柔性直流输电在配电网中的应用

(Reading Report、Research Report)

考核科目

Examination Subjects

学生所在院(系)

School/Department

学生所在学科

Discipline

学生姓名

Student ’s Name

学生学号

Student No.

考核结果

Examination Result

: 直流输电技术:电气工程及其自动化学院 :电力系统及其自动化 : 金昱 :15S006048 : 阅卷人Examiner

直流输电技术课程报告——

柔性直流输电在城市配电网中的应用

(哈尔滨工业大学 金昱 15S006048)

1 城市配电网输电技术研究现状

随着我国电力系统整体配置的不断发展,国家对城乡配电网建设日益重视,如何科学地设置城市配电网的规划显得尤为重要。在传统的电力建设中,我国总是将发电摆在第一位,输送配电摆在第二位,认为只要有充足的电能资源就可以做好电力系统的建设。但是,输送配电也在无形中影响着城市供电的能力和供电的可靠性。因此,合理适当的城市配电网规划在逐渐彰显着自己独特的优势,为电网建设的改造提供了合理性、科学性的指导经验。

1.1 我国配电网技术背景及现状

如今,我国有意识地改变原先的“重发电、轻输送配电”的现状,并取得了一定的成果,使得整体上配电网的设置都趋向了正规、合理。但是由于我国在配电网规划上发展较晚,依旧存在一些不合理的因素:

(1)基础差、底子薄。基础差、底子薄是我国配电网建设的真实写照。在过去的电网建设中,由于缺乏早期的勘测、考察和规划,导致我国配电网的设置分布不合理,供电线路较长,损坏较严重。一些城市出现了市中心电源丰富,周边村落电源稀少的现状,这种情况致使一些周边农村长期处于没有电用的状态。

(2)电路结构不合理,转换复杂、不灵活。我国在电网建设中呈现出电路复杂、互相交错、难以移动等现象。近电远送、电网接线复杂、迂回供电、专用线路占有主线路过多等不合理的安排也为之后重新建设新电路结构带来了极大的不便,也增大了电路维修的困难。

1.1 直流输电供电与交流输电的优劣势

交流电的优点主要表现在发电和配电方面:利用建立在电磁感应原理基础上的交流发电机可以很经济方便地把机械能(水流能、风能„„)、化学能(石油、天然气„„)等其他形式的能转化为电能;交流电源和交流变电站与同功率的直流电源和直流换流站相比,造价大为低廉;交流电可以方便地通过变压器升压和降压,这给配送电能带来极大的方便.这是交流电与直流电相比所具有的独特优势。

直流电的优点主要在输电方面:

(1)输送相同功率时,直流输电所用线材仅为交流输电的2/3~l /2 。 直流输电采用两线制,以大地或海水作回线,与采用三线制三相交流输电相比,在输电线载面积相同和电流密度相同的条件下,即使不考虑趋肤效应,也可以输送相同的电功率,而输电线和绝缘材料可节约1/3。如果考虑到趋肤效应和各种损耗(绝缘材料的介质损耗、磁感应的涡流损耗、架空线的电晕损耗等),输送同样功率交流电所用导线截面积大于或等于直流输电所用导线的截面积的

1.33倍。因此,直流输电所用的线材几乎只有交流输电的一半。同时,直流输电杆塔结构也比同容量的三相交流输电简单,线路走廊占地面积也少。

(2)在电缆输电线路中,直流输电没有电容电流产生,而交流输电线路存在电容电流,引起损耗。在一些特殊场合,必须用电缆输电。例如高压输电线经过大城市时,采用地下电缆;输电线经过海峡时,要用海底电缆。由于电缆芯线与大地之间构成同轴电容器,在交流高压输线路中,空载电容电流极为可观.一条200kV 的电缆,每千米的电容约为0.2μF ,每千米需供给充电功率约3×103kw,在每千米输电线路上,每年就要耗电2.6×107kw·h。而在直流输电中,由于电压波动很小,基本上没有电容电流加在电缆上。

(3)直流输电时,其两侧交流系统不需同步运行,而交流输电必须同步运行。交流远距离输电时,电流的相位在交流输电系统的两端会产生显著的相位差;并网的各系统交流电的频率虽然规定统一为50HZ ,但实际上常产生波动。这两种因素引起交流系统不能同步运行,需要用复杂庞大的补偿系统和综合性很强的技术加以调整,否则就可能在设备中形成强大的循环电流损坏设备,或造成不同步运行的停电事故。在技术不发达的国家里,交流输电距离一般不超过300km 而直流输电线路互连时,它两端的交流电网可以用各自的频率和相位运行,不需进行同步调整。

(4)直流输电发生故障的损失比交流输电小。两个交流系统若用交流线路互连,则当一侧系统发生短路时,另一侧要向故障一侧输送短路电流。因此使两侧系统原有开关切断短路电流的能力受到威胁,需要更换开关。而直流输电中,由于采用可控硅装置,电路功率能迅速、方便地进行调节,直流输电线路上基本上不向发生短路的交流系统输送短路电流,故障侧交流系统的短路电流与没有互连时一样。因此不必更换两侧原有开关及载流设备。

在直流输电线路中,各级是独立调节和工作的,彼此没有影响。所以,当一极发生故障时,只需停运故障极,另一极仍可输送不少于一半功率的电能。但在交流输电线路中,任一相发生永久性故障,必须全线停电。

2城市直流输电技术经济可行性分析

2.1直流输电技术经济性分析

从经济方面考虑,直流输电有如下优点:

(1)线路造价低。对于架空输电线,交流用三根导线,而直流一般用两根采用大地或海水作回路时只要一根,能节省大量的线路建设费用。对于电缆,由于绝缘介质的直流强度远高于交流强度,如通常的油浸纸电缆,直流的允许工作电压约为交流的3倍,直流电缆的投资少得多。

(2)直流架空线路投资省。直流输电一般采用双极中性点接地方式,直流线路仅需两根导线,三相交流线路则需三根导线,但两者输送的功率几乎相等,因此可减轻杆塔的荷重,减少线路走廊的宽度和占地面积。在输送相同功率和距离的条件下,直流架空线路的投资一般为交流架空线路投资的三分之二。

(3)换流站比变电站投资大。换流站的设备比交流变电站复杂,它除了必须有换流变压器外,还要有目前价格比较昂贵的可控硅换流器,以及换流器的其它附属设备,因此换流站的投资高于同等容量和相应电压的交流变电站。

(4)年电能损失小。直流架空输电线只用两根,导线电阻损耗比交流输电小;没有感抗和容抗的无功损耗;没有集肤效应,导线的截面利用充分。另外,直流架空线路的“空间电荷效应”使其电晕损耗和无线电干扰都比交流线路小。所以,直流架空输电线路在线路建设初投资和年运行费用上均较交流经济。

(5)运行费用较省。根据国外的运行经验,线路和站内设备的年折旧维护费用占工程建设费用的百分数,交流与直流大体相近。但直流输电电能损耗在导线截面相同、输送有功功率相等的条件下,是交流输电的三分之二。

2.1直流输电技术可行性分析

直流输电在技术方面有如下优点:

(1)不存在系统稳定问题,可实现电网的非同期互联,而交流电力系统中所有的同步发电机都保持同步运行。直流输电的输送容量和距离不受同步运行稳定性的限制,还可连接两个不同频率的系统,实现非同期联网,提高系统的稳定性。

(2)限制短路电流。如用交流输电线连接两个交流系统,短路容量增大,甚至需要更换断路器或增设限流装置。然而用直流输电线路连接两个交流系统,直流系统的“定电流控制”将快速把短路电流限制在额定功率附近,短路容量不因

互联而增大。

(3)调节快速,运行可靠。直流输电通过可控硅换流器能快速调整有功功率,实现“潮流翻转”(功率流动方向的改变) ,在正常时能保证稳定输出,在事故情况下,可实现健全系统对故障系统的紧急支援,也能实现振荡阻尼和次同步振荡的抑制。在交直流线路并列运行时,如果交流线路发生短路,可短暂增大直流输送功率以减少发电机转子加速,提高系统的可靠性。

(4)没有电容充电电流。直流线路稳态时无电容电流,沿线电压分布平稳,无空、轻载时交流长线受端及中部发生电压异常升高的现象,也不需要并联电抗补偿。

(5)节省线路走廊。按同电压500kV 考虑,一条直流输电线路的走廊约40m ,一条交流线路走廊约50m ,而前者输送容量约为后者2倍,即直流传输效率约为交流2倍。

3城市直流配电网中的主要研究内容

与基于自然换相技术的电流源型换流器的传统直流输电不同,VSC-HVDC 是一种以电压源换流器、可控关断器件和脉宽调制(PWM技术) 为基础的新型直流输电技术。这种输电技术能够瞬时实现有功和无功的独立解耦控制、能向无源网络供电、换流站间无需通讯、且易于构成多端直流系统。另外,该输电技术能同时向系统提供有功功率和无功功率的紧急支援,

在提高系统的稳定性和输电能力等方面具有优势。下面详细介绍VSC-HVDC 的系统结构及其基本工作原理。

3.1 系统结构

图1为柔性直流输电系统单线原理图,两端的换流站均采用VSC 结构,它由换流站、换流变压器、换流电抗器、直流电容器和交流滤波器等部分组成。下面就各组成部分的结构和作用作简单介绍。

图1 柔性直流输电单线原理图

电压源型换流器VSC

:电压源型换流器的桥臂是由大功率的可控关断型电

力电子器件(如IGBT 、IGCT )和反并联二极管组成。随着大功率电力电子器件的发展,目前IGBT 的耐受电压达到6.5kV 、通断电流最大达到3kA ,IGCT 目前能承受的断态重复峰值电压达到6kV ,最大可控关断电流达3∼6kA 。目前,拥有柔性直流输电系统商业化运行实际工程业绩的,世界上只有ABB 公司。

两电平换流器是用于轻型直流输电系统中最简单的换流器拓扑结构中它有六个桥臂,每个桥臂由IGBT 和与之反并联的二极管组成。图2(b)所示为中点钳位型三电平换流器拓扑结构。在高压大功率情况下,为提高换流器容量和系统的电压等级,每个桥臂由多个IGBT 及其相并联的二极管相互串联来获得,其串联的个数由换流器的额定功率、电压等级和电力电子开关器件的通电能力与耐压强度决定。

3.2 基本工作原理

如前所述,与基于晶闸管的传统直流输电技术不同,柔性直流输电采用电压源型换流器和PWM 技术,其基本工作原理如图2和图3所示。由调制波与三角载波比较产生的触发脉冲,使VSC 上下桥臂的开关管高频开通和关断,则桥臂中点电压uc 在两个固定电压+Ud和−Ud 之间快速切换,uc 再经过电抗器滤波后则为网侧的交流电压us 。

图2

3

4城市直流配电网实施过程中的问题

由于城市电网的用电负荷增长十分迅猛,而城市负荷中心主力电厂建设不足,大量的电能需要由500kV 和220kV 线路进行远距离输送,导致城市电网供电能力不足、供电可靠性差、短路电流过大、电压支撑较弱等一系列问题,严重威胁着城市电网的安全稳定运行。

4.1供电能力不足且供电可靠性差

随着我国城市经济的不断发展及城市用地面积的扩大,城市用电量和负荷增长迅速,并且中心城区的负荷密度逐年增大,现有的供电网络已经越来越不能适应城市负荷发展的要求。城市用电负荷的快速增长给城市电网带来了巨大压力,使得城市内的变电站和电力线路等设备负载率偏高,甚至曾出现过满负荷或过负荷情况,这不但对电网的安全运行不利,也无法满足用电负荷继续增长的趋势,更加限制了城市电网的供电容量和供电可靠性。

4.2城市电网短路电流过大

随着城市负荷以及负荷密度不断增大,城市电网发展迅速,省会城市和沿海大城市已经基本建成了500kV 和220 kV的超高压外环网或C 形网,110~220kV高压变电所已经广泛深入市区负荷中心,电网结构不断发展完善,电网联系紧密,在增强城市电网供电能力、提高电网的安全稳定水平的同时,但同时又造成系统阻抗不断下降,各级电压的短路电流逐年增大短路电流水平越来越高,不少城网已出现短路容量超过《城市电力网规划设计导则》中短路容量的限制,甚至超过了断路器的开断能力。比如,目前北京、上海、广州等大城市的某些500kV 和220kV 变电站短路电流水平已经超过50kA ,甚至有的已超过63kA ,而且随着城市负荷的进一步增长,更会加剧短路电流超标问题,因此,短路电流超标问题不仅制约了城市电网的运行灵活性,而且对电网的安全运行构成了极大的威胁。

4.3城市负荷中心缺乏足够的电压支撑

随着我国经济的持续快速发展,电力需求保持着强劲的增长势头,特别是城市负荷需求增长更加迅猛。但是,在城市负荷中心因受土地资源、水资源、输电走廊、环境保护和高额投资等因素,限制了建立新电源的可能性,造成了大功率远距离、跨越大功角、大电压降落输电的现状,再加上电力市场下的新的系统运行方式,未来的系统不得不在接近其物理极限下运行。

4.4缺乏灵活的调节手段且抗扰动能力差

由于交流系统的潮流分布取决于网络参数、发电机与负荷的运行方式,虽然

利用传统的潮流调节手段和通过调度员的合理调度可以达到调节潮流目的,但是远不能满足现代电力系统安全经济运行的要求,使得目前城市电网的可控性依然较差,容易出现功率分布和走向不当,从而引起以下几方面的问题:部分线路和设备过载,部分线路和设备轻载,并且容易引发稳定性问题;系统的有功功率损耗增加,系统运行的经济性较差;容易形成功率绕送‖或功率倒流‖;系统功率分布不当,导致电压质量不满足要求;导致局部地方的短路水平过高,威胁电力系统的安全运行。

5可行的直流供电技术方案

由于现有许多家电的内部实际上是配备的整流电源,将输入的交流电转换为直流后驱动功能部件运行的。电磁炉、微波炉、电视机、计算机等电器产品,本身就是这类广义的直流家电;传统的电动家电产品,如洗衣机、电冰箱和空调等,目前采用直流调速方式已经成为发展趋势。显然,这类产品也属于广义的直流家电产品。若以直流电作为这类广义的直流家电产品的输入电力,从住宅供电到家电用电的全过程,电能自始至终都是保持直流状态,从而减少由于电能转换过程造成的电能损耗。

因此直流供电有两种可行的方案。方案一如图4所示

图4 直流供电方案一

保留原交流电网不变,只在每个用户的输入端安装AC/DC变换器,将原来的交流电变换成直流电,然后接入原来的室内配电线路。这种方案是一个高效大功率的AC/DC变换电路。这种方案简单、易实现,但犹豫线路短,直流供电的优点不太明显。

方案二如图5所示。

图5直流供电方案二

这种方案实际上是整个电网的改变,能充分体现直流输电的优点。在传统理论中,直流输电的优点是在长距离输电中体现的,而架空输电线路的等价距离为400Km-700Km 之间,电联输电线路的等价距离在25Km-50Km 之间,因此从二级变电站、末级配电站到用户之间用直流输电是不经济的。但近几年来直流输电技术进一步发展成熟,特别是轻型直流输电系统的发明,逐步打破了传统等价距离的限制。综合以上分析可以看出,采用方案二更科学合理。

(Reading Report、Research Report)

考核科目

Examination Subjects

学生所在院(系)

School/Department

学生所在学科

Discipline

学生姓名

Student ’s Name

学生学号

Student No.

考核结果

Examination Result

: 直流输电技术:电气工程及其自动化学院 :电力系统及其自动化 : 金昱 :15S006048 : 阅卷人Examiner

直流输电技术课程报告——

柔性直流输电在城市配电网中的应用

(哈尔滨工业大学 金昱 15S006048)

1 城市配电网输电技术研究现状

随着我国电力系统整体配置的不断发展,国家对城乡配电网建设日益重视,如何科学地设置城市配电网的规划显得尤为重要。在传统的电力建设中,我国总是将发电摆在第一位,输送配电摆在第二位,认为只要有充足的电能资源就可以做好电力系统的建设。但是,输送配电也在无形中影响着城市供电的能力和供电的可靠性。因此,合理适当的城市配电网规划在逐渐彰显着自己独特的优势,为电网建设的改造提供了合理性、科学性的指导经验。

1.1 我国配电网技术背景及现状

如今,我国有意识地改变原先的“重发电、轻输送配电”的现状,并取得了一定的成果,使得整体上配电网的设置都趋向了正规、合理。但是由于我国在配电网规划上发展较晚,依旧存在一些不合理的因素:

(1)基础差、底子薄。基础差、底子薄是我国配电网建设的真实写照。在过去的电网建设中,由于缺乏早期的勘测、考察和规划,导致我国配电网的设置分布不合理,供电线路较长,损坏较严重。一些城市出现了市中心电源丰富,周边村落电源稀少的现状,这种情况致使一些周边农村长期处于没有电用的状态。

(2)电路结构不合理,转换复杂、不灵活。我国在电网建设中呈现出电路复杂、互相交错、难以移动等现象。近电远送、电网接线复杂、迂回供电、专用线路占有主线路过多等不合理的安排也为之后重新建设新电路结构带来了极大的不便,也增大了电路维修的困难。

1.1 直流输电供电与交流输电的优劣势

交流电的优点主要表现在发电和配电方面:利用建立在电磁感应原理基础上的交流发电机可以很经济方便地把机械能(水流能、风能„„)、化学能(石油、天然气„„)等其他形式的能转化为电能;交流电源和交流变电站与同功率的直流电源和直流换流站相比,造价大为低廉;交流电可以方便地通过变压器升压和降压,这给配送电能带来极大的方便.这是交流电与直流电相比所具有的独特优势。

直流电的优点主要在输电方面:

(1)输送相同功率时,直流输电所用线材仅为交流输电的2/3~l /2 。 直流输电采用两线制,以大地或海水作回线,与采用三线制三相交流输电相比,在输电线载面积相同和电流密度相同的条件下,即使不考虑趋肤效应,也可以输送相同的电功率,而输电线和绝缘材料可节约1/3。如果考虑到趋肤效应和各种损耗(绝缘材料的介质损耗、磁感应的涡流损耗、架空线的电晕损耗等),输送同样功率交流电所用导线截面积大于或等于直流输电所用导线的截面积的

1.33倍。因此,直流输电所用的线材几乎只有交流输电的一半。同时,直流输电杆塔结构也比同容量的三相交流输电简单,线路走廊占地面积也少。

(2)在电缆输电线路中,直流输电没有电容电流产生,而交流输电线路存在电容电流,引起损耗。在一些特殊场合,必须用电缆输电。例如高压输电线经过大城市时,采用地下电缆;输电线经过海峡时,要用海底电缆。由于电缆芯线与大地之间构成同轴电容器,在交流高压输线路中,空载电容电流极为可观.一条200kV 的电缆,每千米的电容约为0.2μF ,每千米需供给充电功率约3×103kw,在每千米输电线路上,每年就要耗电2.6×107kw·h。而在直流输电中,由于电压波动很小,基本上没有电容电流加在电缆上。

(3)直流输电时,其两侧交流系统不需同步运行,而交流输电必须同步运行。交流远距离输电时,电流的相位在交流输电系统的两端会产生显著的相位差;并网的各系统交流电的频率虽然规定统一为50HZ ,但实际上常产生波动。这两种因素引起交流系统不能同步运行,需要用复杂庞大的补偿系统和综合性很强的技术加以调整,否则就可能在设备中形成强大的循环电流损坏设备,或造成不同步运行的停电事故。在技术不发达的国家里,交流输电距离一般不超过300km 而直流输电线路互连时,它两端的交流电网可以用各自的频率和相位运行,不需进行同步调整。

(4)直流输电发生故障的损失比交流输电小。两个交流系统若用交流线路互连,则当一侧系统发生短路时,另一侧要向故障一侧输送短路电流。因此使两侧系统原有开关切断短路电流的能力受到威胁,需要更换开关。而直流输电中,由于采用可控硅装置,电路功率能迅速、方便地进行调节,直流输电线路上基本上不向发生短路的交流系统输送短路电流,故障侧交流系统的短路电流与没有互连时一样。因此不必更换两侧原有开关及载流设备。

在直流输电线路中,各级是独立调节和工作的,彼此没有影响。所以,当一极发生故障时,只需停运故障极,另一极仍可输送不少于一半功率的电能。但在交流输电线路中,任一相发生永久性故障,必须全线停电。

2城市直流输电技术经济可行性分析

2.1直流输电技术经济性分析

从经济方面考虑,直流输电有如下优点:

(1)线路造价低。对于架空输电线,交流用三根导线,而直流一般用两根采用大地或海水作回路时只要一根,能节省大量的线路建设费用。对于电缆,由于绝缘介质的直流强度远高于交流强度,如通常的油浸纸电缆,直流的允许工作电压约为交流的3倍,直流电缆的投资少得多。

(2)直流架空线路投资省。直流输电一般采用双极中性点接地方式,直流线路仅需两根导线,三相交流线路则需三根导线,但两者输送的功率几乎相等,因此可减轻杆塔的荷重,减少线路走廊的宽度和占地面积。在输送相同功率和距离的条件下,直流架空线路的投资一般为交流架空线路投资的三分之二。

(3)换流站比变电站投资大。换流站的设备比交流变电站复杂,它除了必须有换流变压器外,还要有目前价格比较昂贵的可控硅换流器,以及换流器的其它附属设备,因此换流站的投资高于同等容量和相应电压的交流变电站。

(4)年电能损失小。直流架空输电线只用两根,导线电阻损耗比交流输电小;没有感抗和容抗的无功损耗;没有集肤效应,导线的截面利用充分。另外,直流架空线路的“空间电荷效应”使其电晕损耗和无线电干扰都比交流线路小。所以,直流架空输电线路在线路建设初投资和年运行费用上均较交流经济。

(5)运行费用较省。根据国外的运行经验,线路和站内设备的年折旧维护费用占工程建设费用的百分数,交流与直流大体相近。但直流输电电能损耗在导线截面相同、输送有功功率相等的条件下,是交流输电的三分之二。

2.1直流输电技术可行性分析

直流输电在技术方面有如下优点:

(1)不存在系统稳定问题,可实现电网的非同期互联,而交流电力系统中所有的同步发电机都保持同步运行。直流输电的输送容量和距离不受同步运行稳定性的限制,还可连接两个不同频率的系统,实现非同期联网,提高系统的稳定性。

(2)限制短路电流。如用交流输电线连接两个交流系统,短路容量增大,甚至需要更换断路器或增设限流装置。然而用直流输电线路连接两个交流系统,直流系统的“定电流控制”将快速把短路电流限制在额定功率附近,短路容量不因

互联而增大。

(3)调节快速,运行可靠。直流输电通过可控硅换流器能快速调整有功功率,实现“潮流翻转”(功率流动方向的改变) ,在正常时能保证稳定输出,在事故情况下,可实现健全系统对故障系统的紧急支援,也能实现振荡阻尼和次同步振荡的抑制。在交直流线路并列运行时,如果交流线路发生短路,可短暂增大直流输送功率以减少发电机转子加速,提高系统的可靠性。

(4)没有电容充电电流。直流线路稳态时无电容电流,沿线电压分布平稳,无空、轻载时交流长线受端及中部发生电压异常升高的现象,也不需要并联电抗补偿。

(5)节省线路走廊。按同电压500kV 考虑,一条直流输电线路的走廊约40m ,一条交流线路走廊约50m ,而前者输送容量约为后者2倍,即直流传输效率约为交流2倍。

3城市直流配电网中的主要研究内容

与基于自然换相技术的电流源型换流器的传统直流输电不同,VSC-HVDC 是一种以电压源换流器、可控关断器件和脉宽调制(PWM技术) 为基础的新型直流输电技术。这种输电技术能够瞬时实现有功和无功的独立解耦控制、能向无源网络供电、换流站间无需通讯、且易于构成多端直流系统。另外,该输电技术能同时向系统提供有功功率和无功功率的紧急支援,

在提高系统的稳定性和输电能力等方面具有优势。下面详细介绍VSC-HVDC 的系统结构及其基本工作原理。

3.1 系统结构

图1为柔性直流输电系统单线原理图,两端的换流站均采用VSC 结构,它由换流站、换流变压器、换流电抗器、直流电容器和交流滤波器等部分组成。下面就各组成部分的结构和作用作简单介绍。

图1 柔性直流输电单线原理图

电压源型换流器VSC

:电压源型换流器的桥臂是由大功率的可控关断型电

力电子器件(如IGBT 、IGCT )和反并联二极管组成。随着大功率电力电子器件的发展,目前IGBT 的耐受电压达到6.5kV 、通断电流最大达到3kA ,IGCT 目前能承受的断态重复峰值电压达到6kV ,最大可控关断电流达3∼6kA 。目前,拥有柔性直流输电系统商业化运行实际工程业绩的,世界上只有ABB 公司。

两电平换流器是用于轻型直流输电系统中最简单的换流器拓扑结构中它有六个桥臂,每个桥臂由IGBT 和与之反并联的二极管组成。图2(b)所示为中点钳位型三电平换流器拓扑结构。在高压大功率情况下,为提高换流器容量和系统的电压等级,每个桥臂由多个IGBT 及其相并联的二极管相互串联来获得,其串联的个数由换流器的额定功率、电压等级和电力电子开关器件的通电能力与耐压强度决定。

3.2 基本工作原理

如前所述,与基于晶闸管的传统直流输电技术不同,柔性直流输电采用电压源型换流器和PWM 技术,其基本工作原理如图2和图3所示。由调制波与三角载波比较产生的触发脉冲,使VSC 上下桥臂的开关管高频开通和关断,则桥臂中点电压uc 在两个固定电压+Ud和−Ud 之间快速切换,uc 再经过电抗器滤波后则为网侧的交流电压us 。

图2

3

4城市直流配电网实施过程中的问题

由于城市电网的用电负荷增长十分迅猛,而城市负荷中心主力电厂建设不足,大量的电能需要由500kV 和220kV 线路进行远距离输送,导致城市电网供电能力不足、供电可靠性差、短路电流过大、电压支撑较弱等一系列问题,严重威胁着城市电网的安全稳定运行。

4.1供电能力不足且供电可靠性差

随着我国城市经济的不断发展及城市用地面积的扩大,城市用电量和负荷增长迅速,并且中心城区的负荷密度逐年增大,现有的供电网络已经越来越不能适应城市负荷发展的要求。城市用电负荷的快速增长给城市电网带来了巨大压力,使得城市内的变电站和电力线路等设备负载率偏高,甚至曾出现过满负荷或过负荷情况,这不但对电网的安全运行不利,也无法满足用电负荷继续增长的趋势,更加限制了城市电网的供电容量和供电可靠性。

4.2城市电网短路电流过大

随着城市负荷以及负荷密度不断增大,城市电网发展迅速,省会城市和沿海大城市已经基本建成了500kV 和220 kV的超高压外环网或C 形网,110~220kV高压变电所已经广泛深入市区负荷中心,电网结构不断发展完善,电网联系紧密,在增强城市电网供电能力、提高电网的安全稳定水平的同时,但同时又造成系统阻抗不断下降,各级电压的短路电流逐年增大短路电流水平越来越高,不少城网已出现短路容量超过《城市电力网规划设计导则》中短路容量的限制,甚至超过了断路器的开断能力。比如,目前北京、上海、广州等大城市的某些500kV 和220kV 变电站短路电流水平已经超过50kA ,甚至有的已超过63kA ,而且随着城市负荷的进一步增长,更会加剧短路电流超标问题,因此,短路电流超标问题不仅制约了城市电网的运行灵活性,而且对电网的安全运行构成了极大的威胁。

4.3城市负荷中心缺乏足够的电压支撑

随着我国经济的持续快速发展,电力需求保持着强劲的增长势头,特别是城市负荷需求增长更加迅猛。但是,在城市负荷中心因受土地资源、水资源、输电走廊、环境保护和高额投资等因素,限制了建立新电源的可能性,造成了大功率远距离、跨越大功角、大电压降落输电的现状,再加上电力市场下的新的系统运行方式,未来的系统不得不在接近其物理极限下运行。

4.4缺乏灵活的调节手段且抗扰动能力差

由于交流系统的潮流分布取决于网络参数、发电机与负荷的运行方式,虽然

利用传统的潮流调节手段和通过调度员的合理调度可以达到调节潮流目的,但是远不能满足现代电力系统安全经济运行的要求,使得目前城市电网的可控性依然较差,容易出现功率分布和走向不当,从而引起以下几方面的问题:部分线路和设备过载,部分线路和设备轻载,并且容易引发稳定性问题;系统的有功功率损耗增加,系统运行的经济性较差;容易形成功率绕送‖或功率倒流‖;系统功率分布不当,导致电压质量不满足要求;导致局部地方的短路水平过高,威胁电力系统的安全运行。

5可行的直流供电技术方案

由于现有许多家电的内部实际上是配备的整流电源,将输入的交流电转换为直流后驱动功能部件运行的。电磁炉、微波炉、电视机、计算机等电器产品,本身就是这类广义的直流家电;传统的电动家电产品,如洗衣机、电冰箱和空调等,目前采用直流调速方式已经成为发展趋势。显然,这类产品也属于广义的直流家电产品。若以直流电作为这类广义的直流家电产品的输入电力,从住宅供电到家电用电的全过程,电能自始至终都是保持直流状态,从而减少由于电能转换过程造成的电能损耗。

因此直流供电有两种可行的方案。方案一如图4所示

图4 直流供电方案一

保留原交流电网不变,只在每个用户的输入端安装AC/DC变换器,将原来的交流电变换成直流电,然后接入原来的室内配电线路。这种方案是一个高效大功率的AC/DC变换电路。这种方案简单、易实现,但犹豫线路短,直流供电的优点不太明显。

方案二如图5所示。

图5直流供电方案二

这种方案实际上是整个电网的改变,能充分体现直流输电的优点。在传统理论中,直流输电的优点是在长距离输电中体现的,而架空输电线路的等价距离为400Km-700Km 之间,电联输电线路的等价距离在25Km-50Km 之间,因此从二级变电站、末级配电站到用户之间用直流输电是不经济的。但近几年来直流输电技术进一步发展成熟,特别是轻型直流输电系统的发明,逐步打破了传统等价距离的限制。综合以上分析可以看出,采用方案二更科学合理。


相关文章

  • 特高压与智能电网
  • 9.26 1题:以下不属于比较合理的超高压-特高压电网电压系列为:( ) A.330 千伏(345 千伏)-750 千伏(765 千伏)-1500 千伏系列 B.220 千伏-500 千伏-1000 千伏(1100 千伏)系列 C.110 ...查看


  • 电力电子技术的应用
  • 摘要 近年来,不断进步的计算机技术为现代控制技术在实际生产.生活中提供了强有力的技术支持,新的材料和结构器件又促进了电力电子技术的飞速发展,且在各行业中得到广泛的应用.本文就电力电子技术在发电环节中.输电环节中.在配电环节中的应用和节能环节 ...查看


  • 一种适用于柔性直流配电网的电压控制策略
  • 第36卷 第2期 2016年1月20日 中 国 电 机 工 程 学 报 Proceedings of the CSEE V ol.36 No.2 Jan. 20, 2016 2016 Chin.Soc.for Elec.Eng. 335 ( ...查看


  • 国家电网校园招聘智能电网知识题库
  • 智能电网 力流.信息流.技术流 安全稳定控制能力 7. 智能电网将使人们的生活 A . C. 实现新能源与常规能源的合理布局和一.选择题 A. 更便捷.更低碳.更经济 优化配置 1. 与现有电网相比,智能电网体现出B. 更便捷.更舒适.更经 ...查看


  • 电力电子技术应用
  • 配电环节运用 电子电力技术在配电的最终环节也起到了支柱的作用.其最紧迫的问题就是如何加强供电可靠性和提高电能质量.电能质量控制既要满足对电压.频率.谐波和不对称度的要求,还要抑制各种瞬态的波动和干扰.电力电子技术和现代控制技术在配电系统中的 ...查看


  • 面向能源互联网的能量路由器研究_陈静鹏
  • DOI:10.16628/j.cnki.2095-8188.2015.24.007 电器与能效管理技术(2015No.24)? 能源互联网技术专辑·能源互联网技术 · 面向能源互联网的能量路由器研究 芊 (上海交通大学电子信息与电气工程学院 ...查看


  • 电力信息化与信息安全课后答案
  • 第一章 1.什么是一次能源?什么是二次能源? 一次能源是指自然界中以天然形式存在并没有经过加工或转换的能量资源 二次能源是指由一次能源经过加工.转换以后得到的能源 2.简述电力系统为什么要组成电网运行? 课本P2,电力系统的形成 3.什么是 ...查看


  • 舟山多端柔性直流输电技术及应用
  • 第1卷第2期2013年12月 文章编号:2095-5944(2013)02.0022.05 智能电网 SmartGrid .,01.1No.2Dec.2013 中图分类号:TM72文献标志码:A 舟山多端柔性直流输电技术及应用 吴浩,徐重力 ...查看


  • 国家电网的"十三五"蓝图有多大?比你想得更大!
  • 国家电网公司学习贯彻党的十八届五中全会精神暨2015年第四季度工作会议刚刚闭幕. 这是"十二五"最后一年的最后一次大型会议,国家电网公司在这次会上对"十三五"电网发展目标进行了概要式描述," ...查看


热门内容