磁悬浮实验实验报告

实验报告

课程名称:__工程电磁场与波____指导老师:_____姚缨英_____ 实验名称: 磁悬浮 _实验类型:____ ____同组学生姓名:____

一、实验目的和要求(必填) 二、实验内容和原理(必填)

三、主要仪器设备(必填) 四、操作方法和实验步骤

五、实验数据记录和处理 六、实验结果与分析(必填)

七、讨论、心得

一、实验目的

1、观察自稳定的磁悬浮物理现象;

2、了解磁悬浮的作用机理及其理论分析的基础知识;

3、在理论分析与实验研究相结合的基础上,力求深化对磁场能量、电感参数和电磁力等

知识

点的理解。

二、实验原理

(1)自稳定的磁悬浮物理现象 由盘状载流线圈和铝板相组合构成磁悬浮系统的实验装置,该系统中可调节的扁平盘状

线圈的激磁电流由自耦变压器提供,从而在50 hz正弦交变磁场作用下,铝质导板中将产生

感应涡流,最终表征为盘状载流线圈自稳定的磁悬浮现象。

(2)基于虚位移法的磁悬浮机理的分析 将盘状载流线圈和铝板组合看成一个磁系统。为简化分析,将铝板看作为一半无限大完

纯导体。事实上当激磁频率为50 hz 时,只有当铝板表面相对扁平盘状线圈足够大,而厚度

b 远大于该频率下铝板的透入深度d ,才能作这一理想化假设。在此前提下,应用镜像法,

可导得该磁系统的自感为 式中, a —— 盘状线圈被理想化为单匝圆形线圈时的平均半径; n —— 线匝数;

r —— 导线被看作圆形导线时的等效圆半径。 当通入盘状线圈的激磁电流增大到使其与铝板中感生涡流合成的磁场,对盘状载流线圈

作用的电磁力足以克服线圈自重时,线圈即浮离铝板,呈现自稳定的磁悬浮物理现象。此时,

作用于盘状载流线圈的向上的电磁力必然等于该线圈的重量。现应用虚位移法来求取作用于

该 磁悬浮系统的电动推斥力。对盘状载流线圈和铝板组合的磁系统,其对应于力状态分析

的磁

2场能量为wm=l*i/2。式中,i 为激磁电流的有效值。其次,取盘状载流线圈与铝板之

间相对

位移h (即给定的悬浮高度)为广义坐标,按虚位移法可求得作用于该系统的电动推斥

力,也就是作用于盘状载流线圈的向上的电磁悬浮力 从而,由稳定磁悬浮状态下力的平衡关系,即 式中,m —— 盘状线圈的质量(kg); g —— 重力加速度(9.8 m/s2); 即可得对于给定悬浮高度 h 的磁悬浮状态,系统所需激磁电流为

三、实验内容

(1)观察自稳定的磁悬浮物理现象

(2)实测对应于不同悬浮高度的盘状线圈的激励电流

四、操作方法和实验步骤

1、观察自稳定的磁悬浮物理现象 在给定厚度为14 mm的铝板情况下,通过调节自耦

变压器以改变输入盘状线圈的激磁电流,从 而观察在不同给定悬浮高度h 的条件下,起因于

铝板表面层中涡流所产生的去磁效应,而导致的自稳 定的磁悬浮物理现象

2、实测对应于不同悬浮高度的盘状线圈的激磁电流 在厚度为14 mm的铝板情况下,

以5 mm为步距,对应于不同的悬浮高度,逐点测量稳定磁悬浮 状态下盘状线圈中的激磁电

流,记录其悬浮高度h 与激磁电流i 的相应读数。

3、观察不同厚度的铝板对自稳定磁悬浮状态的影响 分别在厚度为14 mm 和厚度为6 mm

的两种铝板情况下, 对应于相同的激磁电流(如i = 20 a), 观察并读取相应的悬浮高度h

的读数,且用手直接感觉在该两种铝板情况下铝板底面的温度

五、实验结果与结论

悬浮高度h 与激磁电流i 的响应关系 悬浮高度h 激磁电流i 仿真结果 序号 理论值(a ) (cm ) (a ) (a ) 1 0.4 17.0

5.23 15.7 2 0.8 18.5 7.40 18.8 3 1.0 19.8 8.28 19.3 4 1.7 20.0 10.79

21.4 5 2.0 21.5 11.71 22.1 6 2.8 23.8 13.85 24.3 仿真结果:

磁场线图 当悬浮高度为2.8cm 时求解 在悬浮高度与激励电流关系中,实验实测数据和理论值的偏差很大,但是总体趋势相同,

都是随着高度增加而增大。 实测值与仿真结果比较接近。理论值的推导过程中在等效半径的

估计上,a 取(r1+r2)/2是偏大的,而且悬浮高度越小偏大越明显。 实际磁场并不能忽略

边缘效应,而且漏磁不可忽略,也造成了一定的实测电流偏大。因此在实验中,电流比较小

的情况下,理论值与真实值的误差会变得非常大,也就会出现上表中的情况。 附:命令流

/clear

! 定义参数,单位均采用国际制单位 cr1=0.031 ! 盘状线圈内半径 cr2=0.195 ! 盘状线圈外半径 ch=0.0125 ! 盘状线圈高度 n=250 ! 线圈匝数

lh=0.014 ! 铝板高度 lr1=0.02 ! 铝板内半径 lr2=0.25 ! 铝板外半径 pi=2*asin(1) ! 3.1415926

xfh=0.008 ! 线圈悬浮高度,分析中可改变参数 w=lr2 ! 场域外空气范围相关尺寸 h=lh+xfh+ch ! 场域外空气范围相关尺寸 im0=18.80 ! 线圈电流,分析中需调整的参数 js0=im0*n*sqrt(2)/((cr2-cr1)*ch) ! 线圈截面上的电流密度(幅值) ! 前处理

/prep7 ! 前处理

et, 1, plane53, , , 1 ! 指定单元类型,轴对称场分析 mp, murx, 1, 1 ! 指定1 号材料(空气)的相对磁导率 mp, murx, 2, 1 ! 指定2 号材料(线圈)的相对磁导率 mp, murx, 3, 1 ! 指定3 号

材料(铝板)的相对磁导率 mp, rsvx, 3, 2.62e-8 ! 指定3 号材料(铝板)的电阻率 ! 建

立几何模型

! 铝板

rectng, 0, lr1, 0, lh rectng, 0, lr2, 0, lh ! 线圈

rectng, 0, cr1, lh+xfh, lh+xfh+ch rectng, 0, cr2, lh+xfh, lh+xfh+ch ! 外围空气区域及整个分析场域 rectng, 0, lr2, 0, lh+xfh+ch rectng, 0, w+h, -h, 2*h rectng, 0, w+8*h, -5*h, 6*h aovlap, all

! 对几何模型(即,面)设置属性 ! 选择线圈所对应的面,根据位置来选择 asel, s, loc, x, cr1, cr2 asel, r, loc, y, lh+xfh, lh+xfh+ch lsel, s, loc, x, cr1 asll, r

aatt, 2, , 1, 0,

! 选择铝板

asel, s, loc, x, lr1, lr2 asel, r, loc, y, 0, lh lsel, s, loc, x, lr1 asll, r

aatt, 3, , 1, 0,

! 选择空气

allsel

asel, u, mat, , 2, 3 aatt, 1, , 1, 0

! 剖分,建立网格

! 先划分铝板所在区域 asel, s, mat, , 3

esize, 0.003

amesh, all

! 划分线圈所在区域

asel, s, mat, , 2 ! 根据材料号来选择线圈 esize, 0.003 ! 定义单元尺寸为0.003 m amesh, all ! 剖分线圈所对应的面 ! 划分线圈外的空气区域 lsel, s, loc, y, 0, h

lsel, r, loc, x, 0 asll

cm, airin, area

mshape, 1, 2d

amesh, all

esize, 0.02

! 划分线圈内的空气区域 smrtsize, 6

mshape, 1, 2d ! 三角形单元 mshkey, 0 ! 自由剖分 asel, s, mat, , 1

cmsel, u, airin

amesh, all

! 加载线圈电流密度

asel, s, mat, , 2

esla

bfe, all, js, , , , js0

! 加载外边界磁力线平行边界条件 allsel

lsel, s, ext ! 选择外边界处的线 dl, all, , asym ! 磁力线平行 allsel

! 加载求力边界条件

asel, s, mat, , 2

esla

cm, ccoil, elem

fmagbc, ccoil

allsel

save

finish

/solu

antype, 3

harfrq,50 ! 指定分析频率为50 hz. solve ! 求解

finish

/post1 ! 后处理

set, 1, , 1, 0 ! 读实部结果 plf2d,27,0,10,1 ! 画实部结果对应的磁场线图 fmagsum, ccoil ! 求线圈所受力 set, 1, , 1, 1 ! 读虚部结果 plf2d,27,0,10,1 ! 画虚部结果对应的磁场线图篇二:磁悬浮实验报告 课程名称: 工程电子场与电磁波 指导老师:________熊素铭 实验名称:_ 磁悬浮 _实验类型: 动手操作及仿真 同组学生

姓名: 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主

要仪器设备(必填) 五、实验数据记录和处理 七、讨论、心得

四、操作方法和实验步骤

六、实验结果与分析(必填) 实验报告

一、实验目的和要求

1、观察自稳定的磁悬浮物理现象;

2、了解磁悬浮的作用机理及其理论分析的基础知识;

3、在理论分析与实验研究相结合的基础上,力求深化对磁场能量、电感参数和电磁力等

知识点的理解。

二、实验内容

1、观察自稳定的磁悬浮物理现象

2、实测对应于不同悬浮高度的盘状线圈的激磁电流 3、观察不同厚度的铝板对自稳定磁

悬浮状态的影响

实验原理

1、自稳定的磁悬浮物理现象 由盘状载流线圈和铝板相组合构成磁悬浮系统的实验装

置,如图2-6所示。该系统中可调节的扁 平盘状线圈的激磁电流由自耦变压器提供,从而在

50 hz 正弦交变磁场作用下,铝质导板中将产生感 应涡流,涡流所产生的去磁效应,即表征

为盘状载流线圈自稳定的磁悬浮现象。

2、基于虚位移法的磁悬浮机理的分析 在自稳定磁悬浮现象的理想化分析的前提下,

根据电磁场理论可知,铝质导板应被看作为完纯导 体,但事实上当激磁频率为50 hz 时,铝

质导板仅近似地满足这一要求。为此,在本实验装置的构造 中,铝质导板设计的厚度b 还必须远大于电磁波正入射平表面导体的透入深度d (b )。

换句话说,在理想化的理论分析中,就交变磁场的作用而言,此时,该铝质导板可被看作为

“透不过的导体”。 对于给定悬浮高度的自稳定磁悬浮现象,显然,作用于盘状载流线圈的

向上的电磁力必然等于该线圈的重量。本实验中,当通入盘状线圈的激磁电流增大到使其与

铝板中感生涡流合成的磁场,对盘状载流线圈作用的电磁力足以克服线圈自重时,线圈即浮

离铝板,呈现自稳定的磁悬浮物理现象。现应用虚位移法来求取作用于该磁悬浮系统的电动

推斥力。

首先,将图2-1所示盘状载流线圈和铝板的组合看成一个磁系统,则其对应于力状态分

析的磁场能量 式中,i 为激磁电流的有效值。其次,取表征盘状载流线圈与铝板之间相对位移的广义

坐标为h (即给定的悬浮高度),则按虚位移法可求得作用于该系统的电动推斥力,也就是作

用于盘状载流线圈的向上的电磁悬浮力 (2-1) 在铝板被看作为完纯导体的理想化假设的前提下,应用镜像法,可以导得该磁系统的自

感为

(2-2) 式中,a ——盘状线圈被理想化为单匝圆形线圈时的平均半径;n ——线匝数;r ——导线

被看作圆形导线时的等效圆半径。从而,由稳定磁悬浮状态下力的平衡关系,即 式中,m —— 盘状线圈的质量(kg);g —— 重力加速度(9.8 m/s2); 进一步代入关系

式(2-2),稍加整理,便可解出对于给定悬浮高度h 的磁悬浮状态,系统所需激磁电流为

三、 主要仪器设备 磁悬浮装置

铝板:b=14mm,b=2mm,γ=3.82e7 s/m 盘状线圈:n=250,r1=31mm,r2=195mm,h=12.5mm,m=3.1kg 自耦变压器:0~100v,0~30a, 50hz 电流表

四、 操作方法和实验步骤

1、观察自稳定的磁悬浮物理现象 在给定厚度为14 mm 的铝板情况下,通过调节自耦变

压器以改变输入盘状线圈的激磁电流,从而观察在不同给定悬浮高度h 的条件下,起因于铝

板表面层中涡流所产生的去磁效应,而导致的自稳定的磁悬浮物理现象

2、实测对应于不同悬浮高度的盘状线圈的激磁电流 在厚度为14 mm 的铝板情况下,以

5 mm为步距,对应于不同的悬浮高度,逐点测量稳定磁悬浮状态下盘状线圈中的激磁电流,

记录其悬浮高度h 与激磁电流i 的相应读数。

3、观察不同厚度的铝板对自稳定磁悬浮状态的影响 分别在厚度为14 mm 和厚度为6 mm

的两种铝板情况下, 对应于相同的激磁电流(如i = 20 a),观察并读取相应的悬浮高度h 的

读数,且用手直接感觉在该两种铝板情况下铝板底面的温度

五、实验结果与结论

2、铝板的透入深度d

d=1.883e-2 m

六、实验仿真结果

1.磁场分布图像

(1)需部结果对应的磁场图 x方向磁场

y方向磁场 篇三:磁悬浮实验报告 实验报告

课程名称:__工程电磁场与波____指导老师:_____姚缨英_____ 实验名称: 磁悬浮 _实验类型:____ ____同组学生姓名:____

一、实验目的和要求(必填) 二、实验内容和原理(必填)

三、主要仪器设备(必填) 四、操作方法和实验步骤

五、实验数据记录和处理 六、实验结果与分析(必填)

七、讨论、心得

一、实验目的

1、观察自稳定的磁悬浮物理现象;

2、了解磁悬浮的作用机理及其理论分析的基础知识;

3、在理论分析与实验研究相结合的基础上,力求深化对磁场能量、电感参数和电磁力等

知识

点的理解。

二、实验原理

(1)自稳定的磁悬浮物理现象 由盘状载流线圈和铝板相组合构成磁悬浮系统的实验装置,该系统中可调节的扁平盘状

线圈的激磁电流由自耦变压器提供,从而在50 hz正弦交变磁场作用下,铝质导板中将产生

感应涡流,最终表征为盘状载流线圈自稳定的磁悬浮现象。

(2)基于虚位移法的磁悬浮机理的分析 将盘状载流线圈和铝板组合看成一个磁系统。为简化分析,将铝板看作为一半无限大完

纯导体。事实上当激磁频率为50 hz 时,只有当铝板表面相对扁平盘状线圈足够大,而厚度

b 远大于该频率下铝板的透入深度d ,才能作这一理想化假设。在此前提下,应用镜像法,

可导得该磁系统的自感为 式中, a —— 盘状线圈被理想化为单匝圆形线圈时的平均半径; n —— 线匝数;

r —— 导线被看作圆形导线时的等效圆半径。 当通入盘状线圈的激磁电流增大到使其与铝板中感生涡流合成的磁场,对盘状载流线圈

作用的电磁力足以克服线圈自重时,线圈即浮离铝板,呈现自稳定的磁悬浮物理现象。此时,

作用于盘状载流线圈的向上的电磁力必然等于该线圈的重量。现应用虚位移法来求取作用于

该 磁悬浮系统的电动推斥力。对盘状载流线圈和铝板组合的磁系统,其对应于力状态分析

的磁

2场能量为wm=l*i/2。式中,i 为激磁电流的有效值。其次,取盘状载流线圈与铝板之

间相对

位移h (即给定的悬浮高度)为广义坐标,按虚位移法可求得作用于该系统的电动推斥

力,也就是作用于盘状载流线圈的向上的电磁悬浮力 从而,由稳定磁悬浮状态下力的平衡关系,即 式中,m —— 盘状线圈的质量(kg); g —— 重力加速度(9.8 m/s2); 即可得对于给定悬浮高度 h 的磁悬浮状态,系统所需激磁电流为

三、实验内容

(1)观察自稳定的磁悬浮物理现象

(2)实测对应于不同悬浮高度的盘状线圈的激励电流

四、操作方法和实验步骤

1、观察自稳定的磁悬浮物理现象 在给定厚度为14 mm的铝板情况下,通过调节自耦

变压器以改变输入盘状线圈的激磁电流,从 而观察在不同给定悬浮高度h 的条件下,起因于

铝板表面层中涡流所产生的去磁效应,而导致的自稳 定的磁悬浮物理现象

2、实测对应于不同悬浮高度的盘状线圈的激磁电流 在厚度为14 mm的铝板情况下,

以5 mm为步距,对应于不同的悬浮高度,逐点测量稳定磁悬浮 状态下盘状线圈中的激磁电

流,记录其悬浮高度h 与激磁电流i 的相应读数。

3、观察不同厚度的铝板对自稳定磁悬浮状态的影响 分别在厚度为14 mm 和厚度为6 mm

的两种铝板情况下, 对应于相同的激磁电流(如i = 20 a), 观察并读取相应的悬浮高度h

的读数,且用手直接感觉在该两种铝板情况下铝板底面的温度

五、实验结果与结论

悬浮高度h 与激磁电流i 的响应关系 悬浮高度h 激磁电流i 仿真结果 序号 理论值(a ) (cm ) (a ) (a ) 1 0.4 17.0

5.23 15.7 2 0.8 18.5 7.40 18.8 3 1.0 19.8 8.28 19.3 4 1.7 20.0 10.79

21.4 5 2.0 21.5 11.71 22.1 6 2.8 23.8 13.85 24.3 仿真结果:

磁场线图 当悬浮高度为2.8cm 时求解 在悬浮高度与激励电流关系中,实验实测数据和理论值的偏差很大,但是总体趋势相同,

都是随着高度增加而增大。 实测值与仿真结果比较接近。理论值的推导过程中在等效半径的

估计上,a 取(r1+r2)/2是偏大的,而且悬浮高度越小偏大越明显。 实际磁场并不能忽略

边缘效应,而且漏磁不可忽略,也造成了一定的实测电流偏大。因此在实验中,电流比较小

的情况下,理论值与真实值的误差会变得非常大,也就会出现上表中的情况。 附:命令流

/clear

! 定义参数,单位均采用国际制单位 cr1=0.031 ! 盘状线圈内半径 cr2=0.195 ! 盘状线圈外半径 ch=0.0125 ! 盘状线圈高度 n=250 ! 线圈匝数

lr1=0.02 ! 铝板内半径 lr2=0.25 ! 铝板外半径 pi=2*asin(1) ! 3.1415926

xfh=0.008 ! 线圈悬浮高度,分析中可改变参数 w=lr2 ! 场域外空气范围相关尺寸 h=lh+xfh+ch ! 场域外空气范围相关尺寸 im0=18.80 ! 线圈电流,分析中需调整的参数 js0=im0*n*sqrt(2)/((cr2-cr1)*ch) ! 线圈截面上的电流密度(幅值) ! 前处理

/prep7 ! 前处理

et, 1, plane53, , , 1 ! 指定单元类型,轴对称场分析 mp, murx, 1, 1 ! 指定1 号材料(空气)的相对磁导率 mp, murx, 2, 1 ! 指定2 号材料(线圈)的相对磁导率 mp, murx, 3, 1 ! 指定3 号材料(铝板)的相对磁导率 mp, rsvx, 3, 2.62e-8 ! 指定3 号材料(铝板)的电阻率 ! 建立几何模型 ! 铝板

rectng, 0, lr1, 0, lh rectng, 0, lr2, 0, lh ! 线圈

rectng, 0, cr1, lh+xfh, lh+xfh+ch rectng, 0, cr2, lh+xfh, lh+xfh+ch ! 外围空

气区域及整个分析场域 rectng, 0, lr2, 0, lh+xfh+ch rectng, 0, w+h, -h, 2*h rectng, 0, w+8*h, -5*h, 6*h aovlap, all

! 对几何模型(即,面)设置属性 ! 选择线圈所对应的面,根据位置来选择 asel, s, loc, x, cr1, cr2 asel, r, loc, y, lh+xfh, lh+xfh+ch lsel, s, loc, x, cr1 asll, r

aatt, 2, , 1, 0,

! 选择铝板

asel, s, loc, x, lr1, lr2 asel, r, loc, y, 0, lh lsel, s, loc, x, lr1 asll, r

aatt, 3, , 1, 0,

! 选择空气

allsel

asel, u, mat, , 2, 3 aatt, 1, , 1, 0

! 剖分,建立网格

! 先划分铝板所在区域

esize, 0.003

amesh, all

! 划分线圈所在区域

asel, s, mat, , 2 ! 根据材料号来选择线圈 esize, 0.003 ! 定义单元尺寸为0.003 m

amesh, all ! 剖分线圈所对应的面 ! 划分线圈外的空气区域 lsel, s, loc, y, 0, h lsel, r, loc, x, 0

asll

cm, airin, area

mshape, 1, 2d

amesh, all篇四:物理演示实验报告(磁悬浮列车演示实验报告) 磁悬浮列车演示实验报告

【实验目的】

1.利用超导体对永磁体的排斥作用演示磁悬浮;

【实验器材】

1.超导磁悬浮列车演示仪,如图70-1所示。由二部分组成:磁导轨支架、磁导轨。其

中磁导轨是用550 × 240 × 3椭圆形低碳钢板作磁轭,按图70-2所示的方式铺以18 × 10

×6 mm的钕铁硼永磁体,形成磁性导轨,两边轨道仅起保证超导体周期运动的磁约束作用。

2.高温超导体,是用熔融结构生长工艺制备的,含ag 的ybacuo 系高温超导体。之所以

称为高温超导体是因为它在液氮温度77kc (-196℃)下呈现出超导性,以区别于以往在液氦

温度42k (-269℃)以下呈现超导特性的低温材料。样品形状为:圆盘状,直径18 mm 左右,

厚度为6 mm ,其临界转变温度为90k 左右(-183℃)。

3.液氮。

上图:实验装置图

下图:磁导轨

【实验原理】

实验原理:

超导是超导电性的简称. 它是指金属或合金在极低温度下(接近绝对零度) 电阻变为零的

性质. 它是一种宏观量子现象, 只有依据量子力学才能给与正确的微观解释. 这就是bcs 理论. 这是一台高临界温度超导磁悬浮的动态演示装置. 该装置为一个盛放高临界温度超导体

的简易列车模型, 在具有磁束缚的封闭磁轨道上方, 利用超导体对永磁体的排斥作用, 演示磁

悬浮;; 并可在旋转磁场加速装置作用下, 沿轨道以悬浮或倒挂悬浮状态无磨擦地连续运转. 当将一个永磁体移近钇钡铜氧ybacuo 超导体表面时, 磁通线从表面进入超导体内, 在超

导体内形成很大的磁通密度梯度, 感应出高临界电流, 从而对永磁体产生排斥, 排斥力随相对

距离的减小而逐渐增大, 它可以克服永磁体的重力使其悬浮在超导体上方一定的高度上; 高

温超导体是用熔融结构生长工艺制备的含ag 的ybacuo 系高温超导体, 所以称为高温超导体是

因为它在液氮温度 77k(-196°c) 下呈现出超导性, 以区别于以往在液氦温度42k(-269°c) 下呈现出超导性

的低温材料. 它的形状为圆盘形, 其临界转变温度为90k(-183°c). 超导体样品放在一铝制的

列车模型中, 四周包有起热屏蔽作用的铝箔, 这样可使超导体在移开液氮后仍能在一段时间内

保持自身温度在其临界温度以下, 以延长演示时间. 磁性轨道是用钢板加工成椭圆形轨道

用作磁轭, 上面铺以钕铁硼(ndfeb)永磁块(表磁为0.4t) 形成磁性导轨. 两边轨道起保证超导

体周期运动的磁约束作用.

加速装置是使永磁体绕水平轴旋转在竖直面内产生旋转磁场的方法来实现的. 在扁圆柱

形的尼龙轮上, 镶有四块钕铁硼(ndfeb)磁块, 尼龙轮固定在玩具电机轴上, 电机又固定在磁

轨道面的正上方. 当电机快速转动时, 在此导轨面的上方产生一绕水平轴旋转的磁场. 若磁场

转向与超导体在轨道面上前进的方向同向时, 则当超导体通过磁旋转磁场的下方时便产生一

驱动超导块加速前进的磁驱动力, 从而起加速作用.

【实验操作与现象】

1.演示磁悬浮

将超导体样品放入液氮中浸泡约3—5分钟,然后用竹夹子将其夹出放在磁体的中央,使

其悬浮在高度为10mm ,以保持稳定。再用手沿轨道水平方向轻推样品(导体),则看到样品

将沿磁轨道做周期性水平运动,直到温度高于临界温度(大约90 k),样品落到轨道上。

【注意事项】

1、样品放入液氮中,必须充分冷却、直至液氮中无气泡为止;

2、演示时,样品一定用竹夹子夹住,千万不要掉在地上,以免样品摔碎;

3、演示时,沿水平方向轻推样品,速度不能太大,否则样品将沿直线冲出轨道;

4、演示倒挂时,当样品运动一段时间后,由于温度生高,样品失去超导性 而下落,这时应用手接住它,否则,样品将摔坏;

5、超导块最好保存在干燥箱内,防止受潮脱落。

【实验心得】

在这次的物理演示实验中我受益良多,看到许多有趣的物理现象,并且充分认识到了物

理学的奇妙之处。以前学习物理总感觉虽然学的理论知识很多,但却很难让我们看到它的实

际用处,而经过这次物理演示实验我才充分看到了原来学的物理知识在生活中的应用是很广

泛的,感受到了物理的独特魅力。在这次实验中给我印象深刻的就是磁悬浮列车演示实验,

因为这是已经应用的高科技,它使列车的速度再次达到了一个质的飞跃。而其中所应用的物

理知识确是我们都知道的,所以物理学是很神奇的,如果能把所有的物理知识全都转化为实

际的技术,那我们的生活就会发生天翻地覆的变化。总之,经过这次物理演示实验,让我对

物理有了新的认识:物理是一门既实用又有趣的学科。篇五:磁悬浮列车演示实验报告 磁悬浮列车演示实验报告

【实验目的】

1.利用超导体对永磁体的排斥作用演示磁悬浮;

【实验器材】

1.超导磁悬浮列车演示仪,如下图所示。由两部分组成:磁导轨支架、磁导轨。其中磁

导轨是用550 × 240 × 3椭圆形低碳钢板作磁轭,按图70-2所示的方式铺以18 × 10×6

mm 的钕铁硼永磁体,形成磁性导轨,两边轨道仅起保证超导体周期运动的磁约束作用。

2.高温超导体,是用熔融结构生长工艺制备的,含ag 的ybacuo 系高温超导体。之所以

称为高温超导体是因为它在液氮温度77kc (-196℃)下呈现出超导性,以区别于以往在液氦

温度42k (-269℃)以下呈现超导特性的低温材料。样品形状为:圆盘状,直径18 mm 左右,

厚度为6 mm ,其临界转变温度为90k 左右(-183℃)。

3.液氮。

上图:实验装置图

下图:磁导轨

【实验原理】

实验原理:

超导是超导电性的简称. 它是指金属或合金在极低温度下(接近绝对零度) 电阻变为零的

性质. 它是一种宏观量子现象, 只有依据量子力学才能给与正确的微观解释. 这就是bcs 理论.

这是一台高临界温度超导磁悬浮的动态演示装置. 该装置为一个盛放高临界温度超导体

的简易列车模型, 在具有磁束缚的封闭磁轨道上方, 利用超导体对永磁体的排斥作用, 演示磁

悬浮;; 并可在旋转磁场加速装置作用下, 沿轨道以悬浮或倒挂悬浮状态无磨擦地连续运转. 当将一个永磁体移近钇钡铜氧ybacuo 超导体表面时, 磁通线从表面进入超导体内, 在超

导体内形成很大的磁通密度梯度, 感应出高临界电流, 从而对永磁体产生排斥, 排斥力随 相对距离的减小而逐渐增大, 它可以克服永磁体的重力使其悬浮在超导体上方一定的高

度上; 高温超导体是用熔融结构生长工艺制备的含ag 的ybacuo 系高温超导体, 所以称为高

温超导体是因为它在液氮温度77k(-196°c) 下呈现出超导性, 以区别于以往在液氦温度 42k(-269°c) 下呈现出超导性的低温材料. 它的形状为圆盘形, 其临界转变温度为

90k(-183°

c).超导体样品放在一铝制的列车模型中, 四周包有起热屏蔽作用的铝箔, 这样可使超导

体在 移开液氮后仍能在一段时间内保持自身温度在其临界温度以下, 以延长演示时间. 磁性轨道是用钢板加工成椭圆形轨道用作磁轭, 上面铺以钕铁硼(ndfeb)永磁块(表磁为

0.4t) 形成磁性导轨. 两边轨道起保证超导体周期运动的磁约束作用. 加速装置是使永磁体绕水平轴旋转在竖直面内产生旋转磁场的方法来实现的. 在扁圆柱

形的尼龙轮上, 镶有四块钕铁硼(ndfeb)磁块, 尼龙轮固定在玩具电机轴上, 电机又固定在磁

轨道面的正上方. 当电机快速转动时, 在此导轨面的上方产生一绕水平轴旋转的磁场. 若磁场

转向与超导体在轨道面上前进的方向同向时, 则当超导体通过磁旋转磁场的下方时便产生一

驱动超导块加速前进的磁驱动力, 从而起加速作用.

【实验操作与现象】

1. 演示磁悬浮

将超导体样品放入液氮中浸泡约3—5分钟,然后用竹夹子将其夹出放在磁体的中央,使

其悬浮在高度为10mm ,以保持稳定。再用手沿轨道水平方向轻推样品(导体),则看到样品

将沿磁轨道做周期性水平运动,直到温度高于临界温度(大约90 k),样品落到轨道上。

【注意事项】

1、样品放入液氮中,必须充分冷却、直至液氮中无气泡为止;

2、演示时,样品一定用竹夹子夹住,千万不要掉在地上,以免样品摔碎;

3、演示时,沿水平方向轻推样品,速度不能太大,否则样品将沿直线冲出轨道;

4、演示倒挂时,当样品运动一段时间后,由于温度生高,样品失去超导性而下落,这时

应用手接住它,否则,样品将摔坏;

5、超导块最好保存在干燥箱内,防止受潮脱落。

【实验心得】

如果说苹果砸在牛顿头上是一种偶然,而他由此发现万有引力定律更是一种机遇,那么

大学物理演示演实验室,则将这种偶然化为了平凡,然而谁会撞上牛顿般的机遇呢?与其说

我的演示实验室一行是为了完成老师给的任务不如说是为了寻秘世间众多复杂事物背后的浅

显真理,但大自然的奇迹早已偷走了我欲思考的心,而仅仅留下一种沉迷与忘我。还未来得

及走出众多新奇现象,老师的催促声就已阻断了我通往现象背后简短原理的解释之路。于是

我只能收寻斑驳的记忆,更多的是加上自己的一点拙见,算是探究了一番。 物理演示实验的种种奇观早已超出了美学的领地上升到了神秘而又新奇惹人爱慕的境界。

我无法抗拒它奇秘的诱惑,因而仅仅漂浮在其表象,未能来得及深入其内脏以一探究竟。加

之我本粗陋的知识储备,更无缘其美了。对此我感到深深遗憾。但我相信,我的虔诚是在揭

示一个真理:我们真正应做的不是去思考这现象背后已被揭穿的真理,而是去寻找这些现象

的良佳去处,即怎样才能把它们更多的应用到实践中去,以利于人们的生活。尽管我给它们

物色的对象是如此粗陋。 此行与其说是获得了知识,开阔了眼界不如说是培养了我的兴趣与对神秘自然的热爱。我永不会忘记,忘记记忆中的那份痴迷与投入。未来的路上我将陪你一起走过,走过一个有意义的人生,那可爱的自然科学。

实验报告

课程名称:__工程电磁场与波____指导老师:_____姚缨英_____ 实验名称: 磁悬浮 _实验类型:____ ____同组学生姓名:____

一、实验目的和要求(必填) 二、实验内容和原理(必填)

三、主要仪器设备(必填) 四、操作方法和实验步骤

五、实验数据记录和处理 六、实验结果与分析(必填)

七、讨论、心得

一、实验目的

1、观察自稳定的磁悬浮物理现象;

2、了解磁悬浮的作用机理及其理论分析的基础知识;

3、在理论分析与实验研究相结合的基础上,力求深化对磁场能量、电感参数和电磁力等

知识

点的理解。

二、实验原理

(1)自稳定的磁悬浮物理现象 由盘状载流线圈和铝板相组合构成磁悬浮系统的实验装置,该系统中可调节的扁平盘状

线圈的激磁电流由自耦变压器提供,从而在50 hz正弦交变磁场作用下,铝质导板中将产生

感应涡流,最终表征为盘状载流线圈自稳定的磁悬浮现象。

(2)基于虚位移法的磁悬浮机理的分析 将盘状载流线圈和铝板组合看成一个磁系统。为简化分析,将铝板看作为一半无限大完

纯导体。事实上当激磁频率为50 hz 时,只有当铝板表面相对扁平盘状线圈足够大,而厚度

b 远大于该频率下铝板的透入深度d ,才能作这一理想化假设。在此前提下,应用镜像法,

可导得该磁系统的自感为 式中, a —— 盘状线圈被理想化为单匝圆形线圈时的平均半径; n —— 线匝数;

r —— 导线被看作圆形导线时的等效圆半径。 当通入盘状线圈的激磁电流增大到使其与铝板中感生涡流合成的磁场,对盘状载流线圈

作用的电磁力足以克服线圈自重时,线圈即浮离铝板,呈现自稳定的磁悬浮物理现象。此时,

作用于盘状载流线圈的向上的电磁力必然等于该线圈的重量。现应用虚位移法来求取作用于

该 磁悬浮系统的电动推斥力。对盘状载流线圈和铝板组合的磁系统,其对应于力状态分析

的磁

2场能量为wm=l*i/2。式中,i 为激磁电流的有效值。其次,取盘状载流线圈与铝板之

间相对

位移h (即给定的悬浮高度)为广义坐标,按虚位移法可求得作用于该系统的电动推斥

力,也就是作用于盘状载流线圈的向上的电磁悬浮力 从而,由稳定磁悬浮状态下力的平衡关系,即 式中,m —— 盘状线圈的质量(kg); g —— 重力加速度(9.8 m/s2); 即可得对于给定悬浮高度 h 的磁悬浮状态,系统所需激磁电流为

三、实验内容

(1)观察自稳定的磁悬浮物理现象

(2)实测对应于不同悬浮高度的盘状线圈的激励电流

四、操作方法和实验步骤

1、观察自稳定的磁悬浮物理现象 在给定厚度为14 mm的铝板情况下,通过调节自耦

变压器以改变输入盘状线圈的激磁电流,从 而观察在不同给定悬浮高度h 的条件下,起因于

铝板表面层中涡流所产生的去磁效应,而导致的自稳 定的磁悬浮物理现象

2、实测对应于不同悬浮高度的盘状线圈的激磁电流 在厚度为14 mm的铝板情况下,

以5 mm为步距,对应于不同的悬浮高度,逐点测量稳定磁悬浮 状态下盘状线圈中的激磁电

流,记录其悬浮高度h 与激磁电流i 的相应读数。

3、观察不同厚度的铝板对自稳定磁悬浮状态的影响 分别在厚度为14 mm 和厚度为6 mm

的两种铝板情况下, 对应于相同的激磁电流(如i = 20 a), 观察并读取相应的悬浮高度h

的读数,且用手直接感觉在该两种铝板情况下铝板底面的温度

五、实验结果与结论

悬浮高度h 与激磁电流i 的响应关系 悬浮高度h 激磁电流i 仿真结果 序号 理论值(a ) (cm ) (a ) (a ) 1 0.4 17.0

5.23 15.7 2 0.8 18.5 7.40 18.8 3 1.0 19.8 8.28 19.3 4 1.7 20.0 10.79

21.4 5 2.0 21.5 11.71 22.1 6 2.8 23.8 13.85 24.3 仿真结果:

磁场线图 当悬浮高度为2.8cm 时求解 在悬浮高度与激励电流关系中,实验实测数据和理论值的偏差很大,但是总体趋势相同,

都是随着高度增加而增大。 实测值与仿真结果比较接近。理论值的推导过程中在等效半径的

估计上,a 取(r1+r2)/2是偏大的,而且悬浮高度越小偏大越明显。 实际磁场并不能忽略

边缘效应,而且漏磁不可忽略,也造成了一定的实测电流偏大。因此在实验中,电流比较小

的情况下,理论值与真实值的误差会变得非常大,也就会出现上表中的情况。 附:命令流

/clear

! 定义参数,单位均采用国际制单位 cr1=0.031 ! 盘状线圈内半径 cr2=0.195 ! 盘状线圈外半径 ch=0.0125 ! 盘状线圈高度 n=250 ! 线圈匝数

lh=0.014 ! 铝板高度 lr1=0.02 ! 铝板内半径 lr2=0.25 ! 铝板外半径 pi=2*asin(1) ! 3.1415926

xfh=0.008 ! 线圈悬浮高度,分析中可改变参数 w=lr2 ! 场域外空气范围相关尺寸 h=lh+xfh+ch ! 场域外空气范围相关尺寸 im0=18.80 ! 线圈电流,分析中需调整的参数 js0=im0*n*sqrt(2)/((cr2-cr1)*ch) ! 线圈截面上的电流密度(幅值) ! 前处理

/prep7 ! 前处理

et, 1, plane53, , , 1 ! 指定单元类型,轴对称场分析 mp, murx, 1, 1 ! 指定1 号材料(空气)的相对磁导率 mp, murx, 2, 1 ! 指定2 号材料(线圈)的相对磁导率 mp, murx, 3, 1 ! 指定3 号

材料(铝板)的相对磁导率 mp, rsvx, 3, 2.62e-8 ! 指定3 号材料(铝板)的电阻率 ! 建

立几何模型

! 铝板

rectng, 0, lr1, 0, lh rectng, 0, lr2, 0, lh ! 线圈

rectng, 0, cr1, lh+xfh, lh+xfh+ch rectng, 0, cr2, lh+xfh, lh+xfh+ch ! 外围空气区域及整个分析场域 rectng, 0, lr2, 0, lh+xfh+ch rectng, 0, w+h, -h, 2*h rectng, 0, w+8*h, -5*h, 6*h aovlap, all

! 对几何模型(即,面)设置属性 ! 选择线圈所对应的面,根据位置来选择 asel, s, loc, x, cr1, cr2 asel, r, loc, y, lh+xfh, lh+xfh+ch lsel, s, loc, x, cr1 asll, r

aatt, 2, , 1, 0,

! 选择铝板

asel, s, loc, x, lr1, lr2 asel, r, loc, y, 0, lh lsel, s, loc, x, lr1 asll, r

aatt, 3, , 1, 0,

! 选择空气

allsel

asel, u, mat, , 2, 3 aatt, 1, , 1, 0

! 剖分,建立网格

! 先划分铝板所在区域 asel, s, mat, , 3

esize, 0.003

amesh, all

! 划分线圈所在区域

asel, s, mat, , 2 ! 根据材料号来选择线圈 esize, 0.003 ! 定义单元尺寸为0.003 m amesh, all ! 剖分线圈所对应的面 ! 划分线圈外的空气区域 lsel, s, loc, y, 0, h

lsel, r, loc, x, 0 asll

cm, airin, area

mshape, 1, 2d

amesh, all

esize, 0.02

! 划分线圈内的空气区域 smrtsize, 6

mshape, 1, 2d ! 三角形单元 mshkey, 0 ! 自由剖分 asel, s, mat, , 1

cmsel, u, airin

amesh, all

! 加载线圈电流密度

asel, s, mat, , 2

esla

bfe, all, js, , , , js0

! 加载外边界磁力线平行边界条件 allsel

lsel, s, ext ! 选择外边界处的线 dl, all, , asym ! 磁力线平行 allsel

! 加载求力边界条件

asel, s, mat, , 2

esla

cm, ccoil, elem

fmagbc, ccoil

allsel

save

finish

/solu

antype, 3

harfrq,50 ! 指定分析频率为50 hz. solve ! 求解

finish

/post1 ! 后处理

set, 1, , 1, 0 ! 读实部结果 plf2d,27,0,10,1 ! 画实部结果对应的磁场线图 fmagsum, ccoil ! 求线圈所受力 set, 1, , 1, 1 ! 读虚部结果 plf2d,27,0,10,1 ! 画虚部结果对应的磁场线图篇二:磁悬浮实验报告 课程名称: 工程电子场与电磁波 指导老师:________熊素铭 实验名称:_ 磁悬浮 _实验类型: 动手操作及仿真 同组学生

姓名: 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主

要仪器设备(必填) 五、实验数据记录和处理 七、讨论、心得

四、操作方法和实验步骤

六、实验结果与分析(必填) 实验报告

一、实验目的和要求

1、观察自稳定的磁悬浮物理现象;

2、了解磁悬浮的作用机理及其理论分析的基础知识;

3、在理论分析与实验研究相结合的基础上,力求深化对磁场能量、电感参数和电磁力等

知识点的理解。

二、实验内容

1、观察自稳定的磁悬浮物理现象

2、实测对应于不同悬浮高度的盘状线圈的激磁电流 3、观察不同厚度的铝板对自稳定磁

悬浮状态的影响

实验原理

1、自稳定的磁悬浮物理现象 由盘状载流线圈和铝板相组合构成磁悬浮系统的实验装

置,如图2-6所示。该系统中可调节的扁 平盘状线圈的激磁电流由自耦变压器提供,从而在

50 hz 正弦交变磁场作用下,铝质导板中将产生感 应涡流,涡流所产生的去磁效应,即表征

为盘状载流线圈自稳定的磁悬浮现象。

2、基于虚位移法的磁悬浮机理的分析 在自稳定磁悬浮现象的理想化分析的前提下,

根据电磁场理论可知,铝质导板应被看作为完纯导 体,但事实上当激磁频率为50 hz 时,铝

质导板仅近似地满足这一要求。为此,在本实验装置的构造 中,铝质导板设计的厚度b 还必须远大于电磁波正入射平表面导体的透入深度d (b )。

换句话说,在理想化的理论分析中,就交变磁场的作用而言,此时,该铝质导板可被看作为

“透不过的导体”。 对于给定悬浮高度的自稳定磁悬浮现象,显然,作用于盘状载流线圈的

向上的电磁力必然等于该线圈的重量。本实验中,当通入盘状线圈的激磁电流增大到使其与

铝板中感生涡流合成的磁场,对盘状载流线圈作用的电磁力足以克服线圈自重时,线圈即浮

离铝板,呈现自稳定的磁悬浮物理现象。现应用虚位移法来求取作用于该磁悬浮系统的电动

推斥力。

首先,将图2-1所示盘状载流线圈和铝板的组合看成一个磁系统,则其对应于力状态分

析的磁场能量 式中,i 为激磁电流的有效值。其次,取表征盘状载流线圈与铝板之间相对位移的广义

坐标为h (即给定的悬浮高度),则按虚位移法可求得作用于该系统的电动推斥力,也就是作

用于盘状载流线圈的向上的电磁悬浮力 (2-1) 在铝板被看作为完纯导体的理想化假设的前提下,应用镜像法,可以导得该磁系统的自

感为

(2-2) 式中,a ——盘状线圈被理想化为单匝圆形线圈时的平均半径;n ——线匝数;r ——导线

被看作圆形导线时的等效圆半径。从而,由稳定磁悬浮状态下力的平衡关系,即 式中,m —— 盘状线圈的质量(kg);g —— 重力加速度(9.8 m/s2); 进一步代入关系

式(2-2),稍加整理,便可解出对于给定悬浮高度h 的磁悬浮状态,系统所需激磁电流为

三、 主要仪器设备 磁悬浮装置

铝板:b=14mm,b=2mm,γ=3.82e7 s/m 盘状线圈:n=250,r1=31mm,r2=195mm,h=12.5mm,m=3.1kg 自耦变压器:0~100v,0~30a, 50hz 电流表

四、 操作方法和实验步骤

1、观察自稳定的磁悬浮物理现象 在给定厚度为14 mm 的铝板情况下,通过调节自耦变

压器以改变输入盘状线圈的激磁电流,从而观察在不同给定悬浮高度h 的条件下,起因于铝

板表面层中涡流所产生的去磁效应,而导致的自稳定的磁悬浮物理现象

2、实测对应于不同悬浮高度的盘状线圈的激磁电流 在厚度为14 mm 的铝板情况下,以

5 mm为步距,对应于不同的悬浮高度,逐点测量稳定磁悬浮状态下盘状线圈中的激磁电流,

记录其悬浮高度h 与激磁电流i 的相应读数。

3、观察不同厚度的铝板对自稳定磁悬浮状态的影响 分别在厚度为14 mm 和厚度为6 mm

的两种铝板情况下, 对应于相同的激磁电流(如i = 20 a),观察并读取相应的悬浮高度h 的

读数,且用手直接感觉在该两种铝板情况下铝板底面的温度

五、实验结果与结论

2、铝板的透入深度d

d=1.883e-2 m

六、实验仿真结果

1.磁场分布图像

(1)需部结果对应的磁场图 x方向磁场

y方向磁场 篇三:磁悬浮实验报告 实验报告

课程名称:__工程电磁场与波____指导老师:_____姚缨英_____ 实验名称: 磁悬浮 _实验类型:____ ____同组学生姓名:____

一、实验目的和要求(必填) 二、实验内容和原理(必填)

三、主要仪器设备(必填) 四、操作方法和实验步骤

五、实验数据记录和处理 六、实验结果与分析(必填)

七、讨论、心得

一、实验目的

1、观察自稳定的磁悬浮物理现象;

2、了解磁悬浮的作用机理及其理论分析的基础知识;

3、在理论分析与实验研究相结合的基础上,力求深化对磁场能量、电感参数和电磁力等

知识

点的理解。

二、实验原理

(1)自稳定的磁悬浮物理现象 由盘状载流线圈和铝板相组合构成磁悬浮系统的实验装置,该系统中可调节的扁平盘状

线圈的激磁电流由自耦变压器提供,从而在50 hz正弦交变磁场作用下,铝质导板中将产生

感应涡流,最终表征为盘状载流线圈自稳定的磁悬浮现象。

(2)基于虚位移法的磁悬浮机理的分析 将盘状载流线圈和铝板组合看成一个磁系统。为简化分析,将铝板看作为一半无限大完

纯导体。事实上当激磁频率为50 hz 时,只有当铝板表面相对扁平盘状线圈足够大,而厚度

b 远大于该频率下铝板的透入深度d ,才能作这一理想化假设。在此前提下,应用镜像法,

可导得该磁系统的自感为 式中, a —— 盘状线圈被理想化为单匝圆形线圈时的平均半径; n —— 线匝数;

r —— 导线被看作圆形导线时的等效圆半径。 当通入盘状线圈的激磁电流增大到使其与铝板中感生涡流合成的磁场,对盘状载流线圈

作用的电磁力足以克服线圈自重时,线圈即浮离铝板,呈现自稳定的磁悬浮物理现象。此时,

作用于盘状载流线圈的向上的电磁力必然等于该线圈的重量。现应用虚位移法来求取作用于

该 磁悬浮系统的电动推斥力。对盘状载流线圈和铝板组合的磁系统,其对应于力状态分析

的磁

2场能量为wm=l*i/2。式中,i 为激磁电流的有效值。其次,取盘状载流线圈与铝板之

间相对

位移h (即给定的悬浮高度)为广义坐标,按虚位移法可求得作用于该系统的电动推斥

力,也就是作用于盘状载流线圈的向上的电磁悬浮力 从而,由稳定磁悬浮状态下力的平衡关系,即 式中,m —— 盘状线圈的质量(kg); g —— 重力加速度(9.8 m/s2); 即可得对于给定悬浮高度 h 的磁悬浮状态,系统所需激磁电流为

三、实验内容

(1)观察自稳定的磁悬浮物理现象

(2)实测对应于不同悬浮高度的盘状线圈的激励电流

四、操作方法和实验步骤

1、观察自稳定的磁悬浮物理现象 在给定厚度为14 mm的铝板情况下,通过调节自耦

变压器以改变输入盘状线圈的激磁电流,从 而观察在不同给定悬浮高度h 的条件下,起因于

铝板表面层中涡流所产生的去磁效应,而导致的自稳 定的磁悬浮物理现象

2、实测对应于不同悬浮高度的盘状线圈的激磁电流 在厚度为14 mm的铝板情况下,

以5 mm为步距,对应于不同的悬浮高度,逐点测量稳定磁悬浮 状态下盘状线圈中的激磁电

流,记录其悬浮高度h 与激磁电流i 的相应读数。

3、观察不同厚度的铝板对自稳定磁悬浮状态的影响 分别在厚度为14 mm 和厚度为6 mm

的两种铝板情况下, 对应于相同的激磁电流(如i = 20 a), 观察并读取相应的悬浮高度h

的读数,且用手直接感觉在该两种铝板情况下铝板底面的温度

五、实验结果与结论

悬浮高度h 与激磁电流i 的响应关系 悬浮高度h 激磁电流i 仿真结果 序号 理论值(a ) (cm ) (a ) (a ) 1 0.4 17.0

5.23 15.7 2 0.8 18.5 7.40 18.8 3 1.0 19.8 8.28 19.3 4 1.7 20.0 10.79

21.4 5 2.0 21.5 11.71 22.1 6 2.8 23.8 13.85 24.3 仿真结果:

磁场线图 当悬浮高度为2.8cm 时求解 在悬浮高度与激励电流关系中,实验实测数据和理论值的偏差很大,但是总体趋势相同,

都是随着高度增加而增大。 实测值与仿真结果比较接近。理论值的推导过程中在等效半径的

估计上,a 取(r1+r2)/2是偏大的,而且悬浮高度越小偏大越明显。 实际磁场并不能忽略

边缘效应,而且漏磁不可忽略,也造成了一定的实测电流偏大。因此在实验中,电流比较小

的情况下,理论值与真实值的误差会变得非常大,也就会出现上表中的情况。 附:命令流

/clear

! 定义参数,单位均采用国际制单位 cr1=0.031 ! 盘状线圈内半径 cr2=0.195 ! 盘状线圈外半径 ch=0.0125 ! 盘状线圈高度 n=250 ! 线圈匝数

lr1=0.02 ! 铝板内半径 lr2=0.25 ! 铝板外半径 pi=2*asin(1) ! 3.1415926

xfh=0.008 ! 线圈悬浮高度,分析中可改变参数 w=lr2 ! 场域外空气范围相关尺寸 h=lh+xfh+ch ! 场域外空气范围相关尺寸 im0=18.80 ! 线圈电流,分析中需调整的参数 js0=im0*n*sqrt(2)/((cr2-cr1)*ch) ! 线圈截面上的电流密度(幅值) ! 前处理

/prep7 ! 前处理

et, 1, plane53, , , 1 ! 指定单元类型,轴对称场分析 mp, murx, 1, 1 ! 指定1 号材料(空气)的相对磁导率 mp, murx, 2, 1 ! 指定2 号材料(线圈)的相对磁导率 mp, murx, 3, 1 ! 指定3 号材料(铝板)的相对磁导率 mp, rsvx, 3, 2.62e-8 ! 指定3 号材料(铝板)的电阻率 ! 建立几何模型 ! 铝板

rectng, 0, lr1, 0, lh rectng, 0, lr2, 0, lh ! 线圈

rectng, 0, cr1, lh+xfh, lh+xfh+ch rectng, 0, cr2, lh+xfh, lh+xfh+ch ! 外围空

气区域及整个分析场域 rectng, 0, lr2, 0, lh+xfh+ch rectng, 0, w+h, -h, 2*h rectng, 0, w+8*h, -5*h, 6*h aovlap, all

! 对几何模型(即,面)设置属性 ! 选择线圈所对应的面,根据位置来选择 asel, s, loc, x, cr1, cr2 asel, r, loc, y, lh+xfh, lh+xfh+ch lsel, s, loc, x, cr1 asll, r

aatt, 2, , 1, 0,

! 选择铝板

asel, s, loc, x, lr1, lr2 asel, r, loc, y, 0, lh lsel, s, loc, x, lr1 asll, r

aatt, 3, , 1, 0,

! 选择空气

allsel

asel, u, mat, , 2, 3 aatt, 1, , 1, 0

! 剖分,建立网格

! 先划分铝板所在区域

esize, 0.003

amesh, all

! 划分线圈所在区域

asel, s, mat, , 2 ! 根据材料号来选择线圈 esize, 0.003 ! 定义单元尺寸为0.003 m

amesh, all ! 剖分线圈所对应的面 ! 划分线圈外的空气区域 lsel, s, loc, y, 0, h lsel, r, loc, x, 0

asll

cm, airin, area

mshape, 1, 2d

amesh, all篇四:物理演示实验报告(磁悬浮列车演示实验报告) 磁悬浮列车演示实验报告

【实验目的】

1.利用超导体对永磁体的排斥作用演示磁悬浮;

【实验器材】

1.超导磁悬浮列车演示仪,如图70-1所示。由二部分组成:磁导轨支架、磁导轨。其

中磁导轨是用550 × 240 × 3椭圆形低碳钢板作磁轭,按图70-2所示的方式铺以18 × 10

×6 mm的钕铁硼永磁体,形成磁性导轨,两边轨道仅起保证超导体周期运动的磁约束作用。

2.高温超导体,是用熔融结构生长工艺制备的,含ag 的ybacuo 系高温超导体。之所以

称为高温超导体是因为它在液氮温度77kc (-196℃)下呈现出超导性,以区别于以往在液氦

温度42k (-269℃)以下呈现超导特性的低温材料。样品形状为:圆盘状,直径18 mm 左右,

厚度为6 mm ,其临界转变温度为90k 左右(-183℃)。

3.液氮。

上图:实验装置图

下图:磁导轨

【实验原理】

实验原理:

超导是超导电性的简称. 它是指金属或合金在极低温度下(接近绝对零度) 电阻变为零的

性质. 它是一种宏观量子现象, 只有依据量子力学才能给与正确的微观解释. 这就是bcs 理论. 这是一台高临界温度超导磁悬浮的动态演示装置. 该装置为一个盛放高临界温度超导体

的简易列车模型, 在具有磁束缚的封闭磁轨道上方, 利用超导体对永磁体的排斥作用, 演示磁

悬浮;; 并可在旋转磁场加速装置作用下, 沿轨道以悬浮或倒挂悬浮状态无磨擦地连续运转. 当将一个永磁体移近钇钡铜氧ybacuo 超导体表面时, 磁通线从表面进入超导体内, 在超

导体内形成很大的磁通密度梯度, 感应出高临界电流, 从而对永磁体产生排斥, 排斥力随相对

距离的减小而逐渐增大, 它可以克服永磁体的重力使其悬浮在超导体上方一定的高度上; 高

温超导体是用熔融结构生长工艺制备的含ag 的ybacuo 系高温超导体, 所以称为高温超导体是

因为它在液氮温度 77k(-196°c) 下呈现出超导性, 以区别于以往在液氦温度42k(-269°c) 下呈现出超导性

的低温材料. 它的形状为圆盘形, 其临界转变温度为90k(-183°c). 超导体样品放在一铝制的

列车模型中, 四周包有起热屏蔽作用的铝箔, 这样可使超导体在移开液氮后仍能在一段时间内

保持自身温度在其临界温度以下, 以延长演示时间. 磁性轨道是用钢板加工成椭圆形轨道

用作磁轭, 上面铺以钕铁硼(ndfeb)永磁块(表磁为0.4t) 形成磁性导轨. 两边轨道起保证超导

体周期运动的磁约束作用.

加速装置是使永磁体绕水平轴旋转在竖直面内产生旋转磁场的方法来实现的. 在扁圆柱

形的尼龙轮上, 镶有四块钕铁硼(ndfeb)磁块, 尼龙轮固定在玩具电机轴上, 电机又固定在磁

轨道面的正上方. 当电机快速转动时, 在此导轨面的上方产生一绕水平轴旋转的磁场. 若磁场

转向与超导体在轨道面上前进的方向同向时, 则当超导体通过磁旋转磁场的下方时便产生一

驱动超导块加速前进的磁驱动力, 从而起加速作用.

【实验操作与现象】

1.演示磁悬浮

将超导体样品放入液氮中浸泡约3—5分钟,然后用竹夹子将其夹出放在磁体的中央,使

其悬浮在高度为10mm ,以保持稳定。再用手沿轨道水平方向轻推样品(导体),则看到样品

将沿磁轨道做周期性水平运动,直到温度高于临界温度(大约90 k),样品落到轨道上。

【注意事项】

1、样品放入液氮中,必须充分冷却、直至液氮中无气泡为止;

2、演示时,样品一定用竹夹子夹住,千万不要掉在地上,以免样品摔碎;

3、演示时,沿水平方向轻推样品,速度不能太大,否则样品将沿直线冲出轨道;

4、演示倒挂时,当样品运动一段时间后,由于温度生高,样品失去超导性 而下落,这时应用手接住它,否则,样品将摔坏;

5、超导块最好保存在干燥箱内,防止受潮脱落。

【实验心得】

在这次的物理演示实验中我受益良多,看到许多有趣的物理现象,并且充分认识到了物

理学的奇妙之处。以前学习物理总感觉虽然学的理论知识很多,但却很难让我们看到它的实

际用处,而经过这次物理演示实验我才充分看到了原来学的物理知识在生活中的应用是很广

泛的,感受到了物理的独特魅力。在这次实验中给我印象深刻的就是磁悬浮列车演示实验,

因为这是已经应用的高科技,它使列车的速度再次达到了一个质的飞跃。而其中所应用的物

理知识确是我们都知道的,所以物理学是很神奇的,如果能把所有的物理知识全都转化为实

际的技术,那我们的生活就会发生天翻地覆的变化。总之,经过这次物理演示实验,让我对

物理有了新的认识:物理是一门既实用又有趣的学科。篇五:磁悬浮列车演示实验报告 磁悬浮列车演示实验报告

【实验目的】

1.利用超导体对永磁体的排斥作用演示磁悬浮;

【实验器材】

1.超导磁悬浮列车演示仪,如下图所示。由两部分组成:磁导轨支架、磁导轨。其中磁

导轨是用550 × 240 × 3椭圆形低碳钢板作磁轭,按图70-2所示的方式铺以18 × 10×6

mm 的钕铁硼永磁体,形成磁性导轨,两边轨道仅起保证超导体周期运动的磁约束作用。

2.高温超导体,是用熔融结构生长工艺制备的,含ag 的ybacuo 系高温超导体。之所以

称为高温超导体是因为它在液氮温度77kc (-196℃)下呈现出超导性,以区别于以往在液氦

温度42k (-269℃)以下呈现超导特性的低温材料。样品形状为:圆盘状,直径18 mm 左右,

厚度为6 mm ,其临界转变温度为90k 左右(-183℃)。

3.液氮。

上图:实验装置图

下图:磁导轨

【实验原理】

实验原理:

超导是超导电性的简称. 它是指金属或合金在极低温度下(接近绝对零度) 电阻变为零的

性质. 它是一种宏观量子现象, 只有依据量子力学才能给与正确的微观解释. 这就是bcs 理论.

这是一台高临界温度超导磁悬浮的动态演示装置. 该装置为一个盛放高临界温度超导体

的简易列车模型, 在具有磁束缚的封闭磁轨道上方, 利用超导体对永磁体的排斥作用, 演示磁

悬浮;; 并可在旋转磁场加速装置作用下, 沿轨道以悬浮或倒挂悬浮状态无磨擦地连续运转. 当将一个永磁体移近钇钡铜氧ybacuo 超导体表面时, 磁通线从表面进入超导体内, 在超

导体内形成很大的磁通密度梯度, 感应出高临界电流, 从而对永磁体产生排斥, 排斥力随 相对距离的减小而逐渐增大, 它可以克服永磁体的重力使其悬浮在超导体上方一定的高

度上; 高温超导体是用熔融结构生长工艺制备的含ag 的ybacuo 系高温超导体, 所以称为高

温超导体是因为它在液氮温度77k(-196°c) 下呈现出超导性, 以区别于以往在液氦温度 42k(-269°c) 下呈现出超导性的低温材料. 它的形状为圆盘形, 其临界转变温度为

90k(-183°

c).超导体样品放在一铝制的列车模型中, 四周包有起热屏蔽作用的铝箔, 这样可使超导

体在 移开液氮后仍能在一段时间内保持自身温度在其临界温度以下, 以延长演示时间. 磁性轨道是用钢板加工成椭圆形轨道用作磁轭, 上面铺以钕铁硼(ndfeb)永磁块(表磁为

0.4t) 形成磁性导轨. 两边轨道起保证超导体周期运动的磁约束作用. 加速装置是使永磁体绕水平轴旋转在竖直面内产生旋转磁场的方法来实现的. 在扁圆柱

形的尼龙轮上, 镶有四块钕铁硼(ndfeb)磁块, 尼龙轮固定在玩具电机轴上, 电机又固定在磁

轨道面的正上方. 当电机快速转动时, 在此导轨面的上方产生一绕水平轴旋转的磁场. 若磁场

转向与超导体在轨道面上前进的方向同向时, 则当超导体通过磁旋转磁场的下方时便产生一

驱动超导块加速前进的磁驱动力, 从而起加速作用.

【实验操作与现象】

1. 演示磁悬浮

将超导体样品放入液氮中浸泡约3—5分钟,然后用竹夹子将其夹出放在磁体的中央,使

其悬浮在高度为10mm ,以保持稳定。再用手沿轨道水平方向轻推样品(导体),则看到样品

将沿磁轨道做周期性水平运动,直到温度高于临界温度(大约90 k),样品落到轨道上。

【注意事项】

1、样品放入液氮中,必须充分冷却、直至液氮中无气泡为止;

2、演示时,样品一定用竹夹子夹住,千万不要掉在地上,以免样品摔碎;

3、演示时,沿水平方向轻推样品,速度不能太大,否则样品将沿直线冲出轨道;

4、演示倒挂时,当样品运动一段时间后,由于温度生高,样品失去超导性而下落,这时

应用手接住它,否则,样品将摔坏;

5、超导块最好保存在干燥箱内,防止受潮脱落。

【实验心得】

如果说苹果砸在牛顿头上是一种偶然,而他由此发现万有引力定律更是一种机遇,那么

大学物理演示演实验室,则将这种偶然化为了平凡,然而谁会撞上牛顿般的机遇呢?与其说

我的演示实验室一行是为了完成老师给的任务不如说是为了寻秘世间众多复杂事物背后的浅

显真理,但大自然的奇迹早已偷走了我欲思考的心,而仅仅留下一种沉迷与忘我。还未来得

及走出众多新奇现象,老师的催促声就已阻断了我通往现象背后简短原理的解释之路。于是

我只能收寻斑驳的记忆,更多的是加上自己的一点拙见,算是探究了一番。 物理演示实验的种种奇观早已超出了美学的领地上升到了神秘而又新奇惹人爱慕的境界。

我无法抗拒它奇秘的诱惑,因而仅仅漂浮在其表象,未能来得及深入其内脏以一探究竟。加

之我本粗陋的知识储备,更无缘其美了。对此我感到深深遗憾。但我相信,我的虔诚是在揭

示一个真理:我们真正应做的不是去思考这现象背后已被揭穿的真理,而是去寻找这些现象

的良佳去处,即怎样才能把它们更多的应用到实践中去,以利于人们的生活。尽管我给它们

物色的对象是如此粗陋。 此行与其说是获得了知识,开阔了眼界不如说是培养了我的兴趣与对神秘自然的热爱。我永不会忘记,忘记记忆中的那份痴迷与投入。未来的路上我将陪你一起走过,走过一个有意义的人生,那可爱的自然科学。


相关文章

  • 课题综合实验--开题报告
  • 课题:基于磁悬浮轴承的开关磁阻电机提速研究 电气工程专业研究-创新性实验 开题报告 班级: 姓名: 1 选题 本课题拟将磁轴承和开关磁阻电机结合进行模拟集成化设计,采用双端对称三自由度磁轴承结构实现电机悬浮,最高转速预计达到30000rpm ...查看


  • 磁悬浮小球哈工大控制
  • 研究生自动控制专业实验 地点:A区主楼518房间 姓名: 史帅刚 实验日期: 2015 年 3 月 28 日 斑号: 14S0421 学号: 14S104009 机组编号: 同组人:张海东 朱宁 高依然 李俊伟 成绩 教师签字: 磁悬浮小球 ...查看


  • 水样检测报告
  • 1 采样 根据<水质 湖泊和水库采样技术指导(GB/14581-93)>,水质控制的采样点应设在靠近用水的取水口及主要水源的入口.本水样的采样时间.采样地点.采样方法均未知,故称X水样. 2 水样保存 应采用2℃恒温冷藏的方法保 ...查看


  • 恒压过滤常数测定实验------实验报告
  • 恒压过滤常数测定实验 一.实验目的 1. 熟悉板框压滤机的构造和操作方法. 2. 通过恒压过滤实验,验证过滤基本理论. 3. 学会测定过滤常数K.qe.τe及压缩性指数s的方法. 4. 了解过滤压力对过滤速率的影响. 二.基本原理 过滤是以 ...查看


  • 生命与环境科学学院试验报告
  • 生命与环境科学学院试验报告 实验课名称水污染控制工程试验名称活性污泥充氧实验装置--CAST 工艺成绩 姓名师蕾班级 14环境工程学号14054024组别二时间 2016.11.16 前言:活性污泥法是应用最广泛的一种好氧生物处理方法,许多 ...查看


  • 高分子化学实验讲义
  • 高分子化学实验讲义 生命科学学院高分子化学精品课程小组编写 二〇〇八年八月 目 录 第一部分 实验指导„„„„„„„„„„„„„„„„„„„„„„„„„„„ 1 第二部分 必做实验„„„„„„„„„„„„„„„„„„„„„„„„„„„ 4 ...查看


  • 污水水质检测实验报告模板
  • 实验题目: 实验2-9校园内湖塘接纳污水水质监测 姓 名: 学 号: 班 级: 组 别: 指导教师: 1.实验概述 1.1实验目的及要求 校园内湖塘是校园生活污水和雨水的接纳水体.本实验旨在了解各湖塘接纳污水水质情况,掌握铬法测定污水COD ...查看


  • 微生物学实验教案
  • 微生物学实验 实验项目名称和学时分配 说明:在上述12个实验中根据实验材料情况压缩合并成9个实验. 实验内容.要求和所用设备 1. 实验内容 实验一 显微镜的使用和真菌形态的观察 一.[目的要求] 熟悉普通光学显微镜各部分的结构和性能. 观 ...查看


  • 浮沉子实验报告
  • 可乐瓶里的浮沉子实验报告 制作人:甘胜军(2008130168).张萍萍(2008130113) 实验器材:可乐瓶1个,小药瓶1个 实验装置: 实验现象:开始小药瓶悬浮在水中:用手挤压可乐瓶,就可以看到小药瓶下沉了:松开 手, 小药瓶又浮了 ...查看


热门内容