+1=b3=5/3m。代入三弯矩方程,得

M 1⨯5+2⨯M 2⨯(5+4) +0⨯4=-

整理上面得两个三弯矩方程,得

6⨯25⨯56⨯60⨯5

-

5⨯24⨯3

22M 1+5M 2=-4355M 1+18M 2=-225

解以上联立方程组,得出

M 1=-18. 07kN ⋅m , M 2=-7. 49kN ⋅m

求得M 1和M 2以后,连续梁三个跨度得受力情况如图(b )所示。可以把它们看作是三个静定梁,而且载荷和端载荷都是已知得。对每一跨都可以求出反力并作剪力图和弯矩图,把这些图联接起来就是连续梁得剪力图和弯矩图。进一步可以进行强度和变形计算。

返回

第七章 超静定结构

授课学时:6学时

一、内容提要

1、 理解超静定结构中的一些基本概念,即:静定与超静定、超静定次数、多余约束、超静定系统(结构)、

基本静定系以及相当系统等。 2、 熟练掌握用力法求解超静定结构。

3、 掌握对称与反对称性质并能熟练应用这些性质求解超静定结构。 4、 了解连续梁的概念以及三弯矩方程。

二、基本内容

1、 超静定系统中的一些基本概念

超静定结构或系统:用静力学平衡方程无法确定全部约束力和内力的结构或结构系统。

静定结构或系统:无多余联系的几何不变的承载结构系统,其全部约束反力与内力都可由静力平衡方程求出的机构或结构系统。

多余约束:在无多余联系的几何不变的静定系统上增加约束或联系。 外超静定:超静定结构的外部约束反力不能全由静力平衡方程求出的情况。

内超静定:超静定结构内部约束(或联系) 形成的内力不能单由静力平衡方程求出的情况。 混合超静定结构:对于内、外超静定兼而有之的结构。

基本静定系:解除超静定结构的某些约束后得到静定结构,称为原超静定结构的基本静定系(简称为静定基)。静定基的选择可根据方便来选取,同一问题可以有不同选择。

相当系统:在静定基上加上外载荷以及多余约束力的系统称为静不定问题的相当系统。

超静定次数:超静定结构的所有未知约束反力和内力的总数与结构所能提供的独立的静力平衡方程数之差。

2、力法与正则方程

力法:以多余约束力为基本未知量,将变形或位移表示为未知力的函数,通过变形协调条件作为补充方程求来解未知约束力,这种方法称为力法,又叫柔度法。

应用力法求解超静定问题的步骤:

1)根据问题,确定其是静定还是超静定问题,如为后者,则确定超静定次数。

2)确定哪些约束是多余约束,分析可供选择的基本静定系,并注意利用对称性,反对称性,选定合适的静定系统,在静定系上加上外力和多余约束力,形成相当系统。

3)比较相当系统与原系统,在多余约束处,确定变形协调条件,并列写正则方程(对有n 个多余约束的结构)

δ11F R 1+δ12F R 2+⋅⋅⋅+δ1n F Rn +∆1F =0

δ21F R 1+δ22F R 2+⋅⋅⋅+δ2n F Rn +∆2F =0

.

δn 1F R 1+δn 2F R 2+⋅⋅⋅+δnn F Rn +∆nF =0

其中F Ri 表示n 个多余约束力,δij 表示F Rj =1引起i 处沿F Ri 方向的位移,∆iF 表示结构所有已知载荷产生的在i 处沿F Ri 方向的位移。

4)用莫尔积分计算δij ,∆iF

在基本系统上的不同多余约束处分别施加单位力(广义力),建立单位载荷系统,作出相应内力图。在基本系统上加上外载荷,作出相应内力图,用图乘法分别求出δij ,∆iF 。

5)求解正则方程,解出未知多余约束力F Ri ,作出载荷及多余约束力作用于基本静定系上引起的内力图,供进一步分析用。 3、对称与反对称性质

对称结构:几何尺寸、形状,构件材料及约束条件均对称于某一轴的结构。

当对称结构受力也对称于结构对称轴,则此结构将产生对称变形。若外力反对称于结构对称轴,则结构将产生反对称变形。

当对称结构上受对称载荷的作用时,在对称截面上,反对称内力为零或已知;当对称结构上作用反对称载荷时,在对称截面上,对称内力为零或已知。当对称结构上作用的载荷不是对称或反对称的,但可把它转化为对称和反对称的两种载荷的叠加,则可求出对称和反对称两种情况的解,叠加后即为原载荷作用下的解。

4、连续梁与三弯矩方程

1)、连续梁及其超静定次数:一简支梁,在其两支座中间增加若干个辊轴铰支座形成的超静定结构,称为连续梁。中间支座的个数即其超静定次数。

2)连续梁的静定系与相当系统:将支座上方梁切开改为铰链连结,每一跨都是一个简支梁,即为连续梁的一种静定系。在静定系上加上外载荷,在中间支座上方铰链处加上一对大小相等、方向相反的力偶矩M 1,M 2,... ,M m (设有个m 中间支座),以多余未知力M 1,M 2,... ,M m 为基本未知量。

3)变形协调条件与三弯矩方程:比较相当系与原系统,中间支座上方梁的两侧截面相对转角为零(原系统是连续的,在支座处不会折断)。据此写出正则方程,即三弯矩方程。

⎛6ωn a n 6ωn +1b n +1⎫

⎪ M n -1l n +2M n (l n +l n +1)+M n +1l n +1=- + l ⎪l n +1⎭⎝n

其中M n 为第n 个中间支座处的弯矩,l n 为第n 个中间支座左段梁的跨度,ωn 为跨度l n 对应的弯矩图的面积,a n 表示外载荷单独作用下,跨度l n 内弯矩图面积ωn 的形心到左端的距离,b n+1表示外载荷单独作用下,跨度l n+1内弯矩图面积ωn+1的形心到右端的距离。

4)求出由m 个中间支座组成的连续梁的联立方程组,解出多余约束力M n (n=1,2,…m )。最后,问题化为基本静定系的求解。

三、典型例题分析

1、 抗弯刚度为EI 的梁AB 的支承及受力情况如图(a )所示,试求约束反力。

解:图(a )所示结构是关于梁中点对称的结构,结构上的载荷既非对称又非反对称,但我们可将其分解成对称和反对称两种载荷的叠加。我们先来研究对称载荷的情况。将图示梁沿对称截面E 切开,对于平面问题,对称截面上将有三对内力。由于对称载荷只有对称内力,则作为反对称的剪力为零。其次,在没有水平方向载荷的情况下,由于梁的弯曲变形很微小,横截面的水平位移为二阶微量,可以忽略,因此,水平方向的约束反力也可忽略不计,于是约束反力仅有一对,即力偶F R1(图(b ))。注意到对称截面的转角为零,研究其中一半,正则方程可写成

F R 1δ11+∆1F =0 (1)

式中,∆1F 是由于F 引起的E 截面的转角;δ11为F R1=1时引起的E 截面的转角,由图(b )不难得到

∆1F

Fa 2

=-,

2EI

δ11=

2a EI

将∆1F 和δ11代入正则方程(1)中,可得

F R 1=

由此求得图(b )中A 点的约束反力

' F A =F (↑)

Fa

4

3Fa

43Fa

4

' M A =

同理可得B 点得约束反力

'

F B =F (↑)

'

M B =

其次,再研究反对称载荷。沿结构得对称截面E 切开,截面只有反对称内力,即剪力F R1(图(c ))。注意到,对称截面得垂直位移为零,研究其中一半结构,其正则方程同(1)式,由图(c )可得

∆1F

将∆1F 和δ11代入正则方程(1)中,可得

5Fa 3

=-,

6EI 8a 3

δ11=

3EI

F R 1=

由此求得图(c )中A 点和B 点的约束反力

5F

16

3Fa

83Fa ' '

M B =

8

' ' M A =

11F

(↑) 1611F ' '

F B =(↓)

16

' ' F A =

由叠加法可知,结构A 端和B 端得约束分别为

' ' '

F A =F A +F A =

27F

(↑) 165F ' ' '

F B =F B +F B =(↑)

169Fa

83Fa ' ' '

M B =M B +M B =

8

' ' '

M A =M A +M A =

2、求解图(a )所示连续梁。

解:支座编号如图所示。l 1=6m,l 2=5m,l 3=4m。基本静定系得每个跨度皆为简支梁,这些简支梁在外载荷作用下得弯矩图如图(c )所示。由此求得

ω1=

1

⨯48⨯6=144kN ⋅m 2 22

ω2=⨯7. 5⨯5=25kN ⋅m 2

31

ω3=⨯30⨯4=60kN ⋅m 2

2

同时可求得以上弯矩图面积得形心得位置

a 1=

6+28

=m 33

5

a 2=b 2=m

24+15b 3==m

33

梁在左端有外伸部分,支座0上梁截面得弯矩显然是

1

M 0=-⨯2⨯22=-4kN ⋅m

2

对跨度l 1和跨度l 2写出三弯矩方程。这时n=1,M n-1=M 0=-4kN ⋅m ,M n =M1,M n+1=M2,l n =l1=6m,l n+1=l2=5m,a n =a1=8/3m,b n+1=b2=5/2m。代入三弯矩方程,得

-4⨯6+2⨯M 1⨯(6+5) +M 2⨯5=

6⨯144⨯86⨯25⨯5

-

6⨯35⨯2

再对跨度l 2和跨度l 3写出三弯矩方程。这时n=2,M n-1=M 1,M n =M2,M n+1=M3=0,l n =l2=5m,l n+1=l3=4m,a n =a2=5/2m,b n+1=b3=5/3m。代入三弯矩方程,得

M 1⨯5+2⨯M 2⨯(5+4) +0⨯4=-

整理上面得两个三弯矩方程,得

6⨯25⨯56⨯60⨯5

-

5⨯24⨯3

22M 1+5M 2=-4355M 1+18M 2=-225

解以上联立方程组,得出

M 1=-18. 07kN ⋅m , M 2=-7. 49kN ⋅m

求得M 1和M 2以后,连续梁三个跨度得受力情况如图(b )所示。可以把它们看作是三个静定梁,而且载荷和端载荷都是已知得。对每一跨都可以求出反力并作剪力图和弯矩图,把这些图联接起来就是连续梁得剪力图和弯矩图。进一步可以进行强度和变形计算。

返回


相关文章

  • 考研结构力学知识点
  • 知识点整理(对应视频目录) 第一章 几何构造分析 1.基本概念 101 a.7个概念 102 b.铰结三角形规律 103 c.二元体 104 d.计算自由度 105 2.基本规律的应用 a.二元体规律 106 b.两刚片规律 107 c.三 ...查看


  • 4129+土木工程力学(含答案)
  • 2010年秋期成人教育(本科) <土木工程力学(本)>期末复习指导 2010年12月修订 第一部分 课程考核说明 1.考核目的 通过本次考试,了解学生对本课程基本内容和重.难点的掌握程度,以及运用本课程的基本知识.基本理论和基本 ...查看


  • 土木工程力学(本)综合习题
  • 土木工程力学(本)综合练习一 一. 判断题 1 图示为刚架的虚设力状态,按此力状态及位移计算公式可求出A处的转角.( × ) 二. 单项选择题 1.简支梁某截面K弯矩影响纵坐标yK的物理意义是( C ). A MK影响线 (× ) A 单位 ...查看


  • [材料力学]课程教学大纲
  • <材料力学>课程教学大纲 课程代码:10011109 课程类型:专业基础课 课程名称:材料力学 学 分:3.5 适用专业:土木工程 第一部分 大纲说明 一.课程的性质.目的和任务 材料力学课程是一门用以培养学生在建筑设计中有关力 ...查看


  • 工程力学下册教学教案
  • **学院 分院名称:建筑工程学院课程名称:工程力学(下)任课教师:班 级: 教 案 *** ****级建筑工程技术 一.课程说明 1.课程基本情况 课程名称:工程力学 英文名称:Engineering Mechanics 课程编号:1700 ...查看


  • 吉林大学材料力学考研考试范围与重点
  • 如果你考材料力学,建议使用课本聂毓琴.孟广伟 的第二版.刘洪文的书分上下册,内容太多,不好复习.聂的书简单易懂,适合吉大的出题风格. 下面回忆整理如下:(针对聂第二版) 第一章 入门概念 理解即可 第二章 轴向拉伸和压缩 有时候出实验题 真 ...查看


  • 结构力学知识点总结
  • 1.关于∞点和∞线的下列四点结论: (1) 每个方向有一个∞点(即该方向各平行线的交点). (2) 不同方向上有不同的∞点. (3) 各∞点都在同一直线上,此直线称为∞线. (4) 各有限远点都不在∞线上. 2.多余约束与非多余约束是相对的 ...查看


  • 超静定结构的特性
  • 超静定结构的特性 超静定结构有下面几点主要特性 (一) 同时满足超静定结构的平衡条件.变形协调条件和物理条件(力与变形的对应关系) 的超静定结构内力的解是唯一真实的解.力法和位移法的解题方法虽然不同,但在这两个基本方法中,却都综合应用了结构 ...查看


  • [结构力学]课程教学大纲
  • <工程力学A Ⅱ>课程教学大纲 课程编号:0801105001 课程名称:工程力学A Ⅱ 英文名称:Engineering Mechanics AⅡ 学 分:3 总 学 时:48 讲课学时:40 实验学时:2 习题课学时:6 适 ...查看


热门内容