地球的资料 1

【地球】

地球是太阳系八大行星之一,按离太阳由近及远的次序是第三颗,位于水星和金星之后;在八大行星中大小排行是第五。地球是唯一一个不是从希腊或罗马神话中得到的名字。Earth一词来自于古英语及日耳曼语。这里当然有许多其他语言的命名。在罗马神话中,地球女神叫Tellus——肥沃的土地(希腊语:Gaia,大地母亲) 。

【地球数据】

年龄:46亿岁。

公转周期:约365天。

回归年长度: 366.2422 天。

公转轨道:呈椭圆形。7月初为远日点,1月初为近日点。

自转周期:恒星日为23小时56分04秒。太阳日为24小时。

自转方向:自西向东。

黄赤交角:黄道面与赤道面的交角为 23°26’

极半径:是从地心到北极或南极的距离,大约3950英里(6356.8 公里)(两极的差极小,可以忽略)。

赤道半径:是从地心到赤道的距离,大约3963英里(6378.1 公里)。

平均半径:大约3959英里6371公里。这个数字是地心到地球表面所有各点距离的平均值。 体积:10832亿立方千米。

质量:5.9742³10^21 吨。

平均密度:5.515 g/cm^3

表面积:5.1亿平方千米。

海洋面积:3.617453亿平方千米(约71%)。

大气主要成份:氮(78%)、氧(21%)等其他物质(1%)。

地壳主要成份:氧(47%)、硅(28%)和铝(8%)。地壳中含量最多的金属:铝(8%) 表面大气压:1013.250毫帕,或760毫米高汞柱。

表面重力加速度:g=9.8m/s^2。

卫星(天然):1颗(月球)

编辑摘要

目录-[ 隐藏 ]

1质量

2主要成分

3温度

4运动

5方向

6自转的速度

7自转的周期

8自转的规律性

9结果

10地震波

11世界地球日

12自然灾害

13结构

14卫星

15宇宙环境

16内部环境

17与人口的关系

18纪录片地球

19常用数据表

编辑本段|回到顶部质量 卡文迪许认为地球的质量约为6³10^24千克

地球的赤道半径ra=6378137m≈6.378³10^6m,极半径rb=6356752m≈6.357³10^6m,扁率e=1/298.257,忽略地球非球形对称,平均半径r=6.371³10^6m。在赤道某海平面处重力加速度的值ga=9.780m/s^2,在北极某海平面处的重力加速度的值gb=9.832m/s^2,全球通用的重力加速度标准值g=9.807m/s^2,地球自转周期为23小时56分4秒(恒星日),即T=8.616³10^4s。

如果把地球看成质量均匀,并且忽略其它天体的影响,可以通过如下途径计算地球的质量。 方法一、在赤道上,地球对质量为m的物体的引力等于物体的重力与随地球自转的向心力之和,则为5.984*10^24 kg

方法二、在北极,不考虑地球自转,则计算为5.954*10^24kg

方法三、把地球看作质量均匀的球体,忽略自转影响,半径取平均值,重力加速度取标准值。则为5.965*10^24kg

月地距离r月地=3.884³10^8m,月球公转周期为27天7小时43分11秒(恒星日),即T月≈2.361³10^6s,月球和地球都看做质点,设月球质量为m月。

方法四、为6.220*10^24kg

编辑本段|回到顶部主要成分 直到十六世纪时,人类才了解到地球只不过是太阳系的另一颗行星而已。

地球不需太空探测船才可认识,但是直到二十世纪我们才真正勾勒出整个地球的全貌。 当然能自太空中取得它的影像是其中相当重要的因素,地球的太空影像对天气预测,尤其是台风 (飓风)的预报来说有很大的帮助,而且从太空看到的地球真是非常美丽、可爱。

由化学组成成分及地震震测特性来看,地球本体可以分成一些层圈,以下就标示出它们的名称与范围(深度,单位为公里):

0~40地壳40~2890地幔2890~5150外地核5150~6378内地核

固态的地壳厚度变化颇大,海洋地区的地壳较薄,平均约7公里厚;而大陆地壳就厚得多,平均约40公里厚; 地函也是固态,不过在它上部有一层极小部分熔融的区域,称为软流圈 ,其上的地函最顶部及整个地壳则称为岩石圈 ;至于外地核是液态而内地核是固态。 这些不同的层圈都是以不连续面为界,最有名的就是在地壳与地函之间的莫氏不连续面 (Mohorovicic discontinuity)。 地幔占有地球的主要质量,地核反而位居其次,至于我们生存的空间则只是整个地球极小的一部分而已 (质量,单位为10的24次方公斤: 大气层 = 0.0000051,海洋 = 0.0014 ,地壳 = 0.026,地幔 = 4.043,外地核= 1.835,内地核 = 0.09675,)

地核的主要成分是铁 (或铁镍质),不过也可能有一些较轻的物质存在,地心的温度约有7,500K,比太阳表面温度还高;下部地函的主要成分可能是矽、镁、氧,再加上一些铁、钙及铝;上部地幔主要成分则是橄榄石及辉石 (铁镁矽酸盐岩石),也有钙和铝。 以上这些瞭解都是来自于地震震测资料,虽然上部地幔的物质有时会因著火山喷出熔岩而被带到地表来,但是我们仍无法到达固体地球的主要部分,目前的海底钻探行动连地壳都尚未挖穿。 地壳的成分则主要是石英 (二氧化硅)及硅酸盐类如长石。 整体估算,地球化学组成的重量百分比为: 铁34.6% ,氧29.5% ,矽15.2% ,镁12.7% ,镍2.4% ,硫1.9% ,0.05% 钛 。

地球是平均密度最大的主要星体。

其它类地行星也都具有和地球类似的结构与组成,但其中也有一些差异: 月球核所占比例最小; 水星核的比例最大;而火星及月球的函相对较厚;月球和水星没有化学组成明显不同的函与壳之分;地球可能是唯一可再分成内外核的。不过请留意,我们对行星内部的认识主要是来自于理论推导,就算是对地球的也是如此。

有别于其它类地行星 ,地球的最外层 (包含地壳及上部地幔的顶端)被切分为数块,「飘浮」于其下的炽热地幔之上,这就是著名的板块构造运动学说 。 这个学说主要描述两种运动:拉张与隐没,前者发生在二个板块互相远离,其下的岩浆涌出而生成新地壳之处;后者则发生在二个板块互相碰撞,其中一方潜入另一方之下,终至消灭于地函中之处。 此外,也有一些板块边界是横向错开式的相对运动或两个大陆板块硬碰硬地撞在一起。

地球的表面很年轻 ,只有5亿年左右,以天文的角度来看确实很短。 侵蚀作用及构造地质运动不断地破坏又重建大部分的地表,因而几乎完全消灭了地表早期的地质记录,例如撞击坑 ,所以早期地球历史大部分都已不见踪迹。 地球约有45至46亿年老,然而目前已知最老的岩石只有大约40亿年前,而且老于30亿年的岩石非常罕见。 最老的生物化石不老于39亿年前,有关生命起源的关键时期则亳无记录。

地球表面积71%为水所覆盖,地球是太阳系唯一在表面可以拥有液态水的行星 (土卫六的表面有液态乙烷或甲烷,而藏于木卫二的表面之下则可能有液态水,不过地球表面有液态水仍是独一无二的)。 液态水是我们已知的生命型式所不可或缺的要素;而缘于水具有的大比热性质,海洋的热容积成为保持地球温度恒定的一大功臣;液态水还是陆地上侵蚀与风化作用的主要营力,这是太阳系中唯一有此作用的地方 (也许火星早期也曾有过这些作用,但现在已无)。

地球大气组成中,77%是氮气而21%是氧气,再来就是微量的氩、二氧化碳及水气。 地球初形成时的大气很可能大部分都是二氧化碳,不过它们大多已被碳酸盐类岩石给结合,其余的则是溶入海洋及被绿色植物耗尽;如今板块构造运动及生物作用是大气中二氧化碳消长的持续主控者。 大气中存在的水气及微量二氧化碳所造成的温室效应是维持地表温度极重要的作用,温室效应使地表温度提高了大约35℃,否则地表的平均温度将是酷寒的-21℃! 若没有水气及二氧化碳,海水会冻结,而我们已知的生命型式将无从开展。 此外,水气更是地球水循环及天气变化中不可或缺的要角。 自由氧的存在也是地球化学组成的一大特征,因为氧是活性很强的气体,照理说应该很容易就和大气中其它元素相化合,地球上的氧气完全是由生物作用产生及维持,若没有生命就不会有自由氧。

地球与月球之间的引潮力会使地球的自转周期每一世纪增加约2毫秒,最新研究显示在9亿年前一天只有18小时,而一年则有481天。地球拥有适度的磁场,推测磁场是起因于液态外地核中的电流。 由于太阳风与地球磁场及外层大气的交互作用, 极光于焉产生;而上述因素的不均衡造成磁极会在地表移动,目前磁北极位于加拿大北境。由于太阳风与地球磁场及外层大气的交互作用, 极光于焉产生;

地球磁场及其与太阳风的交互作用也造成了范艾伦辐射带 (Van Allen radiation belts),它是环绕著地球的成对环状带,外型就像是甜甜圈,由气体离子 (电浆) 组成,其外圈由海拔19,000公里延伸到41,000公里;内圈则介于海拔13,000至7,600公里之间。

编辑本段|回到顶部温度 地核的温度大约是4700℃,比太阳光球表面温度(6000℃)略低。地球上最高温度发生在闪电中。一次闪电能释放100亿焦耳的能量,达到30000℃,这温度是太阳表面温度的5倍,但比太阳核心的温度(1400万摄氏度)低多了。 地球上最冷的地方在哪里?北半球的“冷极”在西伯利亚东部的奥伊米亚康,1961年1月的最低温度是–71℃。南半球的“冷极”在南极大陆,1960年8月24日气温为–88.3℃。

编辑本段|回到顶部运动 地球绕地轴的旋转运动,叫做地球的自转。地轴的空间位置基本上是稳定的。它的北端始终指向北极星附近,地球自转的方向是自西向东;从北极上空看,呈逆时针方向旋转。地球自转一周的时间,约为23小时56分,这个时间称为恒星日;然而在地球上,我们感受到的一天是24小时,这是因为我们选取的参照物是太阳。由于地球自转的同时也在公转,这4分钟的差距正是地球自转和公转叠加的结果。天文学上把我们感受到的这1天的24小时称为太阳日。地球自转产生了昼夜更替。昼夜更替使地球表面的温度不至太高或太低,适合人类生存。

地球自转的平均角速度为每小时转动15度。在赤道上,自转的线速度是每秒465米。天空中各种天体东升西落的现象都是地球自转的反映。人们最早就是利用地球自转来计量时间的。研究表明,每经过一百年,地球自转速度减慢近2毫秒,它主要是由潮汐摩擦引起的,潮汐摩擦还使月球以每年3~4厘米的速度远离地球。地球自转速度除长期减慢外,还存在着时快时慢的不规则变化,引起这种变化的真正原因目前尚不清楚。

地球绕太阳的运动,叫做公转。从北极上空看是逆时针绕日公转。地球公转的路线叫做公转轨道。它是近正圆的椭圆轨道。太阳位于椭圆的两焦点之一。每年1月3日,地球运行到离太阳最近的位置,这个位置称为近日点;7月4日,地球运行到距离太阳最远的位置,这个位置称为远日点。地球公转的方向也是自西向东,运动的轨道长度是9.4亿千米,公转一周所需的时间为一年,约365.25天。地球公转的平均角速度约为每日1度,平均线速度每秒钟约为30千米。在近日点时公转速度较快,在远

日点时较慢。地球自转的平面叫赤道平面,地球公转轨道所在的平面叫黄道平面。两个面的交角称为黄赤交角,地轴垂直于赤道平面,与黄道平面交角为66°34',或者说赤道平面与黄道平面间的黄赤交角为23°26',由此可见地球是倾斜着身子围绕太阳公转的。

编辑本段|回到顶部方向 地球自转的方向是自西向东转,左向右转。从北极点上空看呈逆时针旋转,从南极点上空看呈顺时针旋转。

编辑本段|回到顶部自转的速度 地球自转的角速度大约是每小时15度;而表面每点的线速度随纬度而变化,是赤道的线速度乘以纬度的余弦。因此赤道的线速度是最大的,两极的线速度最小。

影响地球自转速度的因素

地球自转速度主要受三个因素影响,总体使其趋慢。

长期变化:日月对海洋的引潮力使地球自转速度变慢,令地球一日的长度每100年增加1.6毫秒,导致一年的日数减少,有证据表明泥盆纪中期的一年有400日。

季节变化:有周年变化和半年变化。周年变化是风的季节变化引起的,其振幅为20-25毫秒;半年变化是由日月引潮力对大气的潮汐作用引起,其振幅约为9毫秒。

不规则变化:地外和地内的物质或能量交换,如陨星体对地球的撞击等,时而使地球加速时而使地球变慢。

编辑本段|回到顶部自转的周期 地球自转的周期是一个行星日,目前其值为23时56分4秒。但是近年来地球自转周期在缓慢增加(即转速缓慢减小),导致需要对全球计时器进行调整,例如2005年12月31日全球钟表统一加一秒。这样的调整称为闰秒。

编辑本段|回到顶部自转的规律性 极移

地轴在地面上的运动,叫做极移。

极移的原因主要有两种,一种是地轴对于惯性轴偏离的结果,周期大约为14个月。另一种是大气季节性运行导致,其周期为一年。还有其他一些次要的原因,极移的振幅一般不超过15米。

极移的结果使地球上的纬度和经度发生变化。

进动

天极在天球上的位置的变化称为进动。

规律性

地轴的进动是一种圆锥形的运动,其规律性如下:

圆锥轴线垂直于地球公转轨道平面,指向黄道两极。

圆锥的半径是黄赤交角。

运动的方向是自东向西,即同地球自转的方向相反。

运动的速度是每年50秒点29,周期是25800年。

表现

表现为天极的周期性运动。

造成北极星的变迁。

地球赤道面和天赤道发生系统性的变化。

二分二至点每年在黄道上以50秒点29的速度西移。(岁差)

使回归年小于恒星年

原因

第一,地球形状

因为地球是一个明显的扁球体,所以隆起的部位所受的附加引力总是稍大于另一侧。二者之间的差值,总是存在于接近日月的一侧。

第二,黄赤交角

由于黄赤交角的存在,使得日月经常在赤道面以外对赤道隆起施加引力。这样上述引力差就成为一个力矩,使得地轴趋近黄轴,天极趋近黄极。

第三,地球自转

因为上述的引力差,给地球的自转的角动量增加了一个增量,使得地球的自转方向发生偏转。这就是地轴的进动,也就是岁差。

编辑本段|回到顶部结果 不同天体的周日运动

主条目:周日运动

不同纬度的周日运动

主条目:周日运动

水平运动的左右偏转

因为地球表面并不是在做匀速直线运动,所以会有惯性问题。在北半球往右偏,在南半球往左偏。这种使水平运动发生偏转的力,叫做地转偏向力,是一种视力

地球的旋转:

太阳光照射着万物,对万物有力的作用。假设设一个物体为一个单位1,那么太阳就对它有力的作用,就会把它往离太阳远处推射,就好像在说“你滚开”。那么太阳在推射1的单位的物体的时候,但是1不可能就向无限远走去。1还可以分为两个0.5。那么太阳就会对两个0.5推射,往太阳的无限远处推射。那么当推射到第一个0.5的时候,第一个0.5离太阳最近,那么第二个0.5也要求要被推射。那么第二个0.5也会跑到离太阳最近的地方,那么第一个0.5就会被挤开到远离太阳到第二个0.5的后面。再之后,第一个0.5又会到离太阳最近的地方....反复下去,物体产生旋转。当然0.5还可以再分为二个0.25。0.25又可以分.....分到无穷小。就这样产生了旋转,既地球的自转。

太阳光对地球的聚合力:

离太阳越近,物体会偏近圆.紧缩,也就是光子的数目越多,太阳光的密度越大,太阳光对周围的万物的“击打.推射”的频率越高,产生的力就越大。地球上的每一点接收的太阳光数目就越多,频率越高,地球就越不容易分开。随着距离太阳越来越远,物体会偏近分开;太阳光的密度变稀疏,太阳光对周围的万物“击打.推射”的频率减小,对地球的聚合力(紧缩力)减小,物体会慢慢偏近分散,地球分散从而造成每隔一段时间就要地震,造成板快运动的原因。例如火星有两个卫星,地球有一个卫星。在很久以前的地球有可能只有一个圆,而没有卫星即现在的月球。正如现在的金星,

水星没有卫星。在将来的地球也有可能有两个卫星。而随着地球距离太阳越来越远,时间的过去,地球的聚合力(紧缩力)减小,所以分出了月球,因为地球在不断的远离太阳。而且,气候会越来越冷,陆地上会积厚厚的冰层,正如现在的火星。在之后的地球,很可能还会分出个卫星。那么我们应该在将来地球开始分出第二个卫星之前就应该移民定居于火星。如果人类不能大规模的移民于火星,那么人类到地球分散出第二个卫星的时候之前的,人类几十亿年的一切文明都化为零。所以时间对于我们来说是非常重要的。随着地球离太阳的距离越来越远,地球一分为二。离太阳的距离再远,又分为三。再远,之后又变四,.....直到无穷小。正如现在的冥王星,有八个卫星,当然冥王星还可以再分,随时间的推移。那么在火星上还没发现新的生命前,地球上的每一棵小草都是神奇的,至少在太阳系中还没有发现生命。我们寄渺茫的希望于发现外星人的出现,到不如人类自己先移民于火星或者月球,到不如自己先成为外星人。

编辑本段|回到顶部地震波 我们能够用钻探了解地球内部,可现在最先进的钻探也不过能穿透10千米,如果把地球比作一个苹果的话,那就连表皮也没穿透.后来,科学家们终于知道了打开地心之门的钥匙——地震波.20世纪初,南斯拉夫地震学家莫霍洛维奇忽然醒悟:原来地震波就是我们探察地球内部的“超声波探测器”!地震波就是地震时发出的震波,它有横波和纵波两种,横波只能穿过固体物质,纵波却能在固体、液体和气体任一种物资中自由通行。通过的物质密度大,地震波的传播速度就快,物质密度小,传播速度就慢。莫霍洛维奇发现,在地下33千米的地方,地震波的传播速度猛然加快,这表明这里的物质密度很大,物质成分也与地球表面不同。地球内部这个深度,就被称为“莫霍面”。

1914年,美国地震学家古登堡又发现,在地下2900千米的地方,纵波速度突然减慢,横波则消失了,这说明,这里的物质密度变小了,固体物质也没有了,地球之心在这里,只剩下了液体和气体。这个深度,就被称为“古登堡面”。

地球之心之谜终于搞清楚了:地球从外到里,被莫霍面和古登堡面分成三层,分别是地壳、地幔和地核。地壳主要是岩石,地幔主要是含有镁、铁和硅的橄榄岩,地核,也就是真正的地球之心,主要是铁和镍,那里的温度超过2001摄氏度。

地球是人类的共同家园,然而,随着科学技术的发展和经济规模的扩大,全球环境状况在过去30年里持续恶化。有资料表明:自1860年有气象仪器观测记录以来,全球年平均温度升高了0.6摄氏度,最暖的13个年份均出现在1983年以后。20世纪80年代,全球每年受灾害影响的人数平均为1.47亿,而到了20世纪90年代,这一数字上升到2.11亿。目前世界上约有40%的人口严重缺水,如果这一趋势得不到遏制,在30年内,全球55%以上的人口将面临水荒。自然环境的恶化也严重威胁着地球上的野生物种。如今全球12%的鸟类和四分之一的哺乳动物濒临灭绝,而过度捕捞已导致三分之一的鱼类资源枯竭。

编辑本段|回到顶部世界地球日 1970年4月22日,在太平洋彼岸的美国,人们为了解决环境污染问题,自发地掀起了一场声势浩大的群众性的环境保护运动。在这一天,全美国有10000所中小学,2000所高等院校和2000个社区及各大团体共计2000多万人走上街头。人们高举着受污染的地球模型、巨画、图表,高喊着保护环境的口号,举行游行、集会和演讲,呼吁政府采取措施保护环境。这次规模盛大的活动,震撼朝野,促使美国政府于70年代初通过了水污染控制法和清洁大气法的修正案,并成立了美国环保局。从此,美国民间组织提议把4月22日定为“地球日”,它的影响随着环境保护的发展而日趋扩大并超过了美国国界,得到了世界许多国家的积极响应。

“地球日”诞生后20年中,世界范围内的环境保护工作取得了很大的进展。1972年6月,联合国召开了具有划时代意义的人类环境会议,1973年,成立了联合国环境规划署,许多国家都相继成立了环境保护管理机构和科研机构,环境保护被提上了许多国家政府的重要议事日程,环境问题受到了公众的普遍关注。在许多重大的国际会议上,环境保护也成为重要议题之一,如1989年召开的44届联大、不结盟国家首脑会议、英联邦国家首脑会议、西方七国首脑会议等都讨论了环境问题,并通过了关于环境保护的决议或宣言。这说明环境保护已成为国际政治和国际关系的“热点”。越来越多的政治家、科学家、有识之士都强烈的认识到,环境污染和生态恶化会使社会的文明进程将受到巨大阻碍。

由于环境保护问题已成为国际政治的热点,1990年的地球日活动组织者们决定,要使1990年的地球日成为第一个国际性的地球日,以促使全球亿万民众都来积极地参与环境保护。为此,地球日活动的组织者致函中国、美国、英国三国领导人和联合国秘书长,呼吁以1990年4月22日为目标日期,

举行高级环境会晤,为缔结多边条约奠定基础。呼吁各国采取积极步骤,达成协议,以阻止和扭转全球环境恶化趋势的发展。同时呼吁全世界愿意致力保护环境,进行国际合作的政府,在本国举办“地球日”20周年庆祝活动。

庆祝“地球日”20周年活动的呼吁,得到了五大洲各国和各种团体的热烈响应和积极支持。美国总统布什宣布,把4月22日作为美国法定的地球日,并呼吁公民积极投身到改善环境的行动中去。“1990年地球日”协调委员会主席丹尼斯²海斯事先拜访了伦敦、巴黎、罗马、波恩、布鲁塞尔等地的活动小组,并得到明确的答复,同意将1990年的地球日作为国际地球日进行纪念。亚洲、非洲、美洲的许多国家和地区也都积极响应,组织纪念活动。众多的国际组织,如国际学生联合会、青年发展与合作协会等,也都表示大力支持和积极参与“地球日”20周年纪念活动。1990年4月22日这一天,全世界有100多个国家举行了各种各样的环境保护宣传活动,参加入数达几亿人。从那时起,“地球日”才具有国际性,成为“世界地球日”。

世界地球日活动旨在唤起人类爱护地球、保护家园的意识,促进资源开发与环境保护的协调发展。中国从20世纪90年代起,每年4月22日都举办世界地球日活动。

世界地球日由来

人类历史上的第一个“地球日”,是1970年4月22日,由美国哈佛大学法学院的一个刚满25岁的学生——丹尼斯²海斯在校园发起和组织的。他在今天被誉为“地球日之父”。但实际上,“地球日”最早的发起人并不是他,而是美国一位政界名人盖洛²尼尔森(Gaylord Nelson)。1962年,美国威斯康星州民主党参议员盖洛²尼尔森,试图说服肯尼迪总统,进行一次保护野生动物的旅行,以引起公众注意保护环境,总统十分赞同这个建设性的意见。第二年秋,尼尔森与另外3名参议员,参加了总统这次“十分有意义的”旅行,这是一个良好的开端。尼尔森又酝酿设立“地球日”。1969年夏,尼尔森和参议院的同事成立了一个组织,制定了纪念全国性地球日活动计划,并于同年9月初宣布了这件事,包括要在全美各大校园内举办环境保护问题的讲演会等。美国人民的反应极为热烈,令尼尔森也始料未及。

1969年盖洛²尼尔森提议,在全国各大学校园内举办环保问题讲演会,海斯听到这个建议后,就设想在剑桥市举办一次环保的演讲会。于是,他前往首都华盛顿去会见了尼尔森。年轻的海斯谈了自己的设想,尼尔森喜出望外,立即表示愿意任用海斯,甚至鼓动他暂时停止学业,专心从事环保运动。于是,海斯毅然办理了停学手续。不久,他就把尼尔森的构想扩大,办起了一个在美国各地展开的大规模的社区性活动。举办“地球日”的主意就这样形成了。

他选定1970年4月22日(星期三)为第一个“地球日”。就在那年的4月22日,美国各地大约有2000万人参加了游行示威和演讲会。

美国的1970年正是个多事之秋,光纤织物被发明了出来,“阿波罗13号”的悲剧导致登月计划的失败,在南卡罗来纳州萨瓦那河附近一家核工厂发生泄露事故,当时的美国人,终日呼吸着豪华轿车的含铅尾气。工厂肆无忌惮地排放着浓烟和污水,却从不担心会被起诉或者是受到舆论的谴责。“环保人士”凤毛麟角,他们只是列在字典里的单词,却很少能够被人所重视。正是在这样的背景下,首次“地球日”取得了极大的成功。鉴于公众对环境保护的关心,美国国会在“地球日”这一天休会,近40名参众议员分别在当地集会上讲话。伦特²杜贝斯、保罗²埃利希以及拉尔夫²纳德等美国的名流发表了演讲,阐明集会的重要意义。25万人聚集在华盛顿特区,10万人向纽约市第五大街进军,支持这次活动。

据统计,这一天全美有2000多万人、1万所中小学、2000所高等院校和2000个社区以及各大团体参加了“地球日”活动。人们举行集会、游行和其他多种形式的宣传活动,高举着受污染的地球模型、巨幅画和图表,高呼口号,要求政府采取措施保护环境。1970年的首次“地球日”活动声势浩大,被誉为二战以来美国 规模最大的社会活动。这次活动标志着美国环保运动的崛起,并促使美国政府采取了一些治理环境污染的措施。

1970年4月22日的“地球日”活动,是人类有史以来第一次规模宏大的群众性环境保护运动。作为人类现代环保运动的开端,它推动了西方国家环境法规的建立。如美国就相继出台了清洁空气法、清洁水法和濒危动物保护法等法规;1970年的地球日还促成了美国国家环保局的成立,并在一定程度上促成了1972年联合国第一次人类环境会议在斯德哥尔摩的召开,有力地推动了世界环境保护事业的发展。1973年联合国环境规划署的成立,国际性环境组织——绿色和平组织的创建,以及保护环境的政府机构和组织在世界范围内的不断增加,“地球日”都起了重要的作用。因此,“地球日”也就

成为了全球性的活动。

在第一个“地球日”成功举办后,各国的政府环保部门和民间环保组织纷纷成立,“地球日”也因此成为多个国家共同的环保纪念日。1990年4月22日,“地球日”成为第一个“国际地球日”,有全球141个国家、2亿人参与,成千上万的各项活动在全球各地展开。参与团体举办座谈会、游行、文化表演、清洁环境等活动来倡导“地球日”精神,并进一步向政府施压,期盼引发更多关注与政策的制定。据“地球日”国际协调员麦格拉尚说,140个国家的团体制定了与“地球日”有关的活动。这次活动的规模比20年前举行的首次“地球日”活动大得多,很多国家把星期日(1990年4月22日)定为举行一周活动的高潮。

1990年4月22日这天,全世界有数亿人身穿蓝绿两色服装参加了“地球日”活动。他们为纪念“地球日”20周年,开展了捡拾废纸和塑料袋、严禁随地倒垃圾的活动。这些活动的目的是提醒人们重视保护地球环境,制止生态恶化,使每一位地球居民都为悍卫地球环境、改善地球环境作出贡献。身穿蓝绿两色服装是表示为捍卫地球环境而行动的决心。

“地球日”这天,美国全国大约有1亿人把汽车放在家里不用,以防汽车排放出来的废气和其他有害的排放物散发到空气中去。在中国,当时李鹏总理在4月21日通过电视发表了环境问题讲话,中央电视台还播放了“只有一个地球”的专题报道。从此,我国每年都进行“地球日”的纪念宣传活动。 2000年2月末,海斯接受中国的邀请,来中国参加了“中国2000年‘地球日’中国行动”启动仪式。

在20世纪90年代末,盖洛²尼尔森和布鲁司²安德森(太阳能建筑师、作家、新罕布什尔州“地球日”组织者)共同为把“地球日”办成一个年度性、高水准的活动,创办了“美国地球日”组织。“地球日”网页于1995年开通。1999年“美国地球日”组织更名为“地球日网络”,成为一个面向全世界、推动每年“地球日”国际活动的组织。2000年的“地球日”,又是由盖洛²尼尔森和丹尼斯²海斯领导,所不同的是,这次他们在1970年“地球日”的基础上,加入了全球性的公众运动,并充分利用了网络这一新兴的信息手段,把各国人民的智慧和热情都聚集在了一起。在盖洛²尼尔森、丹尼斯²海斯和其战友们的努力下,今天的“地球日”已真正成为全地球的节日,提醒着人类保护地球、善待地球。 “地球日之父”:丹尼斯²海斯

人类历史上的第一个“地球日”,是1970年4月22日,由美国哈佛大学法学院的一个刚满25岁的学生——丹尼斯²海斯在校园发起和组织的。他被誉为“地球日之父”。

丹尼斯²海斯,生长在美国华盛顿州环境幽美的哥伦比亚河峡谷,他从小养成爱好大自然的个性。到了大学时代,他虽然读的是法律,却始终没有放弃对环境问题的关心。

第一个“地球日”活动之后,被称为“地球之父”的海斯先后到史密森尼恩研究所和伊利诺州政府任职,研究制定有关能源方面的政策。以后又得到美国当时的能源部长施莱辛格的赞赏,担任了由能源部经办的太阳能研究所的所长。海斯一直从事环保活动,1988年,他同朋友们一起讨论筹办纪念地球日20周年的活动。他的倡议很快得到了世界上大多数国家和联合国的支持。

鉴于丹尼斯²海斯在环保事业中所做出的重大贡献,他曾荣获Sierra Club、联邦野生动物协会、美国慈善协会、美国太阳能协会、远离战争组织和Interfaith Centerfor Corporate Responsibility的最高荣誉奖项。丹尼斯²海斯还荣获了1978年度,35岁以下杰弗逊最佳社会服务奖,还曾被形象杂志(Look Magazine)评为20世纪100个最具影响力的美国人之一,并被国家奥杜邦协会评为100个最杰出的环保人士之一。在2000年又被著名的时代周刊(Time Magazine)提名为100个“地球英雄”之一。

近年地球日中国主题

世界地球日没有国际统一的特定主题,中国参与世界地球日活动是从20世纪90年代开始的。在1990年4月22日地球日20周年之际,李鹏总理发表了电视讲话,支持地球日活动。从此,中国每年都进行地球日的纪念宣传活动。4月22日是“世界地球日”,每年的“地球日”没有国际统一的特定主题,它的总主题始终是“只有一个地球”;面对日益恶化的地球生态环境,我们每个人都有义务行动起来,用自己的行动来保护我们生存的家园。20世纪90年代以来,中国社会各界每年4月22日都要举办“世界地球日活动。”目前最主要的活动是由中国地质学会、国土资源部组织的纪念活动。每年中国纪念“世界地球日”,都要确定一个主题。以下为历年主题:

1974年 只有一个地球

1975年 人类居住

1976年 水:生命的重要源泉

1977年 关注臭氧层破坏、水土流失、土壤退化和滥伐森林

1978年 没有破坏的发展

1979年 为了儿童和未来——没有破坏的发展

1980年 新的10年,新的挑战——没有破坏的发展

1981年 保护地下水和人类食物链;防治有毒化学品污染

1982年 纪念斯德哥尔摩人类环境会议10周年——提高环境意识

1983年 管理和处置有害废弃物;防治酸雨破坏和提高能源利用率

1984年 沙漠化

1985年 青年、人口、环境

1986年 环境与和平

1987年 环境与居住

1988年 保护环境、持续发展、公众参与

1989年 警惕,全球变暖!

1990年 儿童与环境

1991年 气候变化——需要全球合作

1992年 只有一个地球——一齐关心,共同分享

1993年 贫穷与环境——摆脱恶性循环

1994年 一个地球,一个家庭

1995年 各国人民联合起来,创造更加美好的世界

1996年 我们的地球、居住地、家园

1997年 为了地球上的生命

1998年 为了地球上的生命——拯救我们的海洋

1999年 拯救地球,就是拯救未来

2000年 2000环境千年——行动起来吧!

2001年 世间万物,生命之网

2002年 让地球充满生机

2003年 善待地球,保护环境

2004年 善待地球,科学发展

2005年 善待地球--科学发展,构建和谐

2006年 善待地球--珍惜资源,持续发展

2007年 善待地球--从节约资源做起

2008年:“善待地球——从身边的小事做起”。

编辑本段|回到顶部自然灾害 1.地震

2.火山爆发

3.泥石流

4.水土流失

5.滑坡

6.龙卷风

7.台风

8.海啸

9.冰雹

10.暴风潮

11.生物灾害

12.旱灾

13.洪灾

14.寒潮

15.雪灾

16.沙尘暴

17酸雨

18水龙卷

编辑本段|回到顶部结构 直到16世纪哥白尼时代人们才明白地球只是一颗行星。

地球,当然不需要飞行器即可被观测,然而我们直到二十世纪才有了整个行星的地图。由空间拍到的图片应具有合理的重要性;举例来说,它们大大帮助了气象预报及暴风雨跟踪预报。它们真是与众不同的漂亮啊!

地球由于不同的化学成分与地震性质被分为不同的岩层(深度:千米):

0~40 地壳

40~ 400 Upper mantle 上地幔

400~ 650 Transition region 过渡区域

650~2700 Lower mantle 下地幔

2700~2890 D'' layer D

2890~5150 Outer core 外核

5150~6378 Inner core 内核

地壳的厚度不同,海洋处较薄,大洲下较厚。内核与地壳为实体;外核与地幔层为流体。不同的层由不连续断面分割开,这由地震数据得到;其中最有名的有数地壳与上地幔间的莫霍面-不连续断面了。

地球的大部分质量集中在地幔,剩下的大部分在地核;我们所居住的只是整体的一个小部分(下列数值³10e24千克):

大气 = 0.0000051

海洋 = 0.0014

地壳 = 0.026

地幔 = 4.043

外地核 = 1.835

内地核 = 0.09675

地核可能大多由铁构成(或镍/铁),虽然也有可能是一些较轻的物质。地核中心的温度可能高达7500K,比太阳表面还热;下地幔可能由硅,镁,氧和一些铁,钙,铝构成;上地幔大多由olivene,pyroxene(铁/镁硅酸盐),钙,铝构成。我们知道这些金属都来自于地震;上地幔的样本到达了地表,就像火山喷出岩浆,但地球的大部分还是难以接近的。地壳主要由石英(硅的氧化物)和类长石的其他硅酸盐构成。就整体看,地球的化学元素组成为:

34.6% 铁

29.5% 氧

15.2% 硅

12.7% 镁

2.4% 镍

1.9% 硫

0.05% 钛

地球是太阳系中密度最大的星体。

其他的类地行星可能也有相似的结构与物质组成,当然也有一些区别:月球至少有一个小内核;水星有一个超大内核(相当于它的直径);火星与月球的地幔要厚得多;月球与水星可能没有由不同化学元素构成的地壳;地球可能是唯一一颗有内核与外核的类地行星。值得注意的是,我们的有关行星内部构造的理论只是适用于地球。

不像其他类地行星,地球的地壳由几个实体板块构成,各自在热地幔上漂浮。理论上称它为板块说。它被描绘为具有两个过程:扩大和缩小。扩大发生在两个板块互相远离,下面涌上来的岩浆形成新地壳时。缩小发生在两个板块相互碰撞,其中一个的边缘部份伸入了另一个的下面,在炽热的地幔中受热而被破坏。在板块分界处有许多断层(比如加利福尼亚的San Andreas断层),大洲板

块间也有碰撞(如印度洋板块与亚欧板块)。目前有八大板块:

北美洲板块 - 北美洲,西北大西洋及格陵兰岛

南美洲板块 - 南美洲及西南大西洋

南极洲板块 - 南极洲及沿海

亚欧板块 - 东北大西洋,欧洲及除印度外的亚洲

非洲板块 - 非洲,东南大西洋及西印度洋

印度与澳洲板块 - 印度,澳大利亚,新西兰及大部分印度洋

Nazca板块 - 东太平洋及毗连南美部分地区

太平洋板块 - 大部分太平洋(及加利福尼亚南岸)

还有超过廿个小板块,如阿拉伯,菲律宾板块。地震经常在这些板块交界处发生。绘成图使得更容易地看清板块边界(上图)。

地球的表面十分年轻。在50亿年的短周期中(天文学标准),不断重复着侵蚀与构造的过程,地球的大部分表面被一次又一次地形成和破坏,这样一来,除去了大部分原始的地理痕迹(比如星体撞击产生的火山口)。这样一来,地球上早期历史都被清除了。地球至今已存在了45到46亿年,但已知的最古老的石头只有40亿年,连超过30亿年的石头都屈指可数。最早的生物化石则小于39亿年。没有任何确定的记录表明生命真正开始的时刻。71%的地球表面为水所覆盖。地球是行星中唯一一颗能在表面存在有液态水(虽然在土卫六的表面存在有液态乙烷与甲烷,木卫二的地下有液态水)。我们知道,液态水是生命存在的重要条件。海洋的热容量也是保持地球气温相对稳定的重要条件。液态水也造成了地表侵蚀及大洲气候的多样化,目前这是在太阳系中独一无二的过程(很早以前,火星上也许也有这种情况)。

地球的大气由77%的氮,21%氧,微量的氩、二氧化碳和水组成。地球初步形成时,大气中可能存在大量的二氧化碳,但是几乎都被组合成了碳酸盐岩石,少部分溶入了海洋或给活着的植物消耗了。现在板块构造与生物活动维持了大气中二氧化碳到其他场所再返回的不停流动。大气中稳定存在的少量二氧化碳通过温室效应对维持地表气温有极其深远的重要性。温室效应使平均表面气温提高了35℃(从冻人的-21℃升到了适人的14℃);没有它海洋将会结冰,而生命将不可能存在。 丰富的氧气的存在从化学观点看是很值得注意的。氧气是很活泼的气体,一般环境下易和其他物质快速结合。地球大气中的氧的产生和维持由生物活动完成。没有生命就没有充足的氧气。 地球与月球的交互作用使地球的自转每世纪减缓了2毫秒。当前的调查显示出大约在9亿年前,一年有481天又18小时。

地球有一个由内核电流形成的适度的磁场区。由于太阳风的交互作用,地球磁场和地球上层大气引发了极光现象(参见行星际介质)。这些因素的不定周期也引起了磁极在地表处相对地移动;北磁极现正在北加拿大。

编辑本段|回到顶部卫星 月球俗称月亮,也称太阴。在太阳系中是地球中唯一的天然卫星。月球是最明显的天然卫星的例子。在太阳系里,除水星和金星外,其他行星里面都有天然卫星。月球的年龄大约有46亿年。月球有壳、幔、核等分层结构。最外层的月壳平均厚度约为60-65公里。月壳下面到1000公里深度是月幔,它占了月球的大部分体积。月幔下面是月核,月核的温度约为1000度,很可能是熔融状态的。月球直径约3476公里,是地球的1/4。体积只有地球的1/49,质量约7350亿亿吨,相当于地球质量的1/81,月球表面的重力差不多是地球重力的1/6。

月球表面有阴暗的部分和明亮的区域。早期的天文学家在观察月球时,以为发暗的地区都有海水覆盖,因此把它们称为“海 ”。著名的有云海、湿海、静海等。而明亮的部分是山脉,那里层峦叠嶂,山脉纵横,到处都是星罗棋布的环形山。位于南极附近的贝利环形山直径295公里,可以把整个海南岛装进去。最深的山是牛顿环形山,深达8788米。除了环形山,月面上也有普通的山脉。高山和深谷叠现,别有一番风光。

月球的正面永远都是向着地球。另外一面,除了在月面边沿附近的区域因天秤动而中间可见以外,月球的背面绝大部分不能从地球看见。在没有探测器的年代,月球的背面一直是个未知的世界。月球背面的一大特色是几乎没有月海这种较暗的月面特征。而当人造探测器运行至月球背面时,它将无法与地球直接通讯。

月球约一个农历月绕地球运行一周,而每小时相对背景星空移动半度,即与月面的视直径相若。与其他卫星不同,月球的轨道平面较接近黄道面,而不是在地球的赤道面附近。

相对于背景星空,月球围绕地球运行(月球公转)一周所需时间称为一个恒星月;而新月与下一个新月(或两个相同月相之间)所需的时间称为一个朔望月。朔望月较恒星月长是因为地球在月球运行期间,本身也在绕日的轨道上前进了一段距离。

因为月球的自转周期和它的公转周期是完全一样的,地球上只能看见月球永远用同一面向着地球。自月球形成早期,地球便一直受到一个力矩的影响引致自转速度减慢,这个过程称为潮汐锁定。亦因此,部分地球自转的角动量转变为月球绕地公转的角动量,其结果是月球以每年约38毫米的速度远离地球。同时地球的自转越来越慢,一天的长度每年变长15微秒。

月球对地球所施的引力是潮汐现象的起因之一。月球围绕地球的轨道为同步轨道,所谓的同步自转并非严格。由于月球轨道为椭圆形,当月球处于近日点时,它的自转速度便追不上公转速度,因此我们可见月面东部达东经98度的地区,相反,当月处于远日点时,自转速度比公转速度快,因此我们可见月面西部达西经98度的地区。这种现象称为经天秤动。

严格来说,地球与月球围绕共同质心运转,共同质心距地心4700千米(即地球半径的2/3处)。由于共同质心在地球表面以下,地球围绕共同质心的运动好像是在“晃动”一般。从地球北极上空观看,地球和月球均以迎时针方向自转;而且月球也是以迎时针绕地运行;甚至地球也是以迎时针绕日公转的。

很多人不明白为甚么月球轨道倾角和月球自转轴倾角的数值会有这么大的变化。其实,轨道倾角是相对于中心天体(即地球)而言的,而自转轴倾角则相对于卫星。

月球的轨道平面(白道面)与黄道面(地球的公转轨道平面)保持着5.145 396°的夹角,而月球自转轴则与黄道面的法线成1.5424°的夹角。因为地球并非完美球形,而是在赤道较为隆起,因此白道面在不断进动(即与黄道的交点在顺时针转动),每6793.5天(18.5966年)完成一周。期间,白道面相对于地球赤道面(地球赤道面以23.45°倾斜于黄道面)的夹角会由28.60°(即23.45°+

5.15°) 至18.30°(即23.45°- 5.15°)之间变化。同样地,月球自转轴与白道面的夹角亦会介乎6.69°(即5.15° + 1.54°)及3.60°(即5.15° - 1.54°)。月球轨道这些变化又会反过来影响地球自转轴的倾角,使它出现±0.002 56°的摆动,称为章动。

白道面与黄道面的两个交点称为月交点--其中升交点(北点)指月球通过该点往黄道面以北;降交点(南点)则指月球通过该点往黄道以南。当新月刚好在月交点上时,便会发生日食;而当满月刚好在月交点上时,便会发生月食。

月球背面的结构和正面差异较大。月海所占面积较少,而环形山则较多。地形凹凸不平,起伏悬殊最长和最短的月球半径都位于背面,有的地方比月球平均半径长4公里,有的地方则短5公里(如范德格拉夫洼地)。背面未发现“质量瘤”。背面的月壳比正面厚,最厚处达150公里,而正面月壳厚度只有60公里左右。

月球本身并不发光,只反射太阳光。月球亮度随日、月间角距离和地、月间距离的改变而变化。平均亮度为太阳亮度的1/465000,亮度变化幅度从1/630000至1/375000。满月时亮度平均为 -12.7等(见)。它给大地的照度平均为0.22勒克斯,相当于100瓦电灯在距离21米处的照度。月面不是一个良好的反光体,它的平均反照率只有7%,其余93%均被月球吸收。月海的反照率更低,约为 6%。月面高地和环形山的反照率为17%,看上去山地比月海明亮。月球的亮度随而变化,下表以满月亮度为100,列出不同月龄时的亮度值。从中可以看出,满月时的亮度比上下弦要大十多倍。

由于月球上没有大气,再加上月面物质的热容量和导热率又很低,因而月球表面昼夜的温差很大。白天,在阳光垂直照射的地方温度高达+127℃;夜晚,温度可降低到-183℃。这些数值,只表示月球表面的温度。用射电观测可以测定月面土壤中的温度,这种测量表明,月面土壤中较深处的温度很少变化,这正是由于月面物质导热率低造成的。

从月震波的传播了解到月球也有壳、幔、核等分层结构。最外层的月壳厚60~65公里。月壳下面到1,000公里深度是月幔,占了月球大部分体积。月幔下面是月核。月核的温度约1,000℃,很可能是熔融的,据推测大概是由Fe-Ni-S和榴辉岩物质构成。

编辑本段|回到顶部宇宙环境 地球属于银河系太阳系.处在金星与火星之间.是太阳系中距离太阳第三近的行星.有一颗卫星.地球是迄今为止唯一具有生命个体的行星.

地球所处的宇宙环境是指以地球为中心的宇宙环境,可以从宏观和微观两个层面理解。宏观层面上是指地球在天体系统中所处的位置,即地月系—太阳系—银河系—总星系;微观层面上是指地球在太阳系中所处的位置。在无限的宇宙空间中,地球只不过是沧海之一粟,它处在永不止息的运

动中。

编辑本段|回到顶部内部环境 地面早已绝迹的动物,难道地球内部真的存在一个世外桃源吗? 远在1904年,美国加利福尼亚卡斯特山脉中一个叫布朗的采矿者,发现一处类似巨人住的人工地道。洞穴中有用巨大铜锁住的巨大房舍,墙壁间有黄金铸成的盾和从未见过的物品,墙壁上还画着奇怪的图画和文学。

第二次大战期间,美国陆军上士兵希伯在和侵缅日军战斗中与战友失散被遗留森林,有一天他无意中发现一处被巨石隐蔽的洞口。希伯冒险进入洞内,竟然发现里面被人工光源照得亮如白昼,俨然是一处庞大的地下城市。希伯正看得惊迷时,突然被抓住,一关就是4年,后寻机拼命逃出。据他说这个地下王国通向地面的隧道有7条,分别在世界其它一些地方开有秘密出入口。

1968年1月美国TG石油公司勘探队在土耳其西方大洞穴地下270米的地方,发现地底深邃的岩盘隧道,洞内高约4--5米,洞壁洞顶光滑明亮,显然为人工磨成。洞内到处是蛛网似的横洞,俨然一个令人扑朔迷离的迷宫。

无独有偶,数年前的一个夏夜,在中国贵州安顺县龙宫附近一座山半腰的洞内,射出一束强光,光柱呈桶形,直经足有4米,扫过500米田野,径直射向对面山坡,照得四周村庄田野通亮,时间持续有数分钟之久。据当地县志记载,清顺治年间亦曾发生过这种奇景。然而那个山洞当地人非常熟悉,洞内空无一物,那么强光源从何而来呢?

或许有人会问,若真的存在这个地下王国,那么他们为什么不回到阳光明媚的地面来生活呢?答案似乎只有一个:这个地下王国的居民长居在地下,或已演化成嗜热的硅生命体,已不可能再适应地面的生活。

有一点是肯定的,假设地下王国真的存在,那么他们必定掌握着高于地表人的科学技术,诸如飞碟等一系列所谓之谜也就不难获得答案了。且不说是否真的存在着一个地下王国,难道地球内部确是空的吗?不少地球物理专家认为,地球的现有重量是6兆吨的百万倍,假如地球内部不是空的,它的重量应远不止此。

地下王国之说,引发了科学界一场有关“地球空洞说”的激烈争论,结果如何,只能拭目以待。但是它启发了我们地表人,当地球气候发生骤变或其它地表灾难发生时,我们地表人转入地下或许比移居外星球更具现实意义。

编辑本段|回到顶部与人口的关系 从资源与人类的关系以及环境与人类的关系看,地球上的人口有一个数量限制:人口数量=适合人类居住的面积/个体生产和生活所需要的场地。用公式表示为:X =S/s=aS。其中X为人口的数量,S为适合人类居住的面积,s为每个个体生产和生活所需要的场地,a=1/s,为常数。上式X=aS可称之为人口定律。

从生产和生活所需的角度看,人类每个个体生产和生活所需要的场地为1500平方米。从人口定律公式X=aS和地球上适合人类居住的面积与每个个体生产和生活所需要的场地为1500平方米,可算出地球人口上限。

现代人口普查是指在国家统一规定的时间内,按照统一的项目、统一的表格和统一的填写方 法,对全国人口普遍地、逐户逐人地进行调查登记。它是一种有严密组织领导、有周密计划 、用科学方法进行的大规模社会调查。美国从1790年开始进行人口普查,是最早进行人口普 查的国家。

联合国人口普查的内容共有36个项目,包括人口迁移、家庭、生育率、死亡率、教育、经济 、住房等特征。有些国家的人口普查项目更多。例如,美国1980年有65项,加拿大1981年有 69项,印度1981年有40项,菲律宾1980年有41项。

人口普查信息具有法律效力。它的作用可概括为以下三方面:(1)制定政策,分配选举名额,拟 订建设计划。例如美国宪法规定每10年进行一次人口普查,以便准确分配众议院议席,按人 口比例确定每州议员人数和联邦政府给各州的经费。(2)用于研究人口的地区分布、生育、 死亡、增长、性别、年龄、城乡、职业、文化等特征。(3)通过普查得到的人口数量、分布 、年龄、性别等方面的信息,确定对住房设备、食物、衣着、文娱设施、医药等的供应、商 业网点的布设、商品和劳力的分配等。

人口普查信息仅是数字地球庞大信息家族的一个小小的成员。数字地球可将人口普查信息以 及其他地球空间数据融于一体,如将人口信息按部门、行政单元统一存档管理,并通过互联 网与地物空间特征(如地物影像)相呼应。通过数字地球,人们可浏览地球上某一国家或地区 的系列电子地图(如地形、水系、土地利用、人口分布等)和说明文字, 并获得有关人口及其 居住空间的详细信息,

包括总人口、男女比例、文化程度、民族、职业、经济、教育、商业 、医疗卫生、公共福利、就业和社会保险等。通过访问个人主页,可获得包括照片在内的详 细信息。

人口普查信息被广泛用于人口分析和预测。科学家通过解译高分辨率卫星影像可获得城市地 面建筑物信息,并估算出居民点的人口数量。卫星遥感、地理信息系统和互联网技术支撑下 的数字地球,具有强大的分析、评价和模拟能力。例如,美国加利福尼亚地区彭德尔顿的科 学家通过收集地形、土壤类型、年降雨量、植被、土地利用及土地所有权等信息,可模拟 出不同人口增长对生物多样性的影响。又如,通过人口普查数据,可模拟出城市人口的动态 增长、人口分布和人口迁移。像“三峡工程”这样的大型工程项目中的移民问题,都可借助 数字地球的网络功能、互操作以及地理信息系统技术来解决。

编辑本段|回到顶部纪录片地球 导演: Mark Linfield

主演: James Earl Jones

类型: 纪录片

上映日期: 2008年4月22日 美国

节目长度: 01:35:05

简介: 迪士尼首部自然纪录片《地球》

评论: They said maybe this is the last time we can see the earth such beautiful like the film.I wish that's not real. But more and more bad things are happening every minute.Can no one stop them?

译文:他们说,也许这是最后一次我们可以看到这样美丽的地球一样的电影.我希望这不是真实的。但是,越来越多的坏事情每分钟都在发生.有没有人能阻止他们?

影片内容简介

《 地球》是一部前所未有的吸引影迷眼球的大型记录片,它是BBC获奖电视连续剧《行星地球》的套拍片,片长90分钟,讲述了北极熊、大象和鲸鱼三个家庭的故事,展示了动物母亲与其新生幼儿之间特别的亲情。本片耗资800万英镑,由130名摄影师和技术人员历经五年拍摄而成,是史上最昂贵的纪录片。制作人员辗转62个国家,深入到偏远荒无人烟的地带,拍摄到了许多以前从未被人类所知的动物为生存而斗争的场景。....

电视系列片

一部由英国BBC和德国联合制作的关于地球、大自然的纪录片,用了将近3年的时间,通过对地球生命的神秘实录,通过表现大自然美丽景象与野生动物纯粹的生死之搏的真实纪录,再配合柏林爱乐乐团的美妙配乐,将地球的魅力在大银幕上毫无保留的完美呈现出来,旨在呼吁人们保护环境。

编辑本段|回到顶部常用数据表 地球质量: M = 5.9742³1027克

赤道半径 = 6378.140 公里

极半径 = 6356.755 公里

平均半径 = 6371.004 公里

赤道周长 = 40075.13 公里

纬度1°长度 = 111.133-0.559cos2φ 公里 (纬度φ处)

经度1°长度 = 111.413cosφ-0.094cos3φ 公里

标准大气压P0 = 760 毫米汞柱

大气中的声速(0度) V = 331.36 米/秒

大气中的声速(常温) V = 340米/秒

地球表面磁场强度 ~ 5³10-5 忒斯拉

北磁极:76°N, 101°W;

南磁极:66°S, 140°E

地球表面重力加速度(φ = 45°) : g = 9.8061 米/秒2

地球表面积 = 5.11³108平方公里

陆地面积 = 1.49³108平方公里 (占总表面积的29.2%)

海洋面积 = 3.62³108平方公里 (占总表面积的70.8%)

地球体积 = 1.0832³1012 立方公里

地球平均密度 = 5.518 克²厘米-3:

地球年龄 ~ 46 亿年

地球表面脱离速度 = 11.2 公里/秒

光行差常数(J2000) k = 20.49552

黄赤交角(J2000) ε = 23°26'21

黄径总岁差(J2000) P = 5029”.0966 (每世纪)

岁差周期 = 25800 年

平均轨道速度 = 29.79 公里/秒

地球圈层分为地球外圈和地球内圈两大部分。地球外圈可进一步划分为四个基本圈层,即大气圈、水圈、生物圈和岩石圈;地球内圈可进一步划分为三个基本圈层,即地幔圈、外核液体圈和固体内核圈。此外在地球外圈和地球内圈之间还存在一个软流圈,它是地球外圈与地球内圈之间的一个过渡圈层,位于地面以下平均深度约150公里处。这样,整个地球总共包括八个圈层,其中岩石圈、软流圈和地球内圈一起构成了所谓的固体地球。对于地球外圈中的大气圈、水圈和生物圈,以及岩石圈的表面,一般用直接观测和测量的方法进行研究。而地球内圈,目前主要用地球物理的方法,例如地震学、重力学和高精度现代空间测地技术观测的反演等进行研究。地球各圈层在分布上有一个显著的特点,即固体地球内部与表面之上的高空基本上是上下平行分布的,而在地球表面附近,各圈层则是相互渗透甚至相互重叠的,其中生物圈表现最为显著,其次是水圈 .

一、地球内部圈层划分依据

地球内部情况主要是通过地震波的记录间接地获得的。地震时,地球内部物质受到强烈冲击而产生波动,称为地震波。它主要分为纵波和横波。由于地球内部物质不均一,地震波在不同弹性、不同密度的介质中,其传播速度和通过的状况也就不一样。例如,纵波在固体、液体和气体介质中都可以传播,速度也较快;横波只能在固体介质中传播,速度比较

慢。地震波在地球深处传播时,如果传播速度突然发生变化,这突然发生变化所在的面,称为不连续面。根据不连续面的存在,人们间接地知道地球内部具有圈层结构。

二、地球内部圈层的划分

(一)地壳 地壳厚度各处不一,大陆地壳平均厚度约35公里,高大山系地区的地壳较厚,欧洲阿尔卑斯山的地壳厚达65公里,亚洲青藏高原某些地方超过70公里,而北京地壳厚度与大陆地壳平均厚度相当,约36公里。大洋地壳很薄,例如大西洋南部地壳厚度为12公里,北冰洋为10公里,有些地方的大洋地壳的厚度只有5公里左右。整个地壳平均厚度约17公里。一般认为,地壳上层由较轻的硅铝物质组成,叫硅铝层。大洋底部一般缺少硅铝层;下层由较重的硅镁物质组成,称为硅镁层。大洋地壳主要由硅镁层组成。

(二)地幔 介于地壳与地核之间,又称中间层。自地壳以下至2900公里深处。地幔一般分上下两层:从地壳最下层到1000—1200公里深处,除硅铝物质外,铁镁成分增加,类似橄榄岩,称为上地幔,又称橄榄岩带;下层为柔性物质,呈非晶质状态,大约是铬的氧化物和铁镍的硫化物,称为下地幔。地震资料说明,大致在70—150公里深处,震波传播速度减弱,形成低速带,自此向下直到1500公里深处的地幔物质呈塑性,可以产生对流,称为软流圈。这样,地幔又可分为上地幔、转变带和下地幔三层。了解地幔结构与物质状态,有助于解释岩浆活动的能量和物质来源,及地壳变动的内动力。

(三)地核 地幔以下大约5100公里处地震横波不能通过称为外核,推测外核物质是“液态”,但地核不仅温度很高,而且压力很大,因此这种液态应当是高温高压下的特殊物质状态;5100—6371公里是内核,在这里纵波可以转换为横波,物质状态具有刚性,为固态。整个地核以铁镍物质为主。 *三、地壳物质组成

(一)地壳中的化学元素 地壳中有90多种天然化学元素,其中氧、硅、铝、铁、钙、钠、钾、镁八大元素含量占地壳总重量的97%,其余元素只占3%。而地壳中的氧约占49%;硅约占26%。

(二)地壳中的矿物 地壳中的化学元素,随着地质作用的变化不断地进行化合和分解,形成各种具有一定物理—化学性质特征的矿物①。而矿物又是形成地壳岩石与矿石的基本单位。地壳中的矿物大约有3000种,但与形成岩石有关的矿物主要有:石英、正长石、斜长石、角闪石、辉石、云母、方解石等,这类矿物通常称为造岩矿物。

(三)主要造岩矿物特征 石英(SiO2),晶体为柱状或块状,透明或半透明,具有油脂光泽,

硬度7②,用刀刻划不产生条痕,为重要造岩矿物。长石,各类岩石都有,为含有钾、钠和钙的硅酸盐矿物,硬度6—6.5,柱状或板块状,正长石常为肉红色,斜长石为灰白色。角闪石,暗灰色或黑色,硬度5.5—6,常与石英、长石共生。云母,能沿解理方向揭成很薄的光滑薄片,发亮,透明,能弯曲,硬度2—3,具绝缘性。方解石(CaCO3),白色,透明或半透明,硬度3,用刀刻划可见条痕,遇稀盐酸反应起泡。

*四、地壳中的岩石

地壳是由各种岩石组成的,岩石是由各类矿物组成的。根据形成的条件与当时形成的环境,岩石可分三大类:

(一)岩浆岩 这类岩石当时形成时温度很高,所以又称为火成岩。岩浆是地球深处高温高压下复杂的硅酸盐熔融体,主要成分是二氧化硅、三氧化二铝以及其他氧化物。金属元素及其氧化物的含量虽然不多,却是形成各种矿物(床)的物质来源。岩浆在不同条件下形成各种岩石。地壳中的岩石主要由岩浆岩构成。常见的、分布最广的岩浆岩有以下几种:

1.花岗岩 花岗岩是大陆上分布非常广泛的岩石,主要由正长石、石英和云母等矿物于地壳层内冷凝而成,多较坚硬,呈肉红色,是良好的建筑材料。与花岗岩成分相同而喷出地表形成的岩石,叫流纹岩,流纹岩在形成时,一面流动,一面冷却凝固,产生流纹状结构,所以叫流纹岩。

2.闪长岩 闪长岩也是一种侵入岩,主要由斜长石、角闪石等矿物组成,灰色或灰绿色。与闪长岩矿物成分相同、喷出地表后冷却凝固成的岩石叫安山岩,因岩浆迅速冷却,挥发性物质迅速散逸,常形成气孔状结构。

3.辉长岩 辉长岩也是常见的岩石,属于侵入岩,主要由斜长石、辉石和少量角闪石等矿物组成。色深,与辉长岩矿物成分大致相同、喷出地表的叫玄武岩。因含铁、镁成分较多,故呈黑色或黑绿色,常具有气孔状结构。玄武岩分布很广。

(二)沉积岩 各类岩石经风化、侵蚀、搬运、沉积和成岩作用后形成的岩石,称为沉积岩。这类岩石大多是在海洋、河流、湖泊等水环境下形成,所以沉积岩又称水成岩。由于水量有大小,水体深浅不一,水动力条件与沉积环境不一,沉积岩一般具有成层现象,构成岩石的颗粒有粗细之分,层次有厚薄不同。地表分布最广的是沉积岩。由于沉积岩一般形成于常温常压环境,所以岩层里往往保留有生物遗迹——化石。常见的并且分布广泛的沉积岩有以下几种:

1.石灰岩 主要化学成分是碳酸钙,它原是海洋环境下的生物化学沉积。白色、灰白色或灰色。石灰岩是沉积岩中最常见的和地表分布最广泛的一类岩石。它可作为建筑材料,例如石灰、水泥等的原料。

2.砂岩 主要矿物成分是石英、长石。原是陆地上或浅海环境沉积。黄色、灰白色,岩石比较坚硬,是较好的建筑材料。用来做磨刀石的通常是砂岩。

3.页岩 主要矿物有高岭土、石英、云母等,浅海或陆相沉积。泥质结构,致密,不透水,是良好的隔水层。浅绿色或浅黄色。岩性软弱,容易风化、侵蚀。

4.砾岩 由大小不一的岩石碎块混杂在一起,被某种物质胶结而形成,一般为陆相沉积。砾岩成分有的简单,有的很复杂,有的砾岩的砾石带有棱角,有的则被磨得浑圆。这类岩石一般多孔隙、透水,常常是良好的含水层。

(三)变质岩 由岩浆岩、沉积岩,甚至包括变质岩本身,在高温、高压或动力挤压下,使原有岩石中的矿物产生重新排列、组合,并可能产生新的变质矿物,具有一定的结构特征的岩石,称为变质岩。例如,石灰岩经过变质作用,形成美丽的大理石,这是一种名贵的建筑材料,因云南省大理附近点苍山出产这种岩石而得名;砂岩经变质作用后,形成更为坚硬的石英岩;页通俗说地球形状是两极稍扁、赤道略鼓的椭球体。

下面是一个材料:

地球形状研究

(figure of the Earth) 在地球物理学中是指地球整体的几何形状,即大地水准面的形状。对地球形状的研究是大地测量学和固体地球物理学的一个共同课题,其目的是运用几何方法、重力方法和空间技术,确定地球的形状、大小、地面点的位置和重力场的精细结构。

地球的形状主要是由地球的引力和自转产生的离心力决定的。人类对地球形状的认识经历了很长的时间。初期认为天圆地方,以后逐渐认识到地球是个圆球。17世纪法国人发现地球不是正圆而是扁的,牛顿等根据力学原理,提出地球是扁球的理论,这一理论直到1739年才为南美和北欧的弧度测量所证实。其实,在此之前中国为编绘《皇舆全图》,就曾进行了大规模的弧度测量,并发现纬度愈高,经线的弧长愈长的事实。这同地球两极略扁,赤道隆起的理论相符。1849年英国的斯托克斯提出利用地面重力观测确定地球形状的理论。经过100多年来的努力,特别是人造卫星等先进技术的应用,使地球形状的测定越来越精确。地球非常接近于一个旋转椭球,其长半轴为6378136米,扁率为1∶298.257。

严格而言,地球形状应该是指地球表面的几何形状,但是地球自然表面极其复杂,所以从科学上,人们都把平均海水面及其延伸到大陆内部所构成的大地水准面作为地球形状的研究对象,因为大地水准面同地球表面形状十分接近,又具有明显的物理意义。但是大地水准面还不是一个简单的数字曲面,无法在这样的面上直接进行测量和数据处理。而从力学角度看,如果地球是一个旋转的均质流体,那么其平衡形状应该是一个旋转椭球体。于是人们进一步设想用一个合适的旋转椭球面来逼近大地水准面。要确定这一椭球,只需知道其形状参数(长半轴a,扁率α)和物理参数(地心引力常数GM和旋转角速度ω)即可。同大地水准面最为接近的椭球面称为平均地球椭球面。如果能确定大地水准面与该椭球面之间的偏差,亦即大地水准面与椭球面之间的差距(大地水准面差距N)和倾斜(垂线偏差θ),则大地水准面的形状可完全确定(图1)。

实际测量结果表明,虽然大地水准面很不规则,甚至南北两半球也不对称,北极略凸出,南极则偏平,夸张地说近似一梨形。但大地水准面同一个与它最相逼近的旋转椭球相比,最大偏离N值在100米左右,θ值一般在10〃之内。因此,可分两步确定大地水准面的形状:

①确定一个同它最逼近的旋转椭球面,即平均地球椭球;

②确定大地水准面同这个椭球的偏离。这是地球形状学研究中的两个主要课题。

确定地球形状的地面测量方法 利用地面观测来研究地球形状的经典方法是弧度测量,即根据地面上丈量的子午线弧长,推算出地球椭球的扁率。以后,人们广泛地用建立天文大地网的方法确定同局部大地水准面最相吻合的参考椭球。但是这些纯几何测量的方法都由于不能遍及整个地球而有很大的局限性。

大地水准面是一个重力等位面,而重力又是重力等位面的法向导数,这样便可以通过重力位把二者联系起来。事实上,地球重力场的不规则分布和大地水准面的起伏都同地球内部质量分布不均匀有关。地球形状研究和地球重力场研究是同一个问题的两个侧面。基于这一思想,斯托克斯提出了利用地面上的重力观测来确定大地水准面形状的问题(称为斯托克斯问题),并证明了以下定理:一个外表面为水准面的物体,若已知其外表面形状S,包围的质量M,旋转的角速度ω,即可唯一地求出该物体表面上及其外的重力位和重力值,即g=f(M,S,ω)和W=f(M,S,ω)。

在大地测量中,要求解决其逆问题,即根据在大地水准面上观测的重力来推求大地水准面的形状:

S=F(g,ω,M),

取大地水准面为边界面,解位论的第三边值问题,可以得出上述问题的解。大地水准面起伏可按下式计算:

式中

称为斯托克斯函数;R为地球平均半径;λ为平均重力;g0-λ0为大地水准面上的混合重力异常(见重力异常),dσ为微分球面元。

同样,垂线偏差θ的两个分量ξ(子午圈分量)和η(卯酉圈分量)为:

式中

称为韦宁²迈内兹(又译维宁²曼尼兹)函数;α为从计算点至流动面元的方位角。

这样,只要有全球重力异常资料,就可以利用上述公式进行数值积分,从而确定出大地水准面的形状。

但是,实际应用斯托克斯方法求解地球形状时,有很大的困难。由于大地水准面外部存在质量,为此而必须采取的去掉或移入内部的质量调整办法都会引起大地水准面的变形;此外,实际观测是在地球自然表面上进行的,为了构成大地水准面上的边值条件,就必须把地面观测值归算到大地水准面上。然而只有了解地面和大地水准面间的物质密度分布,才能进行调整和归算,但这正是我们至今还不能精确知道的。为此,苏联学者莫洛坚斯基提出一种新的理论,他避开了大地水准面的概念和地壳密度分布问题,而是直接取一个非常接近于地球表面的似地球表面(即地形表面)为边界面,用地面上的大地测量和重力测量数据直接确定出地球表面的真实形状:

S=f(gs,Ws,ω)

式中gs和Ws分别为地球表面上的重力和重力位,重力位可根据水准测量、重力测量和天文大地测量的结果求得。

莫洛坚斯基理论的基本思想是把边界条件建立在似地球表面(地形表面)上(图2)。地形表面上的一点(设为

Q)同地球表面上的一点(设为P)是一一对应的。而且通过以下条件唯一地被确定;Q点的大地经度、纬度应等于P点的天文经度和纬度;地球椭球在Q点的正常位应等于实际地球在P点的重力位。前者确定了Q点的平面位置,后者确定了垂直位置。显然,Q点相对于椭球的高度就定义为P点的正常高,而差距ζ=PQ为高程异常。与这样建立的边界条件相联系的是实际观测的地球表面重力值,它不涉及任何重力归算问题。这样解出的是地球表面点的高程异常,即地球自然表面到地形表面的差距。地形表面到平均地球椭球的差距(正常高Hr)已由水准测量得出,地球表面形状则完全确定。

为了和大地水准面的概念相联系,莫洛坚斯基还定义出一个与平均地球椭球相距为ζ的曲面,称之为似大地水准面。大地水准面与似大地水准面是十分接近的,在海洋上完全重合,在陆地稍差一些。由于似大地水准面不是水准面,因此它是没有物理意义的。显然,在不知道地球内部密度分布的情况下,仅依据地表面的测量资料,人们只能确定出似大地水准面(以及地球自然表面),而不是大地水准面的精确形状。

在研究地球表面形状的现代理论中,继莫洛坚斯基之后,瑞典的布耶哈默尔(A.Bjerhammer)提出了等效地球的概念和解法。等效地球是包围在实际地球表面之内的圆球,它具有同地球一样的角速度,绕共同的旋转轴旋转,并假定球内有某种物质分布,以致它在地表上和地表外所产生的引力位同实际地球的引力位完全相同。根据位论第三边值问题的唯一性,要满足上述条件,等效球面上的虚似重力异常同真实地球表面上的重力异常之间应满足泊松积分关系式。只要按地表面重力异常解泊松积分方程,求出等效面上的虚似重力异常,就可以由斯托克斯公式严密地求出地球表面上的高程异常和垂线偏差,同样无须知道地壳密度。

确定地球形状的近代空间技术 用地面测量资料研究地球形状,需要全球均匀分布的测量资料,这是很难实现的。近代空间技术的发展为研究地球形状提供了新手段。

利用空间技术来研究地球形状的方法分为两大类,第一类是几何方法。例如用干涉测量、激光测距和多普勒测量等方法,被观测的对象如射电源、月球或卫星等。它们在天球惯性参考系中的位置是能较准确地知道的,而天球惯性参考系和以地球质心为原点的地球参考系,可把岁差、章动和地球自转参数联系起来,从而得到地面点在地球参考系的位置。如果在地面所有点上都进行了这类测量,就可描绘出地球表面的真实形状。至于卫星测高方法,则是更直接的测定海洋面上大地水准面形状的方法。测高仪得出的是卫星到瞬时海洋面的距离,经过海潮、海流、风、气压和海水盐度等改正后,可归算为卫星至大地水准面的距离,再根据卫星的精密轨道参数,就可求得大地水准面差距N。第二类是动力方法。因为地球形状及其引力场的不规则,必然造成卫星轨道偏离其正常的椭圆轨道,亦即使卫星轨道产生摄动。观测卫星摄动可以得出地球形状及其引力场的有用信息。然而要获得较高的精度,则必须有全球分布的卫星观测站,并且对具有不同轨道倾角的卫星进行观测。

数字结果 为了描述地球的几何和物理特征,通常引进含有4个参数的平均地球椭球。这4个参数是赤道半径a,引力位二阶带谐系数J2,地心引力常数GM,以及地球自转的角速度ω。此处J2定义为:

式中C、A分别为绕旋转轴和赤道轴的主转动惯量。因此,J2是衡量地球动力扁率的物理量,它同地球的几何扁率有确定的关系。

平均地球椭球参数

表中列出不同年代测得的4个参数值,基本参数的选择反映了大地测量学的发展状况。起初由几何量表示扁率,现在可以从卫星轨道的摄动所确定的J2中推得。根据开普勒第三定律和对月球、星际间飞行器或深空探测器的观测求得GM,而根据多普勒效应、激光测距和测高技术可求得α值。所以现在基本参数的确定均依赖于空间技术。

为了表征大地水准面形状,已推导出相应的数学模型,到目前为止通常采用球谐函数的表示方法。

确定大地水准面形状,最好的方法是综合利用空间和地面的资料。空间技术中应包括卫星跟踪技术,测高仪测量,卫星-卫星跟踪技术,卫星激光测距;地面测量技术有重力测量、天文大地测量。目前的许多模型中以美国戈达德空间飞行中心的GEM模型为最佳。

近年来发射的吉奥斯-3和海洋卫星上装有雷达测高仪,这使得大地水准面模型大为改善。其中吉奥斯-3精度为0.5~0.8米,而海洋卫星达到10厘米级。目前依据这些资料求得的海洋大地水准面比GEM系统求得的大地水准面提高了一个数量级。

上图为从地球模型GEM-10求得的大地水准面差距图。从图中可以看出:①大地水准面是一个复杂不规则的曲面;②大地水准面同平均地球椭球面的差距在-105~+73米之间,如果在10-5的精度以内,可以把大地水准面视为椭球面;③大地水准面最大的凹陷是在印度半岛南端附近,大地水准面差距具有最大负值-105米,大地水准面位于地球椭球面之下,在新几内亚岛附近具有最大正值+73米。

对大地水准面起伏的分析表明,其大尺度形态同地壳表面的地形起伏之间没有明确的相关性,但是同构造形态有某种对应关系,即大地水准面至少能部分地反映出深部地幔的运动。 岩经变质作用后,形成比较致密而坚实的板岩或片岩,等等。

编辑词条

开放分类:宇宙、天文、行星、太阳系、八大行星

参考资料纪录片《地球》:http://yibeicha.org/oumeijilupian/2009/0702/2668.html 相关词条:木星 土星

词条评价: 共236人参与评价 权威65.3% 专业9.7% 丰富6.4% 不错4.7% 很差14.0%

【地球】

地球是太阳系八大行星之一,按离太阳由近及远的次序是第三颗,位于水星和金星之后;在八大行星中大小排行是第五。地球是唯一一个不是从希腊或罗马神话中得到的名字。Earth一词来自于古英语及日耳曼语。这里当然有许多其他语言的命名。在罗马神话中,地球女神叫Tellus——肥沃的土地(希腊语:Gaia,大地母亲) 。

【地球数据】

年龄:46亿岁。

公转周期:约365天。

回归年长度: 366.2422 天。

公转轨道:呈椭圆形。7月初为远日点,1月初为近日点。

自转周期:恒星日为23小时56分04秒。太阳日为24小时。

自转方向:自西向东。

黄赤交角:黄道面与赤道面的交角为 23°26’

极半径:是从地心到北极或南极的距离,大约3950英里(6356.8 公里)(两极的差极小,可以忽略)。

赤道半径:是从地心到赤道的距离,大约3963英里(6378.1 公里)。

平均半径:大约3959英里6371公里。这个数字是地心到地球表面所有各点距离的平均值。 体积:10832亿立方千米。

质量:5.9742³10^21 吨。

平均密度:5.515 g/cm^3

表面积:5.1亿平方千米。

海洋面积:3.617453亿平方千米(约71%)。

大气主要成份:氮(78%)、氧(21%)等其他物质(1%)。

地壳主要成份:氧(47%)、硅(28%)和铝(8%)。地壳中含量最多的金属:铝(8%) 表面大气压:1013.250毫帕,或760毫米高汞柱。

表面重力加速度:g=9.8m/s^2。

卫星(天然):1颗(月球)

编辑摘要

目录-[ 隐藏 ]

1质量

2主要成分

3温度

4运动

5方向

6自转的速度

7自转的周期

8自转的规律性

9结果

10地震波

11世界地球日

12自然灾害

13结构

14卫星

15宇宙环境

16内部环境

17与人口的关系

18纪录片地球

19常用数据表

编辑本段|回到顶部质量 卡文迪许认为地球的质量约为6³10^24千克

地球的赤道半径ra=6378137m≈6.378³10^6m,极半径rb=6356752m≈6.357³10^6m,扁率e=1/298.257,忽略地球非球形对称,平均半径r=6.371³10^6m。在赤道某海平面处重力加速度的值ga=9.780m/s^2,在北极某海平面处的重力加速度的值gb=9.832m/s^2,全球通用的重力加速度标准值g=9.807m/s^2,地球自转周期为23小时56分4秒(恒星日),即T=8.616³10^4s。

如果把地球看成质量均匀,并且忽略其它天体的影响,可以通过如下途径计算地球的质量。 方法一、在赤道上,地球对质量为m的物体的引力等于物体的重力与随地球自转的向心力之和,则为5.984*10^24 kg

方法二、在北极,不考虑地球自转,则计算为5.954*10^24kg

方法三、把地球看作质量均匀的球体,忽略自转影响,半径取平均值,重力加速度取标准值。则为5.965*10^24kg

月地距离r月地=3.884³10^8m,月球公转周期为27天7小时43分11秒(恒星日),即T月≈2.361³10^6s,月球和地球都看做质点,设月球质量为m月。

方法四、为6.220*10^24kg

编辑本段|回到顶部主要成分 直到十六世纪时,人类才了解到地球只不过是太阳系的另一颗行星而已。

地球不需太空探测船才可认识,但是直到二十世纪我们才真正勾勒出整个地球的全貌。 当然能自太空中取得它的影像是其中相当重要的因素,地球的太空影像对天气预测,尤其是台风 (飓风)的预报来说有很大的帮助,而且从太空看到的地球真是非常美丽、可爱。

由化学组成成分及地震震测特性来看,地球本体可以分成一些层圈,以下就标示出它们的名称与范围(深度,单位为公里):

0~40地壳40~2890地幔2890~5150外地核5150~6378内地核

固态的地壳厚度变化颇大,海洋地区的地壳较薄,平均约7公里厚;而大陆地壳就厚得多,平均约40公里厚; 地函也是固态,不过在它上部有一层极小部分熔融的区域,称为软流圈 ,其上的地函最顶部及整个地壳则称为岩石圈 ;至于外地核是液态而内地核是固态。 这些不同的层圈都是以不连续面为界,最有名的就是在地壳与地函之间的莫氏不连续面 (Mohorovicic discontinuity)。 地幔占有地球的主要质量,地核反而位居其次,至于我们生存的空间则只是整个地球极小的一部分而已 (质量,单位为10的24次方公斤: 大气层 = 0.0000051,海洋 = 0.0014 ,地壳 = 0.026,地幔 = 4.043,外地核= 1.835,内地核 = 0.09675,)

地核的主要成分是铁 (或铁镍质),不过也可能有一些较轻的物质存在,地心的温度约有7,500K,比太阳表面温度还高;下部地函的主要成分可能是矽、镁、氧,再加上一些铁、钙及铝;上部地幔主要成分则是橄榄石及辉石 (铁镁矽酸盐岩石),也有钙和铝。 以上这些瞭解都是来自于地震震测资料,虽然上部地幔的物质有时会因著火山喷出熔岩而被带到地表来,但是我们仍无法到达固体地球的主要部分,目前的海底钻探行动连地壳都尚未挖穿。 地壳的成分则主要是石英 (二氧化硅)及硅酸盐类如长石。 整体估算,地球化学组成的重量百分比为: 铁34.6% ,氧29.5% ,矽15.2% ,镁12.7% ,镍2.4% ,硫1.9% ,0.05% 钛 。

地球是平均密度最大的主要星体。

其它类地行星也都具有和地球类似的结构与组成,但其中也有一些差异: 月球核所占比例最小; 水星核的比例最大;而火星及月球的函相对较厚;月球和水星没有化学组成明显不同的函与壳之分;地球可能是唯一可再分成内外核的。不过请留意,我们对行星内部的认识主要是来自于理论推导,就算是对地球的也是如此。

有别于其它类地行星 ,地球的最外层 (包含地壳及上部地幔的顶端)被切分为数块,「飘浮」于其下的炽热地幔之上,这就是著名的板块构造运动学说 。 这个学说主要描述两种运动:拉张与隐没,前者发生在二个板块互相远离,其下的岩浆涌出而生成新地壳之处;后者则发生在二个板块互相碰撞,其中一方潜入另一方之下,终至消灭于地函中之处。 此外,也有一些板块边界是横向错开式的相对运动或两个大陆板块硬碰硬地撞在一起。

地球的表面很年轻 ,只有5亿年左右,以天文的角度来看确实很短。 侵蚀作用及构造地质运动不断地破坏又重建大部分的地表,因而几乎完全消灭了地表早期的地质记录,例如撞击坑 ,所以早期地球历史大部分都已不见踪迹。 地球约有45至46亿年老,然而目前已知最老的岩石只有大约40亿年前,而且老于30亿年的岩石非常罕见。 最老的生物化石不老于39亿年前,有关生命起源的关键时期则亳无记录。

地球表面积71%为水所覆盖,地球是太阳系唯一在表面可以拥有液态水的行星 (土卫六的表面有液态乙烷或甲烷,而藏于木卫二的表面之下则可能有液态水,不过地球表面有液态水仍是独一无二的)。 液态水是我们已知的生命型式所不可或缺的要素;而缘于水具有的大比热性质,海洋的热容积成为保持地球温度恒定的一大功臣;液态水还是陆地上侵蚀与风化作用的主要营力,这是太阳系中唯一有此作用的地方 (也许火星早期也曾有过这些作用,但现在已无)。

地球大气组成中,77%是氮气而21%是氧气,再来就是微量的氩、二氧化碳及水气。 地球初形成时的大气很可能大部分都是二氧化碳,不过它们大多已被碳酸盐类岩石给结合,其余的则是溶入海洋及被绿色植物耗尽;如今板块构造运动及生物作用是大气中二氧化碳消长的持续主控者。 大气中存在的水气及微量二氧化碳所造成的温室效应是维持地表温度极重要的作用,温室效应使地表温度提高了大约35℃,否则地表的平均温度将是酷寒的-21℃! 若没有水气及二氧化碳,海水会冻结,而我们已知的生命型式将无从开展。 此外,水气更是地球水循环及天气变化中不可或缺的要角。 自由氧的存在也是地球化学组成的一大特征,因为氧是活性很强的气体,照理说应该很容易就和大气中其它元素相化合,地球上的氧气完全是由生物作用产生及维持,若没有生命就不会有自由氧。

地球与月球之间的引潮力会使地球的自转周期每一世纪增加约2毫秒,最新研究显示在9亿年前一天只有18小时,而一年则有481天。地球拥有适度的磁场,推测磁场是起因于液态外地核中的电流。 由于太阳风与地球磁场及外层大气的交互作用, 极光于焉产生;而上述因素的不均衡造成磁极会在地表移动,目前磁北极位于加拿大北境。由于太阳风与地球磁场及外层大气的交互作用, 极光于焉产生;

地球磁场及其与太阳风的交互作用也造成了范艾伦辐射带 (Van Allen radiation belts),它是环绕著地球的成对环状带,外型就像是甜甜圈,由气体离子 (电浆) 组成,其外圈由海拔19,000公里延伸到41,000公里;内圈则介于海拔13,000至7,600公里之间。

编辑本段|回到顶部温度 地核的温度大约是4700℃,比太阳光球表面温度(6000℃)略低。地球上最高温度发生在闪电中。一次闪电能释放100亿焦耳的能量,达到30000℃,这温度是太阳表面温度的5倍,但比太阳核心的温度(1400万摄氏度)低多了。 地球上最冷的地方在哪里?北半球的“冷极”在西伯利亚东部的奥伊米亚康,1961年1月的最低温度是–71℃。南半球的“冷极”在南极大陆,1960年8月24日气温为–88.3℃。

编辑本段|回到顶部运动 地球绕地轴的旋转运动,叫做地球的自转。地轴的空间位置基本上是稳定的。它的北端始终指向北极星附近,地球自转的方向是自西向东;从北极上空看,呈逆时针方向旋转。地球自转一周的时间,约为23小时56分,这个时间称为恒星日;然而在地球上,我们感受到的一天是24小时,这是因为我们选取的参照物是太阳。由于地球自转的同时也在公转,这4分钟的差距正是地球自转和公转叠加的结果。天文学上把我们感受到的这1天的24小时称为太阳日。地球自转产生了昼夜更替。昼夜更替使地球表面的温度不至太高或太低,适合人类生存。

地球自转的平均角速度为每小时转动15度。在赤道上,自转的线速度是每秒465米。天空中各种天体东升西落的现象都是地球自转的反映。人们最早就是利用地球自转来计量时间的。研究表明,每经过一百年,地球自转速度减慢近2毫秒,它主要是由潮汐摩擦引起的,潮汐摩擦还使月球以每年3~4厘米的速度远离地球。地球自转速度除长期减慢外,还存在着时快时慢的不规则变化,引起这种变化的真正原因目前尚不清楚。

地球绕太阳的运动,叫做公转。从北极上空看是逆时针绕日公转。地球公转的路线叫做公转轨道。它是近正圆的椭圆轨道。太阳位于椭圆的两焦点之一。每年1月3日,地球运行到离太阳最近的位置,这个位置称为近日点;7月4日,地球运行到距离太阳最远的位置,这个位置称为远日点。地球公转的方向也是自西向东,运动的轨道长度是9.4亿千米,公转一周所需的时间为一年,约365.25天。地球公转的平均角速度约为每日1度,平均线速度每秒钟约为30千米。在近日点时公转速度较快,在远

日点时较慢。地球自转的平面叫赤道平面,地球公转轨道所在的平面叫黄道平面。两个面的交角称为黄赤交角,地轴垂直于赤道平面,与黄道平面交角为66°34',或者说赤道平面与黄道平面间的黄赤交角为23°26',由此可见地球是倾斜着身子围绕太阳公转的。

编辑本段|回到顶部方向 地球自转的方向是自西向东转,左向右转。从北极点上空看呈逆时针旋转,从南极点上空看呈顺时针旋转。

编辑本段|回到顶部自转的速度 地球自转的角速度大约是每小时15度;而表面每点的线速度随纬度而变化,是赤道的线速度乘以纬度的余弦。因此赤道的线速度是最大的,两极的线速度最小。

影响地球自转速度的因素

地球自转速度主要受三个因素影响,总体使其趋慢。

长期变化:日月对海洋的引潮力使地球自转速度变慢,令地球一日的长度每100年增加1.6毫秒,导致一年的日数减少,有证据表明泥盆纪中期的一年有400日。

季节变化:有周年变化和半年变化。周年变化是风的季节变化引起的,其振幅为20-25毫秒;半年变化是由日月引潮力对大气的潮汐作用引起,其振幅约为9毫秒。

不规则变化:地外和地内的物质或能量交换,如陨星体对地球的撞击等,时而使地球加速时而使地球变慢。

编辑本段|回到顶部自转的周期 地球自转的周期是一个行星日,目前其值为23时56分4秒。但是近年来地球自转周期在缓慢增加(即转速缓慢减小),导致需要对全球计时器进行调整,例如2005年12月31日全球钟表统一加一秒。这样的调整称为闰秒。

编辑本段|回到顶部自转的规律性 极移

地轴在地面上的运动,叫做极移。

极移的原因主要有两种,一种是地轴对于惯性轴偏离的结果,周期大约为14个月。另一种是大气季节性运行导致,其周期为一年。还有其他一些次要的原因,极移的振幅一般不超过15米。

极移的结果使地球上的纬度和经度发生变化。

进动

天极在天球上的位置的变化称为进动。

规律性

地轴的进动是一种圆锥形的运动,其规律性如下:

圆锥轴线垂直于地球公转轨道平面,指向黄道两极。

圆锥的半径是黄赤交角。

运动的方向是自东向西,即同地球自转的方向相反。

运动的速度是每年50秒点29,周期是25800年。

表现

表现为天极的周期性运动。

造成北极星的变迁。

地球赤道面和天赤道发生系统性的变化。

二分二至点每年在黄道上以50秒点29的速度西移。(岁差)

使回归年小于恒星年

原因

第一,地球形状

因为地球是一个明显的扁球体,所以隆起的部位所受的附加引力总是稍大于另一侧。二者之间的差值,总是存在于接近日月的一侧。

第二,黄赤交角

由于黄赤交角的存在,使得日月经常在赤道面以外对赤道隆起施加引力。这样上述引力差就成为一个力矩,使得地轴趋近黄轴,天极趋近黄极。

第三,地球自转

因为上述的引力差,给地球的自转的角动量增加了一个增量,使得地球的自转方向发生偏转。这就是地轴的进动,也就是岁差。

编辑本段|回到顶部结果 不同天体的周日运动

主条目:周日运动

不同纬度的周日运动

主条目:周日运动

水平运动的左右偏转

因为地球表面并不是在做匀速直线运动,所以会有惯性问题。在北半球往右偏,在南半球往左偏。这种使水平运动发生偏转的力,叫做地转偏向力,是一种视力

地球的旋转:

太阳光照射着万物,对万物有力的作用。假设设一个物体为一个单位1,那么太阳就对它有力的作用,就会把它往离太阳远处推射,就好像在说“你滚开”。那么太阳在推射1的单位的物体的时候,但是1不可能就向无限远走去。1还可以分为两个0.5。那么太阳就会对两个0.5推射,往太阳的无限远处推射。那么当推射到第一个0.5的时候,第一个0.5离太阳最近,那么第二个0.5也要求要被推射。那么第二个0.5也会跑到离太阳最近的地方,那么第一个0.5就会被挤开到远离太阳到第二个0.5的后面。再之后,第一个0.5又会到离太阳最近的地方....反复下去,物体产生旋转。当然0.5还可以再分为二个0.25。0.25又可以分.....分到无穷小。就这样产生了旋转,既地球的自转。

太阳光对地球的聚合力:

离太阳越近,物体会偏近圆.紧缩,也就是光子的数目越多,太阳光的密度越大,太阳光对周围的万物的“击打.推射”的频率越高,产生的力就越大。地球上的每一点接收的太阳光数目就越多,频率越高,地球就越不容易分开。随着距离太阳越来越远,物体会偏近分开;太阳光的密度变稀疏,太阳光对周围的万物“击打.推射”的频率减小,对地球的聚合力(紧缩力)减小,物体会慢慢偏近分散,地球分散从而造成每隔一段时间就要地震,造成板快运动的原因。例如火星有两个卫星,地球有一个卫星。在很久以前的地球有可能只有一个圆,而没有卫星即现在的月球。正如现在的金星,

水星没有卫星。在将来的地球也有可能有两个卫星。而随着地球距离太阳越来越远,时间的过去,地球的聚合力(紧缩力)减小,所以分出了月球,因为地球在不断的远离太阳。而且,气候会越来越冷,陆地上会积厚厚的冰层,正如现在的火星。在之后的地球,很可能还会分出个卫星。那么我们应该在将来地球开始分出第二个卫星之前就应该移民定居于火星。如果人类不能大规模的移民于火星,那么人类到地球分散出第二个卫星的时候之前的,人类几十亿年的一切文明都化为零。所以时间对于我们来说是非常重要的。随着地球离太阳的距离越来越远,地球一分为二。离太阳的距离再远,又分为三。再远,之后又变四,.....直到无穷小。正如现在的冥王星,有八个卫星,当然冥王星还可以再分,随时间的推移。那么在火星上还没发现新的生命前,地球上的每一棵小草都是神奇的,至少在太阳系中还没有发现生命。我们寄渺茫的希望于发现外星人的出现,到不如人类自己先移民于火星或者月球,到不如自己先成为外星人。

编辑本段|回到顶部地震波 我们能够用钻探了解地球内部,可现在最先进的钻探也不过能穿透10千米,如果把地球比作一个苹果的话,那就连表皮也没穿透.后来,科学家们终于知道了打开地心之门的钥匙——地震波.20世纪初,南斯拉夫地震学家莫霍洛维奇忽然醒悟:原来地震波就是我们探察地球内部的“超声波探测器”!地震波就是地震时发出的震波,它有横波和纵波两种,横波只能穿过固体物质,纵波却能在固体、液体和气体任一种物资中自由通行。通过的物质密度大,地震波的传播速度就快,物质密度小,传播速度就慢。莫霍洛维奇发现,在地下33千米的地方,地震波的传播速度猛然加快,这表明这里的物质密度很大,物质成分也与地球表面不同。地球内部这个深度,就被称为“莫霍面”。

1914年,美国地震学家古登堡又发现,在地下2900千米的地方,纵波速度突然减慢,横波则消失了,这说明,这里的物质密度变小了,固体物质也没有了,地球之心在这里,只剩下了液体和气体。这个深度,就被称为“古登堡面”。

地球之心之谜终于搞清楚了:地球从外到里,被莫霍面和古登堡面分成三层,分别是地壳、地幔和地核。地壳主要是岩石,地幔主要是含有镁、铁和硅的橄榄岩,地核,也就是真正的地球之心,主要是铁和镍,那里的温度超过2001摄氏度。

地球是人类的共同家园,然而,随着科学技术的发展和经济规模的扩大,全球环境状况在过去30年里持续恶化。有资料表明:自1860年有气象仪器观测记录以来,全球年平均温度升高了0.6摄氏度,最暖的13个年份均出现在1983年以后。20世纪80年代,全球每年受灾害影响的人数平均为1.47亿,而到了20世纪90年代,这一数字上升到2.11亿。目前世界上约有40%的人口严重缺水,如果这一趋势得不到遏制,在30年内,全球55%以上的人口将面临水荒。自然环境的恶化也严重威胁着地球上的野生物种。如今全球12%的鸟类和四分之一的哺乳动物濒临灭绝,而过度捕捞已导致三分之一的鱼类资源枯竭。

编辑本段|回到顶部世界地球日 1970年4月22日,在太平洋彼岸的美国,人们为了解决环境污染问题,自发地掀起了一场声势浩大的群众性的环境保护运动。在这一天,全美国有10000所中小学,2000所高等院校和2000个社区及各大团体共计2000多万人走上街头。人们高举着受污染的地球模型、巨画、图表,高喊着保护环境的口号,举行游行、集会和演讲,呼吁政府采取措施保护环境。这次规模盛大的活动,震撼朝野,促使美国政府于70年代初通过了水污染控制法和清洁大气法的修正案,并成立了美国环保局。从此,美国民间组织提议把4月22日定为“地球日”,它的影响随着环境保护的发展而日趋扩大并超过了美国国界,得到了世界许多国家的积极响应。

“地球日”诞生后20年中,世界范围内的环境保护工作取得了很大的进展。1972年6月,联合国召开了具有划时代意义的人类环境会议,1973年,成立了联合国环境规划署,许多国家都相继成立了环境保护管理机构和科研机构,环境保护被提上了许多国家政府的重要议事日程,环境问题受到了公众的普遍关注。在许多重大的国际会议上,环境保护也成为重要议题之一,如1989年召开的44届联大、不结盟国家首脑会议、英联邦国家首脑会议、西方七国首脑会议等都讨论了环境问题,并通过了关于环境保护的决议或宣言。这说明环境保护已成为国际政治和国际关系的“热点”。越来越多的政治家、科学家、有识之士都强烈的认识到,环境污染和生态恶化会使社会的文明进程将受到巨大阻碍。

由于环境保护问题已成为国际政治的热点,1990年的地球日活动组织者们决定,要使1990年的地球日成为第一个国际性的地球日,以促使全球亿万民众都来积极地参与环境保护。为此,地球日活动的组织者致函中国、美国、英国三国领导人和联合国秘书长,呼吁以1990年4月22日为目标日期,

举行高级环境会晤,为缔结多边条约奠定基础。呼吁各国采取积极步骤,达成协议,以阻止和扭转全球环境恶化趋势的发展。同时呼吁全世界愿意致力保护环境,进行国际合作的政府,在本国举办“地球日”20周年庆祝活动。

庆祝“地球日”20周年活动的呼吁,得到了五大洲各国和各种团体的热烈响应和积极支持。美国总统布什宣布,把4月22日作为美国法定的地球日,并呼吁公民积极投身到改善环境的行动中去。“1990年地球日”协调委员会主席丹尼斯²海斯事先拜访了伦敦、巴黎、罗马、波恩、布鲁塞尔等地的活动小组,并得到明确的答复,同意将1990年的地球日作为国际地球日进行纪念。亚洲、非洲、美洲的许多国家和地区也都积极响应,组织纪念活动。众多的国际组织,如国际学生联合会、青年发展与合作协会等,也都表示大力支持和积极参与“地球日”20周年纪念活动。1990年4月22日这一天,全世界有100多个国家举行了各种各样的环境保护宣传活动,参加入数达几亿人。从那时起,“地球日”才具有国际性,成为“世界地球日”。

世界地球日活动旨在唤起人类爱护地球、保护家园的意识,促进资源开发与环境保护的协调发展。中国从20世纪90年代起,每年4月22日都举办世界地球日活动。

世界地球日由来

人类历史上的第一个“地球日”,是1970年4月22日,由美国哈佛大学法学院的一个刚满25岁的学生——丹尼斯²海斯在校园发起和组织的。他在今天被誉为“地球日之父”。但实际上,“地球日”最早的发起人并不是他,而是美国一位政界名人盖洛²尼尔森(Gaylord Nelson)。1962年,美国威斯康星州民主党参议员盖洛²尼尔森,试图说服肯尼迪总统,进行一次保护野生动物的旅行,以引起公众注意保护环境,总统十分赞同这个建设性的意见。第二年秋,尼尔森与另外3名参议员,参加了总统这次“十分有意义的”旅行,这是一个良好的开端。尼尔森又酝酿设立“地球日”。1969年夏,尼尔森和参议院的同事成立了一个组织,制定了纪念全国性地球日活动计划,并于同年9月初宣布了这件事,包括要在全美各大校园内举办环境保护问题的讲演会等。美国人民的反应极为热烈,令尼尔森也始料未及。

1969年盖洛²尼尔森提议,在全国各大学校园内举办环保问题讲演会,海斯听到这个建议后,就设想在剑桥市举办一次环保的演讲会。于是,他前往首都华盛顿去会见了尼尔森。年轻的海斯谈了自己的设想,尼尔森喜出望外,立即表示愿意任用海斯,甚至鼓动他暂时停止学业,专心从事环保运动。于是,海斯毅然办理了停学手续。不久,他就把尼尔森的构想扩大,办起了一个在美国各地展开的大规模的社区性活动。举办“地球日”的主意就这样形成了。

他选定1970年4月22日(星期三)为第一个“地球日”。就在那年的4月22日,美国各地大约有2000万人参加了游行示威和演讲会。

美国的1970年正是个多事之秋,光纤织物被发明了出来,“阿波罗13号”的悲剧导致登月计划的失败,在南卡罗来纳州萨瓦那河附近一家核工厂发生泄露事故,当时的美国人,终日呼吸着豪华轿车的含铅尾气。工厂肆无忌惮地排放着浓烟和污水,却从不担心会被起诉或者是受到舆论的谴责。“环保人士”凤毛麟角,他们只是列在字典里的单词,却很少能够被人所重视。正是在这样的背景下,首次“地球日”取得了极大的成功。鉴于公众对环境保护的关心,美国国会在“地球日”这一天休会,近40名参众议员分别在当地集会上讲话。伦特²杜贝斯、保罗²埃利希以及拉尔夫²纳德等美国的名流发表了演讲,阐明集会的重要意义。25万人聚集在华盛顿特区,10万人向纽约市第五大街进军,支持这次活动。

据统计,这一天全美有2000多万人、1万所中小学、2000所高等院校和2000个社区以及各大团体参加了“地球日”活动。人们举行集会、游行和其他多种形式的宣传活动,高举着受污染的地球模型、巨幅画和图表,高呼口号,要求政府采取措施保护环境。1970年的首次“地球日”活动声势浩大,被誉为二战以来美国 规模最大的社会活动。这次活动标志着美国环保运动的崛起,并促使美国政府采取了一些治理环境污染的措施。

1970年4月22日的“地球日”活动,是人类有史以来第一次规模宏大的群众性环境保护运动。作为人类现代环保运动的开端,它推动了西方国家环境法规的建立。如美国就相继出台了清洁空气法、清洁水法和濒危动物保护法等法规;1970年的地球日还促成了美国国家环保局的成立,并在一定程度上促成了1972年联合国第一次人类环境会议在斯德哥尔摩的召开,有力地推动了世界环境保护事业的发展。1973年联合国环境规划署的成立,国际性环境组织——绿色和平组织的创建,以及保护环境的政府机构和组织在世界范围内的不断增加,“地球日”都起了重要的作用。因此,“地球日”也就

成为了全球性的活动。

在第一个“地球日”成功举办后,各国的政府环保部门和民间环保组织纷纷成立,“地球日”也因此成为多个国家共同的环保纪念日。1990年4月22日,“地球日”成为第一个“国际地球日”,有全球141个国家、2亿人参与,成千上万的各项活动在全球各地展开。参与团体举办座谈会、游行、文化表演、清洁环境等活动来倡导“地球日”精神,并进一步向政府施压,期盼引发更多关注与政策的制定。据“地球日”国际协调员麦格拉尚说,140个国家的团体制定了与“地球日”有关的活动。这次活动的规模比20年前举行的首次“地球日”活动大得多,很多国家把星期日(1990年4月22日)定为举行一周活动的高潮。

1990年4月22日这天,全世界有数亿人身穿蓝绿两色服装参加了“地球日”活动。他们为纪念“地球日”20周年,开展了捡拾废纸和塑料袋、严禁随地倒垃圾的活动。这些活动的目的是提醒人们重视保护地球环境,制止生态恶化,使每一位地球居民都为悍卫地球环境、改善地球环境作出贡献。身穿蓝绿两色服装是表示为捍卫地球环境而行动的决心。

“地球日”这天,美国全国大约有1亿人把汽车放在家里不用,以防汽车排放出来的废气和其他有害的排放物散发到空气中去。在中国,当时李鹏总理在4月21日通过电视发表了环境问题讲话,中央电视台还播放了“只有一个地球”的专题报道。从此,我国每年都进行“地球日”的纪念宣传活动。 2000年2月末,海斯接受中国的邀请,来中国参加了“中国2000年‘地球日’中国行动”启动仪式。

在20世纪90年代末,盖洛²尼尔森和布鲁司²安德森(太阳能建筑师、作家、新罕布什尔州“地球日”组织者)共同为把“地球日”办成一个年度性、高水准的活动,创办了“美国地球日”组织。“地球日”网页于1995年开通。1999年“美国地球日”组织更名为“地球日网络”,成为一个面向全世界、推动每年“地球日”国际活动的组织。2000年的“地球日”,又是由盖洛²尼尔森和丹尼斯²海斯领导,所不同的是,这次他们在1970年“地球日”的基础上,加入了全球性的公众运动,并充分利用了网络这一新兴的信息手段,把各国人民的智慧和热情都聚集在了一起。在盖洛²尼尔森、丹尼斯²海斯和其战友们的努力下,今天的“地球日”已真正成为全地球的节日,提醒着人类保护地球、善待地球。 “地球日之父”:丹尼斯²海斯

人类历史上的第一个“地球日”,是1970年4月22日,由美国哈佛大学法学院的一个刚满25岁的学生——丹尼斯²海斯在校园发起和组织的。他被誉为“地球日之父”。

丹尼斯²海斯,生长在美国华盛顿州环境幽美的哥伦比亚河峡谷,他从小养成爱好大自然的个性。到了大学时代,他虽然读的是法律,却始终没有放弃对环境问题的关心。

第一个“地球日”活动之后,被称为“地球之父”的海斯先后到史密森尼恩研究所和伊利诺州政府任职,研究制定有关能源方面的政策。以后又得到美国当时的能源部长施莱辛格的赞赏,担任了由能源部经办的太阳能研究所的所长。海斯一直从事环保活动,1988年,他同朋友们一起讨论筹办纪念地球日20周年的活动。他的倡议很快得到了世界上大多数国家和联合国的支持。

鉴于丹尼斯²海斯在环保事业中所做出的重大贡献,他曾荣获Sierra Club、联邦野生动物协会、美国慈善协会、美国太阳能协会、远离战争组织和Interfaith Centerfor Corporate Responsibility的最高荣誉奖项。丹尼斯²海斯还荣获了1978年度,35岁以下杰弗逊最佳社会服务奖,还曾被形象杂志(Look Magazine)评为20世纪100个最具影响力的美国人之一,并被国家奥杜邦协会评为100个最杰出的环保人士之一。在2000年又被著名的时代周刊(Time Magazine)提名为100个“地球英雄”之一。

近年地球日中国主题

世界地球日没有国际统一的特定主题,中国参与世界地球日活动是从20世纪90年代开始的。在1990年4月22日地球日20周年之际,李鹏总理发表了电视讲话,支持地球日活动。从此,中国每年都进行地球日的纪念宣传活动。4月22日是“世界地球日”,每年的“地球日”没有国际统一的特定主题,它的总主题始终是“只有一个地球”;面对日益恶化的地球生态环境,我们每个人都有义务行动起来,用自己的行动来保护我们生存的家园。20世纪90年代以来,中国社会各界每年4月22日都要举办“世界地球日活动。”目前最主要的活动是由中国地质学会、国土资源部组织的纪念活动。每年中国纪念“世界地球日”,都要确定一个主题。以下为历年主题:

1974年 只有一个地球

1975年 人类居住

1976年 水:生命的重要源泉

1977年 关注臭氧层破坏、水土流失、土壤退化和滥伐森林

1978年 没有破坏的发展

1979年 为了儿童和未来——没有破坏的发展

1980年 新的10年,新的挑战——没有破坏的发展

1981年 保护地下水和人类食物链;防治有毒化学品污染

1982年 纪念斯德哥尔摩人类环境会议10周年——提高环境意识

1983年 管理和处置有害废弃物;防治酸雨破坏和提高能源利用率

1984年 沙漠化

1985年 青年、人口、环境

1986年 环境与和平

1987年 环境与居住

1988年 保护环境、持续发展、公众参与

1989年 警惕,全球变暖!

1990年 儿童与环境

1991年 气候变化——需要全球合作

1992年 只有一个地球——一齐关心,共同分享

1993年 贫穷与环境——摆脱恶性循环

1994年 一个地球,一个家庭

1995年 各国人民联合起来,创造更加美好的世界

1996年 我们的地球、居住地、家园

1997年 为了地球上的生命

1998年 为了地球上的生命——拯救我们的海洋

1999年 拯救地球,就是拯救未来

2000年 2000环境千年——行动起来吧!

2001年 世间万物,生命之网

2002年 让地球充满生机

2003年 善待地球,保护环境

2004年 善待地球,科学发展

2005年 善待地球--科学发展,构建和谐

2006年 善待地球--珍惜资源,持续发展

2007年 善待地球--从节约资源做起

2008年:“善待地球——从身边的小事做起”。

编辑本段|回到顶部自然灾害 1.地震

2.火山爆发

3.泥石流

4.水土流失

5.滑坡

6.龙卷风

7.台风

8.海啸

9.冰雹

10.暴风潮

11.生物灾害

12.旱灾

13.洪灾

14.寒潮

15.雪灾

16.沙尘暴

17酸雨

18水龙卷

编辑本段|回到顶部结构 直到16世纪哥白尼时代人们才明白地球只是一颗行星。

地球,当然不需要飞行器即可被观测,然而我们直到二十世纪才有了整个行星的地图。由空间拍到的图片应具有合理的重要性;举例来说,它们大大帮助了气象预报及暴风雨跟踪预报。它们真是与众不同的漂亮啊!

地球由于不同的化学成分与地震性质被分为不同的岩层(深度:千米):

0~40 地壳

40~ 400 Upper mantle 上地幔

400~ 650 Transition region 过渡区域

650~2700 Lower mantle 下地幔

2700~2890 D'' layer D

2890~5150 Outer core 外核

5150~6378 Inner core 内核

地壳的厚度不同,海洋处较薄,大洲下较厚。内核与地壳为实体;外核与地幔层为流体。不同的层由不连续断面分割开,这由地震数据得到;其中最有名的有数地壳与上地幔间的莫霍面-不连续断面了。

地球的大部分质量集中在地幔,剩下的大部分在地核;我们所居住的只是整体的一个小部分(下列数值³10e24千克):

大气 = 0.0000051

海洋 = 0.0014

地壳 = 0.026

地幔 = 4.043

外地核 = 1.835

内地核 = 0.09675

地核可能大多由铁构成(或镍/铁),虽然也有可能是一些较轻的物质。地核中心的温度可能高达7500K,比太阳表面还热;下地幔可能由硅,镁,氧和一些铁,钙,铝构成;上地幔大多由olivene,pyroxene(铁/镁硅酸盐),钙,铝构成。我们知道这些金属都来自于地震;上地幔的样本到达了地表,就像火山喷出岩浆,但地球的大部分还是难以接近的。地壳主要由石英(硅的氧化物)和类长石的其他硅酸盐构成。就整体看,地球的化学元素组成为:

34.6% 铁

29.5% 氧

15.2% 硅

12.7% 镁

2.4% 镍

1.9% 硫

0.05% 钛

地球是太阳系中密度最大的星体。

其他的类地行星可能也有相似的结构与物质组成,当然也有一些区别:月球至少有一个小内核;水星有一个超大内核(相当于它的直径);火星与月球的地幔要厚得多;月球与水星可能没有由不同化学元素构成的地壳;地球可能是唯一一颗有内核与外核的类地行星。值得注意的是,我们的有关行星内部构造的理论只是适用于地球。

不像其他类地行星,地球的地壳由几个实体板块构成,各自在热地幔上漂浮。理论上称它为板块说。它被描绘为具有两个过程:扩大和缩小。扩大发生在两个板块互相远离,下面涌上来的岩浆形成新地壳时。缩小发生在两个板块相互碰撞,其中一个的边缘部份伸入了另一个的下面,在炽热的地幔中受热而被破坏。在板块分界处有许多断层(比如加利福尼亚的San Andreas断层),大洲板

块间也有碰撞(如印度洋板块与亚欧板块)。目前有八大板块:

北美洲板块 - 北美洲,西北大西洋及格陵兰岛

南美洲板块 - 南美洲及西南大西洋

南极洲板块 - 南极洲及沿海

亚欧板块 - 东北大西洋,欧洲及除印度外的亚洲

非洲板块 - 非洲,东南大西洋及西印度洋

印度与澳洲板块 - 印度,澳大利亚,新西兰及大部分印度洋

Nazca板块 - 东太平洋及毗连南美部分地区

太平洋板块 - 大部分太平洋(及加利福尼亚南岸)

还有超过廿个小板块,如阿拉伯,菲律宾板块。地震经常在这些板块交界处发生。绘成图使得更容易地看清板块边界(上图)。

地球的表面十分年轻。在50亿年的短周期中(天文学标准),不断重复着侵蚀与构造的过程,地球的大部分表面被一次又一次地形成和破坏,这样一来,除去了大部分原始的地理痕迹(比如星体撞击产生的火山口)。这样一来,地球上早期历史都被清除了。地球至今已存在了45到46亿年,但已知的最古老的石头只有40亿年,连超过30亿年的石头都屈指可数。最早的生物化石则小于39亿年。没有任何确定的记录表明生命真正开始的时刻。71%的地球表面为水所覆盖。地球是行星中唯一一颗能在表面存在有液态水(虽然在土卫六的表面存在有液态乙烷与甲烷,木卫二的地下有液态水)。我们知道,液态水是生命存在的重要条件。海洋的热容量也是保持地球气温相对稳定的重要条件。液态水也造成了地表侵蚀及大洲气候的多样化,目前这是在太阳系中独一无二的过程(很早以前,火星上也许也有这种情况)。

地球的大气由77%的氮,21%氧,微量的氩、二氧化碳和水组成。地球初步形成时,大气中可能存在大量的二氧化碳,但是几乎都被组合成了碳酸盐岩石,少部分溶入了海洋或给活着的植物消耗了。现在板块构造与生物活动维持了大气中二氧化碳到其他场所再返回的不停流动。大气中稳定存在的少量二氧化碳通过温室效应对维持地表气温有极其深远的重要性。温室效应使平均表面气温提高了35℃(从冻人的-21℃升到了适人的14℃);没有它海洋将会结冰,而生命将不可能存在。 丰富的氧气的存在从化学观点看是很值得注意的。氧气是很活泼的气体,一般环境下易和其他物质快速结合。地球大气中的氧的产生和维持由生物活动完成。没有生命就没有充足的氧气。 地球与月球的交互作用使地球的自转每世纪减缓了2毫秒。当前的调查显示出大约在9亿年前,一年有481天又18小时。

地球有一个由内核电流形成的适度的磁场区。由于太阳风的交互作用,地球磁场和地球上层大气引发了极光现象(参见行星际介质)。这些因素的不定周期也引起了磁极在地表处相对地移动;北磁极现正在北加拿大。

编辑本段|回到顶部卫星 月球俗称月亮,也称太阴。在太阳系中是地球中唯一的天然卫星。月球是最明显的天然卫星的例子。在太阳系里,除水星和金星外,其他行星里面都有天然卫星。月球的年龄大约有46亿年。月球有壳、幔、核等分层结构。最外层的月壳平均厚度约为60-65公里。月壳下面到1000公里深度是月幔,它占了月球的大部分体积。月幔下面是月核,月核的温度约为1000度,很可能是熔融状态的。月球直径约3476公里,是地球的1/4。体积只有地球的1/49,质量约7350亿亿吨,相当于地球质量的1/81,月球表面的重力差不多是地球重力的1/6。

月球表面有阴暗的部分和明亮的区域。早期的天文学家在观察月球时,以为发暗的地区都有海水覆盖,因此把它们称为“海 ”。著名的有云海、湿海、静海等。而明亮的部分是山脉,那里层峦叠嶂,山脉纵横,到处都是星罗棋布的环形山。位于南极附近的贝利环形山直径295公里,可以把整个海南岛装进去。最深的山是牛顿环形山,深达8788米。除了环形山,月面上也有普通的山脉。高山和深谷叠现,别有一番风光。

月球的正面永远都是向着地球。另外一面,除了在月面边沿附近的区域因天秤动而中间可见以外,月球的背面绝大部分不能从地球看见。在没有探测器的年代,月球的背面一直是个未知的世界。月球背面的一大特色是几乎没有月海这种较暗的月面特征。而当人造探测器运行至月球背面时,它将无法与地球直接通讯。

月球约一个农历月绕地球运行一周,而每小时相对背景星空移动半度,即与月面的视直径相若。与其他卫星不同,月球的轨道平面较接近黄道面,而不是在地球的赤道面附近。

相对于背景星空,月球围绕地球运行(月球公转)一周所需时间称为一个恒星月;而新月与下一个新月(或两个相同月相之间)所需的时间称为一个朔望月。朔望月较恒星月长是因为地球在月球运行期间,本身也在绕日的轨道上前进了一段距离。

因为月球的自转周期和它的公转周期是完全一样的,地球上只能看见月球永远用同一面向着地球。自月球形成早期,地球便一直受到一个力矩的影响引致自转速度减慢,这个过程称为潮汐锁定。亦因此,部分地球自转的角动量转变为月球绕地公转的角动量,其结果是月球以每年约38毫米的速度远离地球。同时地球的自转越来越慢,一天的长度每年变长15微秒。

月球对地球所施的引力是潮汐现象的起因之一。月球围绕地球的轨道为同步轨道,所谓的同步自转并非严格。由于月球轨道为椭圆形,当月球处于近日点时,它的自转速度便追不上公转速度,因此我们可见月面东部达东经98度的地区,相反,当月处于远日点时,自转速度比公转速度快,因此我们可见月面西部达西经98度的地区。这种现象称为经天秤动。

严格来说,地球与月球围绕共同质心运转,共同质心距地心4700千米(即地球半径的2/3处)。由于共同质心在地球表面以下,地球围绕共同质心的运动好像是在“晃动”一般。从地球北极上空观看,地球和月球均以迎时针方向自转;而且月球也是以迎时针绕地运行;甚至地球也是以迎时针绕日公转的。

很多人不明白为甚么月球轨道倾角和月球自转轴倾角的数值会有这么大的变化。其实,轨道倾角是相对于中心天体(即地球)而言的,而自转轴倾角则相对于卫星。

月球的轨道平面(白道面)与黄道面(地球的公转轨道平面)保持着5.145 396°的夹角,而月球自转轴则与黄道面的法线成1.5424°的夹角。因为地球并非完美球形,而是在赤道较为隆起,因此白道面在不断进动(即与黄道的交点在顺时针转动),每6793.5天(18.5966年)完成一周。期间,白道面相对于地球赤道面(地球赤道面以23.45°倾斜于黄道面)的夹角会由28.60°(即23.45°+

5.15°) 至18.30°(即23.45°- 5.15°)之间变化。同样地,月球自转轴与白道面的夹角亦会介乎6.69°(即5.15° + 1.54°)及3.60°(即5.15° - 1.54°)。月球轨道这些变化又会反过来影响地球自转轴的倾角,使它出现±0.002 56°的摆动,称为章动。

白道面与黄道面的两个交点称为月交点--其中升交点(北点)指月球通过该点往黄道面以北;降交点(南点)则指月球通过该点往黄道以南。当新月刚好在月交点上时,便会发生日食;而当满月刚好在月交点上时,便会发生月食。

月球背面的结构和正面差异较大。月海所占面积较少,而环形山则较多。地形凹凸不平,起伏悬殊最长和最短的月球半径都位于背面,有的地方比月球平均半径长4公里,有的地方则短5公里(如范德格拉夫洼地)。背面未发现“质量瘤”。背面的月壳比正面厚,最厚处达150公里,而正面月壳厚度只有60公里左右。

月球本身并不发光,只反射太阳光。月球亮度随日、月间角距离和地、月间距离的改变而变化。平均亮度为太阳亮度的1/465000,亮度变化幅度从1/630000至1/375000。满月时亮度平均为 -12.7等(见)。它给大地的照度平均为0.22勒克斯,相当于100瓦电灯在距离21米处的照度。月面不是一个良好的反光体,它的平均反照率只有7%,其余93%均被月球吸收。月海的反照率更低,约为 6%。月面高地和环形山的反照率为17%,看上去山地比月海明亮。月球的亮度随而变化,下表以满月亮度为100,列出不同月龄时的亮度值。从中可以看出,满月时的亮度比上下弦要大十多倍。

由于月球上没有大气,再加上月面物质的热容量和导热率又很低,因而月球表面昼夜的温差很大。白天,在阳光垂直照射的地方温度高达+127℃;夜晚,温度可降低到-183℃。这些数值,只表示月球表面的温度。用射电观测可以测定月面土壤中的温度,这种测量表明,月面土壤中较深处的温度很少变化,这正是由于月面物质导热率低造成的。

从月震波的传播了解到月球也有壳、幔、核等分层结构。最外层的月壳厚60~65公里。月壳下面到1,000公里深度是月幔,占了月球大部分体积。月幔下面是月核。月核的温度约1,000℃,很可能是熔融的,据推测大概是由Fe-Ni-S和榴辉岩物质构成。

编辑本段|回到顶部宇宙环境 地球属于银河系太阳系.处在金星与火星之间.是太阳系中距离太阳第三近的行星.有一颗卫星.地球是迄今为止唯一具有生命个体的行星.

地球所处的宇宙环境是指以地球为中心的宇宙环境,可以从宏观和微观两个层面理解。宏观层面上是指地球在天体系统中所处的位置,即地月系—太阳系—银河系—总星系;微观层面上是指地球在太阳系中所处的位置。在无限的宇宙空间中,地球只不过是沧海之一粟,它处在永不止息的运

动中。

编辑本段|回到顶部内部环境 地面早已绝迹的动物,难道地球内部真的存在一个世外桃源吗? 远在1904年,美国加利福尼亚卡斯特山脉中一个叫布朗的采矿者,发现一处类似巨人住的人工地道。洞穴中有用巨大铜锁住的巨大房舍,墙壁间有黄金铸成的盾和从未见过的物品,墙壁上还画着奇怪的图画和文学。

第二次大战期间,美国陆军上士兵希伯在和侵缅日军战斗中与战友失散被遗留森林,有一天他无意中发现一处被巨石隐蔽的洞口。希伯冒险进入洞内,竟然发现里面被人工光源照得亮如白昼,俨然是一处庞大的地下城市。希伯正看得惊迷时,突然被抓住,一关就是4年,后寻机拼命逃出。据他说这个地下王国通向地面的隧道有7条,分别在世界其它一些地方开有秘密出入口。

1968年1月美国TG石油公司勘探队在土耳其西方大洞穴地下270米的地方,发现地底深邃的岩盘隧道,洞内高约4--5米,洞壁洞顶光滑明亮,显然为人工磨成。洞内到处是蛛网似的横洞,俨然一个令人扑朔迷离的迷宫。

无独有偶,数年前的一个夏夜,在中国贵州安顺县龙宫附近一座山半腰的洞内,射出一束强光,光柱呈桶形,直经足有4米,扫过500米田野,径直射向对面山坡,照得四周村庄田野通亮,时间持续有数分钟之久。据当地县志记载,清顺治年间亦曾发生过这种奇景。然而那个山洞当地人非常熟悉,洞内空无一物,那么强光源从何而来呢?

或许有人会问,若真的存在这个地下王国,那么他们为什么不回到阳光明媚的地面来生活呢?答案似乎只有一个:这个地下王国的居民长居在地下,或已演化成嗜热的硅生命体,已不可能再适应地面的生活。

有一点是肯定的,假设地下王国真的存在,那么他们必定掌握着高于地表人的科学技术,诸如飞碟等一系列所谓之谜也就不难获得答案了。且不说是否真的存在着一个地下王国,难道地球内部确是空的吗?不少地球物理专家认为,地球的现有重量是6兆吨的百万倍,假如地球内部不是空的,它的重量应远不止此。

地下王国之说,引发了科学界一场有关“地球空洞说”的激烈争论,结果如何,只能拭目以待。但是它启发了我们地表人,当地球气候发生骤变或其它地表灾难发生时,我们地表人转入地下或许比移居外星球更具现实意义。

编辑本段|回到顶部与人口的关系 从资源与人类的关系以及环境与人类的关系看,地球上的人口有一个数量限制:人口数量=适合人类居住的面积/个体生产和生活所需要的场地。用公式表示为:X =S/s=aS。其中X为人口的数量,S为适合人类居住的面积,s为每个个体生产和生活所需要的场地,a=1/s,为常数。上式X=aS可称之为人口定律。

从生产和生活所需的角度看,人类每个个体生产和生活所需要的场地为1500平方米。从人口定律公式X=aS和地球上适合人类居住的面积与每个个体生产和生活所需要的场地为1500平方米,可算出地球人口上限。

现代人口普查是指在国家统一规定的时间内,按照统一的项目、统一的表格和统一的填写方 法,对全国人口普遍地、逐户逐人地进行调查登记。它是一种有严密组织领导、有周密计划 、用科学方法进行的大规模社会调查。美国从1790年开始进行人口普查,是最早进行人口普 查的国家。

联合国人口普查的内容共有36个项目,包括人口迁移、家庭、生育率、死亡率、教育、经济 、住房等特征。有些国家的人口普查项目更多。例如,美国1980年有65项,加拿大1981年有 69项,印度1981年有40项,菲律宾1980年有41项。

人口普查信息具有法律效力。它的作用可概括为以下三方面:(1)制定政策,分配选举名额,拟 订建设计划。例如美国宪法规定每10年进行一次人口普查,以便准确分配众议院议席,按人 口比例确定每州议员人数和联邦政府给各州的经费。(2)用于研究人口的地区分布、生育、 死亡、增长、性别、年龄、城乡、职业、文化等特征。(3)通过普查得到的人口数量、分布 、年龄、性别等方面的信息,确定对住房设备、食物、衣着、文娱设施、医药等的供应、商 业网点的布设、商品和劳力的分配等。

人口普查信息仅是数字地球庞大信息家族的一个小小的成员。数字地球可将人口普查信息以 及其他地球空间数据融于一体,如将人口信息按部门、行政单元统一存档管理,并通过互联 网与地物空间特征(如地物影像)相呼应。通过数字地球,人们可浏览地球上某一国家或地区 的系列电子地图(如地形、水系、土地利用、人口分布等)和说明文字, 并获得有关人口及其 居住空间的详细信息,

包括总人口、男女比例、文化程度、民族、职业、经济、教育、商业 、医疗卫生、公共福利、就业和社会保险等。通过访问个人主页,可获得包括照片在内的详 细信息。

人口普查信息被广泛用于人口分析和预测。科学家通过解译高分辨率卫星影像可获得城市地 面建筑物信息,并估算出居民点的人口数量。卫星遥感、地理信息系统和互联网技术支撑下 的数字地球,具有强大的分析、评价和模拟能力。例如,美国加利福尼亚地区彭德尔顿的科 学家通过收集地形、土壤类型、年降雨量、植被、土地利用及土地所有权等信息,可模拟 出不同人口增长对生物多样性的影响。又如,通过人口普查数据,可模拟出城市人口的动态 增长、人口分布和人口迁移。像“三峡工程”这样的大型工程项目中的移民问题,都可借助 数字地球的网络功能、互操作以及地理信息系统技术来解决。

编辑本段|回到顶部纪录片地球 导演: Mark Linfield

主演: James Earl Jones

类型: 纪录片

上映日期: 2008年4月22日 美国

节目长度: 01:35:05

简介: 迪士尼首部自然纪录片《地球》

评论: They said maybe this is the last time we can see the earth such beautiful like the film.I wish that's not real. But more and more bad things are happening every minute.Can no one stop them?

译文:他们说,也许这是最后一次我们可以看到这样美丽的地球一样的电影.我希望这不是真实的。但是,越来越多的坏事情每分钟都在发生.有没有人能阻止他们?

影片内容简介

《 地球》是一部前所未有的吸引影迷眼球的大型记录片,它是BBC获奖电视连续剧《行星地球》的套拍片,片长90分钟,讲述了北极熊、大象和鲸鱼三个家庭的故事,展示了动物母亲与其新生幼儿之间特别的亲情。本片耗资800万英镑,由130名摄影师和技术人员历经五年拍摄而成,是史上最昂贵的纪录片。制作人员辗转62个国家,深入到偏远荒无人烟的地带,拍摄到了许多以前从未被人类所知的动物为生存而斗争的场景。....

电视系列片

一部由英国BBC和德国联合制作的关于地球、大自然的纪录片,用了将近3年的时间,通过对地球生命的神秘实录,通过表现大自然美丽景象与野生动物纯粹的生死之搏的真实纪录,再配合柏林爱乐乐团的美妙配乐,将地球的魅力在大银幕上毫无保留的完美呈现出来,旨在呼吁人们保护环境。

编辑本段|回到顶部常用数据表 地球质量: M = 5.9742³1027克

赤道半径 = 6378.140 公里

极半径 = 6356.755 公里

平均半径 = 6371.004 公里

赤道周长 = 40075.13 公里

纬度1°长度 = 111.133-0.559cos2φ 公里 (纬度φ处)

经度1°长度 = 111.413cosφ-0.094cos3φ 公里

标准大气压P0 = 760 毫米汞柱

大气中的声速(0度) V = 331.36 米/秒

大气中的声速(常温) V = 340米/秒

地球表面磁场强度 ~ 5³10-5 忒斯拉

北磁极:76°N, 101°W;

南磁极:66°S, 140°E

地球表面重力加速度(φ = 45°) : g = 9.8061 米/秒2

地球表面积 = 5.11³108平方公里

陆地面积 = 1.49³108平方公里 (占总表面积的29.2%)

海洋面积 = 3.62³108平方公里 (占总表面积的70.8%)

地球体积 = 1.0832³1012 立方公里

地球平均密度 = 5.518 克²厘米-3:

地球年龄 ~ 46 亿年

地球表面脱离速度 = 11.2 公里/秒

光行差常数(J2000) k = 20.49552

黄赤交角(J2000) ε = 23°26'21

黄径总岁差(J2000) P = 5029”.0966 (每世纪)

岁差周期 = 25800 年

平均轨道速度 = 29.79 公里/秒

地球圈层分为地球外圈和地球内圈两大部分。地球外圈可进一步划分为四个基本圈层,即大气圈、水圈、生物圈和岩石圈;地球内圈可进一步划分为三个基本圈层,即地幔圈、外核液体圈和固体内核圈。此外在地球外圈和地球内圈之间还存在一个软流圈,它是地球外圈与地球内圈之间的一个过渡圈层,位于地面以下平均深度约150公里处。这样,整个地球总共包括八个圈层,其中岩石圈、软流圈和地球内圈一起构成了所谓的固体地球。对于地球外圈中的大气圈、水圈和生物圈,以及岩石圈的表面,一般用直接观测和测量的方法进行研究。而地球内圈,目前主要用地球物理的方法,例如地震学、重力学和高精度现代空间测地技术观测的反演等进行研究。地球各圈层在分布上有一个显著的特点,即固体地球内部与表面之上的高空基本上是上下平行分布的,而在地球表面附近,各圈层则是相互渗透甚至相互重叠的,其中生物圈表现最为显著,其次是水圈 .

一、地球内部圈层划分依据

地球内部情况主要是通过地震波的记录间接地获得的。地震时,地球内部物质受到强烈冲击而产生波动,称为地震波。它主要分为纵波和横波。由于地球内部物质不均一,地震波在不同弹性、不同密度的介质中,其传播速度和通过的状况也就不一样。例如,纵波在固体、液体和气体介质中都可以传播,速度也较快;横波只能在固体介质中传播,速度比较

慢。地震波在地球深处传播时,如果传播速度突然发生变化,这突然发生变化所在的面,称为不连续面。根据不连续面的存在,人们间接地知道地球内部具有圈层结构。

二、地球内部圈层的划分

(一)地壳 地壳厚度各处不一,大陆地壳平均厚度约35公里,高大山系地区的地壳较厚,欧洲阿尔卑斯山的地壳厚达65公里,亚洲青藏高原某些地方超过70公里,而北京地壳厚度与大陆地壳平均厚度相当,约36公里。大洋地壳很薄,例如大西洋南部地壳厚度为12公里,北冰洋为10公里,有些地方的大洋地壳的厚度只有5公里左右。整个地壳平均厚度约17公里。一般认为,地壳上层由较轻的硅铝物质组成,叫硅铝层。大洋底部一般缺少硅铝层;下层由较重的硅镁物质组成,称为硅镁层。大洋地壳主要由硅镁层组成。

(二)地幔 介于地壳与地核之间,又称中间层。自地壳以下至2900公里深处。地幔一般分上下两层:从地壳最下层到1000—1200公里深处,除硅铝物质外,铁镁成分增加,类似橄榄岩,称为上地幔,又称橄榄岩带;下层为柔性物质,呈非晶质状态,大约是铬的氧化物和铁镍的硫化物,称为下地幔。地震资料说明,大致在70—150公里深处,震波传播速度减弱,形成低速带,自此向下直到1500公里深处的地幔物质呈塑性,可以产生对流,称为软流圈。这样,地幔又可分为上地幔、转变带和下地幔三层。了解地幔结构与物质状态,有助于解释岩浆活动的能量和物质来源,及地壳变动的内动力。

(三)地核 地幔以下大约5100公里处地震横波不能通过称为外核,推测外核物质是“液态”,但地核不仅温度很高,而且压力很大,因此这种液态应当是高温高压下的特殊物质状态;5100—6371公里是内核,在这里纵波可以转换为横波,物质状态具有刚性,为固态。整个地核以铁镍物质为主。 *三、地壳物质组成

(一)地壳中的化学元素 地壳中有90多种天然化学元素,其中氧、硅、铝、铁、钙、钠、钾、镁八大元素含量占地壳总重量的97%,其余元素只占3%。而地壳中的氧约占49%;硅约占26%。

(二)地壳中的矿物 地壳中的化学元素,随着地质作用的变化不断地进行化合和分解,形成各种具有一定物理—化学性质特征的矿物①。而矿物又是形成地壳岩石与矿石的基本单位。地壳中的矿物大约有3000种,但与形成岩石有关的矿物主要有:石英、正长石、斜长石、角闪石、辉石、云母、方解石等,这类矿物通常称为造岩矿物。

(三)主要造岩矿物特征 石英(SiO2),晶体为柱状或块状,透明或半透明,具有油脂光泽,

硬度7②,用刀刻划不产生条痕,为重要造岩矿物。长石,各类岩石都有,为含有钾、钠和钙的硅酸盐矿物,硬度6—6.5,柱状或板块状,正长石常为肉红色,斜长石为灰白色。角闪石,暗灰色或黑色,硬度5.5—6,常与石英、长石共生。云母,能沿解理方向揭成很薄的光滑薄片,发亮,透明,能弯曲,硬度2—3,具绝缘性。方解石(CaCO3),白色,透明或半透明,硬度3,用刀刻划可见条痕,遇稀盐酸反应起泡。

*四、地壳中的岩石

地壳是由各种岩石组成的,岩石是由各类矿物组成的。根据形成的条件与当时形成的环境,岩石可分三大类:

(一)岩浆岩 这类岩石当时形成时温度很高,所以又称为火成岩。岩浆是地球深处高温高压下复杂的硅酸盐熔融体,主要成分是二氧化硅、三氧化二铝以及其他氧化物。金属元素及其氧化物的含量虽然不多,却是形成各种矿物(床)的物质来源。岩浆在不同条件下形成各种岩石。地壳中的岩石主要由岩浆岩构成。常见的、分布最广的岩浆岩有以下几种:

1.花岗岩 花岗岩是大陆上分布非常广泛的岩石,主要由正长石、石英和云母等矿物于地壳层内冷凝而成,多较坚硬,呈肉红色,是良好的建筑材料。与花岗岩成分相同而喷出地表形成的岩石,叫流纹岩,流纹岩在形成时,一面流动,一面冷却凝固,产生流纹状结构,所以叫流纹岩。

2.闪长岩 闪长岩也是一种侵入岩,主要由斜长石、角闪石等矿物组成,灰色或灰绿色。与闪长岩矿物成分相同、喷出地表后冷却凝固成的岩石叫安山岩,因岩浆迅速冷却,挥发性物质迅速散逸,常形成气孔状结构。

3.辉长岩 辉长岩也是常见的岩石,属于侵入岩,主要由斜长石、辉石和少量角闪石等矿物组成。色深,与辉长岩矿物成分大致相同、喷出地表的叫玄武岩。因含铁、镁成分较多,故呈黑色或黑绿色,常具有气孔状结构。玄武岩分布很广。

(二)沉积岩 各类岩石经风化、侵蚀、搬运、沉积和成岩作用后形成的岩石,称为沉积岩。这类岩石大多是在海洋、河流、湖泊等水环境下形成,所以沉积岩又称水成岩。由于水量有大小,水体深浅不一,水动力条件与沉积环境不一,沉积岩一般具有成层现象,构成岩石的颗粒有粗细之分,层次有厚薄不同。地表分布最广的是沉积岩。由于沉积岩一般形成于常温常压环境,所以岩层里往往保留有生物遗迹——化石。常见的并且分布广泛的沉积岩有以下几种:

1.石灰岩 主要化学成分是碳酸钙,它原是海洋环境下的生物化学沉积。白色、灰白色或灰色。石灰岩是沉积岩中最常见的和地表分布最广泛的一类岩石。它可作为建筑材料,例如石灰、水泥等的原料。

2.砂岩 主要矿物成分是石英、长石。原是陆地上或浅海环境沉积。黄色、灰白色,岩石比较坚硬,是较好的建筑材料。用来做磨刀石的通常是砂岩。

3.页岩 主要矿物有高岭土、石英、云母等,浅海或陆相沉积。泥质结构,致密,不透水,是良好的隔水层。浅绿色或浅黄色。岩性软弱,容易风化、侵蚀。

4.砾岩 由大小不一的岩石碎块混杂在一起,被某种物质胶结而形成,一般为陆相沉积。砾岩成分有的简单,有的很复杂,有的砾岩的砾石带有棱角,有的则被磨得浑圆。这类岩石一般多孔隙、透水,常常是良好的含水层。

(三)变质岩 由岩浆岩、沉积岩,甚至包括变质岩本身,在高温、高压或动力挤压下,使原有岩石中的矿物产生重新排列、组合,并可能产生新的变质矿物,具有一定的结构特征的岩石,称为变质岩。例如,石灰岩经过变质作用,形成美丽的大理石,这是一种名贵的建筑材料,因云南省大理附近点苍山出产这种岩石而得名;砂岩经变质作用后,形成更为坚硬的石英岩;页通俗说地球形状是两极稍扁、赤道略鼓的椭球体。

下面是一个材料:

地球形状研究

(figure of the Earth) 在地球物理学中是指地球整体的几何形状,即大地水准面的形状。对地球形状的研究是大地测量学和固体地球物理学的一个共同课题,其目的是运用几何方法、重力方法和空间技术,确定地球的形状、大小、地面点的位置和重力场的精细结构。

地球的形状主要是由地球的引力和自转产生的离心力决定的。人类对地球形状的认识经历了很长的时间。初期认为天圆地方,以后逐渐认识到地球是个圆球。17世纪法国人发现地球不是正圆而是扁的,牛顿等根据力学原理,提出地球是扁球的理论,这一理论直到1739年才为南美和北欧的弧度测量所证实。其实,在此之前中国为编绘《皇舆全图》,就曾进行了大规模的弧度测量,并发现纬度愈高,经线的弧长愈长的事实。这同地球两极略扁,赤道隆起的理论相符。1849年英国的斯托克斯提出利用地面重力观测确定地球形状的理论。经过100多年来的努力,特别是人造卫星等先进技术的应用,使地球形状的测定越来越精确。地球非常接近于一个旋转椭球,其长半轴为6378136米,扁率为1∶298.257。

严格而言,地球形状应该是指地球表面的几何形状,但是地球自然表面极其复杂,所以从科学上,人们都把平均海水面及其延伸到大陆内部所构成的大地水准面作为地球形状的研究对象,因为大地水准面同地球表面形状十分接近,又具有明显的物理意义。但是大地水准面还不是一个简单的数字曲面,无法在这样的面上直接进行测量和数据处理。而从力学角度看,如果地球是一个旋转的均质流体,那么其平衡形状应该是一个旋转椭球体。于是人们进一步设想用一个合适的旋转椭球面来逼近大地水准面。要确定这一椭球,只需知道其形状参数(长半轴a,扁率α)和物理参数(地心引力常数GM和旋转角速度ω)即可。同大地水准面最为接近的椭球面称为平均地球椭球面。如果能确定大地水准面与该椭球面之间的偏差,亦即大地水准面与椭球面之间的差距(大地水准面差距N)和倾斜(垂线偏差θ),则大地水准面的形状可完全确定(图1)。

实际测量结果表明,虽然大地水准面很不规则,甚至南北两半球也不对称,北极略凸出,南极则偏平,夸张地说近似一梨形。但大地水准面同一个与它最相逼近的旋转椭球相比,最大偏离N值在100米左右,θ值一般在10〃之内。因此,可分两步确定大地水准面的形状:

①确定一个同它最逼近的旋转椭球面,即平均地球椭球;

②确定大地水准面同这个椭球的偏离。这是地球形状学研究中的两个主要课题。

确定地球形状的地面测量方法 利用地面观测来研究地球形状的经典方法是弧度测量,即根据地面上丈量的子午线弧长,推算出地球椭球的扁率。以后,人们广泛地用建立天文大地网的方法确定同局部大地水准面最相吻合的参考椭球。但是这些纯几何测量的方法都由于不能遍及整个地球而有很大的局限性。

大地水准面是一个重力等位面,而重力又是重力等位面的法向导数,这样便可以通过重力位把二者联系起来。事实上,地球重力场的不规则分布和大地水准面的起伏都同地球内部质量分布不均匀有关。地球形状研究和地球重力场研究是同一个问题的两个侧面。基于这一思想,斯托克斯提出了利用地面上的重力观测来确定大地水准面形状的问题(称为斯托克斯问题),并证明了以下定理:一个外表面为水准面的物体,若已知其外表面形状S,包围的质量M,旋转的角速度ω,即可唯一地求出该物体表面上及其外的重力位和重力值,即g=f(M,S,ω)和W=f(M,S,ω)。

在大地测量中,要求解决其逆问题,即根据在大地水准面上观测的重力来推求大地水准面的形状:

S=F(g,ω,M),

取大地水准面为边界面,解位论的第三边值问题,可以得出上述问题的解。大地水准面起伏可按下式计算:

式中

称为斯托克斯函数;R为地球平均半径;λ为平均重力;g0-λ0为大地水准面上的混合重力异常(见重力异常),dσ为微分球面元。

同样,垂线偏差θ的两个分量ξ(子午圈分量)和η(卯酉圈分量)为:

式中

称为韦宁²迈内兹(又译维宁²曼尼兹)函数;α为从计算点至流动面元的方位角。

这样,只要有全球重力异常资料,就可以利用上述公式进行数值积分,从而确定出大地水准面的形状。

但是,实际应用斯托克斯方法求解地球形状时,有很大的困难。由于大地水准面外部存在质量,为此而必须采取的去掉或移入内部的质量调整办法都会引起大地水准面的变形;此外,实际观测是在地球自然表面上进行的,为了构成大地水准面上的边值条件,就必须把地面观测值归算到大地水准面上。然而只有了解地面和大地水准面间的物质密度分布,才能进行调整和归算,但这正是我们至今还不能精确知道的。为此,苏联学者莫洛坚斯基提出一种新的理论,他避开了大地水准面的概念和地壳密度分布问题,而是直接取一个非常接近于地球表面的似地球表面(即地形表面)为边界面,用地面上的大地测量和重力测量数据直接确定出地球表面的真实形状:

S=f(gs,Ws,ω)

式中gs和Ws分别为地球表面上的重力和重力位,重力位可根据水准测量、重力测量和天文大地测量的结果求得。

莫洛坚斯基理论的基本思想是把边界条件建立在似地球表面(地形表面)上(图2)。地形表面上的一点(设为

Q)同地球表面上的一点(设为P)是一一对应的。而且通过以下条件唯一地被确定;Q点的大地经度、纬度应等于P点的天文经度和纬度;地球椭球在Q点的正常位应等于实际地球在P点的重力位。前者确定了Q点的平面位置,后者确定了垂直位置。显然,Q点相对于椭球的高度就定义为P点的正常高,而差距ζ=PQ为高程异常。与这样建立的边界条件相联系的是实际观测的地球表面重力值,它不涉及任何重力归算问题。这样解出的是地球表面点的高程异常,即地球自然表面到地形表面的差距。地形表面到平均地球椭球的差距(正常高Hr)已由水准测量得出,地球表面形状则完全确定。

为了和大地水准面的概念相联系,莫洛坚斯基还定义出一个与平均地球椭球相距为ζ的曲面,称之为似大地水准面。大地水准面与似大地水准面是十分接近的,在海洋上完全重合,在陆地稍差一些。由于似大地水准面不是水准面,因此它是没有物理意义的。显然,在不知道地球内部密度分布的情况下,仅依据地表面的测量资料,人们只能确定出似大地水准面(以及地球自然表面),而不是大地水准面的精确形状。

在研究地球表面形状的现代理论中,继莫洛坚斯基之后,瑞典的布耶哈默尔(A.Bjerhammer)提出了等效地球的概念和解法。等效地球是包围在实际地球表面之内的圆球,它具有同地球一样的角速度,绕共同的旋转轴旋转,并假定球内有某种物质分布,以致它在地表上和地表外所产生的引力位同实际地球的引力位完全相同。根据位论第三边值问题的唯一性,要满足上述条件,等效球面上的虚似重力异常同真实地球表面上的重力异常之间应满足泊松积分关系式。只要按地表面重力异常解泊松积分方程,求出等效面上的虚似重力异常,就可以由斯托克斯公式严密地求出地球表面上的高程异常和垂线偏差,同样无须知道地壳密度。

确定地球形状的近代空间技术 用地面测量资料研究地球形状,需要全球均匀分布的测量资料,这是很难实现的。近代空间技术的发展为研究地球形状提供了新手段。

利用空间技术来研究地球形状的方法分为两大类,第一类是几何方法。例如用干涉测量、激光测距和多普勒测量等方法,被观测的对象如射电源、月球或卫星等。它们在天球惯性参考系中的位置是能较准确地知道的,而天球惯性参考系和以地球质心为原点的地球参考系,可把岁差、章动和地球自转参数联系起来,从而得到地面点在地球参考系的位置。如果在地面所有点上都进行了这类测量,就可描绘出地球表面的真实形状。至于卫星测高方法,则是更直接的测定海洋面上大地水准面形状的方法。测高仪得出的是卫星到瞬时海洋面的距离,经过海潮、海流、风、气压和海水盐度等改正后,可归算为卫星至大地水准面的距离,再根据卫星的精密轨道参数,就可求得大地水准面差距N。第二类是动力方法。因为地球形状及其引力场的不规则,必然造成卫星轨道偏离其正常的椭圆轨道,亦即使卫星轨道产生摄动。观测卫星摄动可以得出地球形状及其引力场的有用信息。然而要获得较高的精度,则必须有全球分布的卫星观测站,并且对具有不同轨道倾角的卫星进行观测。

数字结果 为了描述地球的几何和物理特征,通常引进含有4个参数的平均地球椭球。这4个参数是赤道半径a,引力位二阶带谐系数J2,地心引力常数GM,以及地球自转的角速度ω。此处J2定义为:

式中C、A分别为绕旋转轴和赤道轴的主转动惯量。因此,J2是衡量地球动力扁率的物理量,它同地球的几何扁率有确定的关系。

平均地球椭球参数

表中列出不同年代测得的4个参数值,基本参数的选择反映了大地测量学的发展状况。起初由几何量表示扁率,现在可以从卫星轨道的摄动所确定的J2中推得。根据开普勒第三定律和对月球、星际间飞行器或深空探测器的观测求得GM,而根据多普勒效应、激光测距和测高技术可求得α值。所以现在基本参数的确定均依赖于空间技术。

为了表征大地水准面形状,已推导出相应的数学模型,到目前为止通常采用球谐函数的表示方法。

确定大地水准面形状,最好的方法是综合利用空间和地面的资料。空间技术中应包括卫星跟踪技术,测高仪测量,卫星-卫星跟踪技术,卫星激光测距;地面测量技术有重力测量、天文大地测量。目前的许多模型中以美国戈达德空间飞行中心的GEM模型为最佳。

近年来发射的吉奥斯-3和海洋卫星上装有雷达测高仪,这使得大地水准面模型大为改善。其中吉奥斯-3精度为0.5~0.8米,而海洋卫星达到10厘米级。目前依据这些资料求得的海洋大地水准面比GEM系统求得的大地水准面提高了一个数量级。

上图为从地球模型GEM-10求得的大地水准面差距图。从图中可以看出:①大地水准面是一个复杂不规则的曲面;②大地水准面同平均地球椭球面的差距在-105~+73米之间,如果在10-5的精度以内,可以把大地水准面视为椭球面;③大地水准面最大的凹陷是在印度半岛南端附近,大地水准面差距具有最大负值-105米,大地水准面位于地球椭球面之下,在新几内亚岛附近具有最大正值+73米。

对大地水准面起伏的分析表明,其大尺度形态同地壳表面的地形起伏之间没有明确的相关性,但是同构造形态有某种对应关系,即大地水准面至少能部分地反映出深部地幔的运动。 岩经变质作用后,形成比较致密而坚实的板岩或片岩,等等。

编辑词条

开放分类:宇宙、天文、行星、太阳系、八大行星

参考资料纪录片《地球》:http://yibeicha.org/oumeijilupian/2009/0702/2668.html 相关词条:木星 土星

词条评价: 共236人参与评价 权威65.3% 专业9.7% 丰富6.4% 不错4.7% 很差14.0%


相关文章

  • 地球的伤心事 1
  • <地球的伤心事> 山东人民版小学六年级品德与社会下册 第三单元:只有一个地球 第二课 地球的伤心事 课时建议:2--3课时 授课时间:2013年5月14日 星期二 第 四节课 2012年5月16日 星期四 第 二 节课 2012 ...查看


  • [地球的伤心事]教案2
  • <地球的伤心事> 山东人民版小学六年级品德与社会下册 第三单元:只有一个地球 第二课 地球的伤心事 课时建议:2--3课时 授课时间:2013年5月28日 星期二第 三 节课 设计者:峄城区榴园镇中心小学 单元概述: 本单元主要 ...查看


  • _从"天圆地方"说起
  • 第五单元 地球在变脸 1 从"天圆地方"说起 教学目标: 1.通过本课教学,使学生初步了解地球的形状. 2.使学生初步了解地球内部的构造. 3.通过小组合作,能制造出简单的地球模型. 教学重点:认识地球形状及地球内部的构 ...查看


  • [只有一个地球]第二课时教案设计
  • [教学环境]网络教室 [教学目标] 认知目标: 1.了解本课介绍的有关地球的知识,懂得保护生态环境.保护地球的重要性:增强环保意识,受到保护环境的教育. 2.感受作者按一定顺序说明事理的方法. 情意目标: 1.逐步培养学生广泛阅读的兴趣和合 ...查看


  • 鄂教版小学六年级科学上册全册教案
  • 鄂教版科学六年级上册教案 1 我们的生长发育 第一单元 我们居住的星球 2 地球 3 地球仪 4 地图 5 建立"地球档案" 自由研究 第二单元 地球上的一天 6 昼夜交替 7 谁先看到日出 8 昼夜温度的变化 9 一天 ...查看


  • 人类认识的宇宙-教学教案
  • 一.知识目标 1.了解宇宙的概念和宇宙的特点. 2.了解宇宙的主要组成物质.天体及其类型. 3.了解天体系统的结构,以及地球在天体系统中的位置. 4.理解地球上存在生物的原因. 二.能力目标 1.通过阅读分析教材,使学生具有归纳整理知识.提 ...查看


  • 五年级科学下册 昼夜是怎样形成的教案 湘教版
  • 3 昼夜是怎样形成的 [教学目标] 科学探究 能用查阅资料与模拟实验的方法来探究昼夜交替的成因. 培养学生的空间想像力. 情感.态度与价值观 能尊重不同的意见的存在,并能进行去伪存真的分析与选择. 科学知识 了解古人对昼夜成因的猜想. 知道 ...查看


  • [只有一个地球]教学设计3
  • [教学目标] 1.过程与方法: 了解作者说明事物的方法. 2.知识与技能: ⑴理解课文内容,弄明白为什么说只有一个地球. ⑵领悟文章的思想进行小练笔,培养学生学习语言的能力. ⑶电脑网络操作,培养学生自主选择.自我评价.协作参与的能力和创新 ...查看


  • 地球的运动教学设计
  • <地球的运动>教学设计 门源县第三中学 贺萍 [课 题]晋教版地理七年级上册第一章第二节<地球的运动> [教学目标]掌握地球自转和公转的方向.周期和地理意义: [教学重点]地球自转.公转及其产生的地理意义:其中季节变 ...查看


  • (六下)第三单元9.[伤心的地球母亲]
  • 9 伤心的地球母亲 设计思路 根据<课程标准>,我充分利用学生现有的生活经,依据他们的认知特点,整合教学资源,用观看视频和图片.调查与讨论.知识竞赛等方式引导学生初步了解人口状况是当前地球所面临的重大问题之一,理解人口剧增给地球 ...查看


热门内容