连杆夹具课程设计

韶 关 学 院

课程设计说明书

题 目:汽车连杆的机械加工工艺规程及工艺

装备设计

学生姓名:林鸿海

学 号:[1**********]

系(院):物理与机电工程学院机电系

专 业:机械设计制造及其自动化

班 级:3班

指导教师姓名及职称:胡松喜讲师,李湘勤助教

起止时间:

目录

第一章 汽车连杆加工工艺 1.1 连杆的结构特点 --------------------------------------------------------------------------------(1) 1.2 连杆的主要技术要求---------------------------------------------------------------------------(1) 1.3连杆的材料和毛坯 -----------------------------------------------------------------------------(3) 1.4连杆的机械加工工艺过程----------------------------------------------------------------------(5) 1.5 连杆的机械加工工艺过程分析 -------------------------------------------------------------(7) 1.6 连杆加工工艺设计应考虑的问题 -----------------------------------------------------------(10) 1.7 切削用量的选择原则 --------------------------------------------------------------------------(11) 1.8 确定各工序的加工余量、计算工序尺寸及公差-------------------------------------------(12) 1.9 计算工艺尺寸链 ------------------------------------------------------------------------------(15) 1.10 工时定额的计算 ------------------------------------------------------------------------------(17) 1.11 连杆的检验 ------------------------------------------------------------------------------------(27) 第二章 夹具设计 2.1夹具的定义及分类-------------------------------------------------------------------------------(28)

2.2设计机床夹具的方法和步骤-------------------------------------------------------------------(28)

2.3设计机床夹具时应注意的问题----------------------------------------------------------------(29)

2.4夹具零部件的选择-------------------------------------------------------------------------------(30) 结束语:-------------------------------------------------------------------------------------------------(32)

摘 要

连杆是柴油机的主要传动件之一,本文主要论述了连杆的加工工艺及其夹具设计。连杆的尺寸精度、形状精度以及位置精度的要求都很高,而连杆的刚性比较差,容易产生变形,因此在安排工艺过程时,就需要把各主要表面的粗精加工工序分开。逐步减少加工余量、切削力及内应力的作用,并修正加工后的变形,就能最后达到零件的技术要求。

第一章 汽车连杆加工工艺

1.1 连杆的结构特点

连杆是汽车发动机中的主要传动部件之一,它在柴油机中,把作用于活塞顶面的膨胀的压力传递给曲轴,又受曲轴的驱动而带动活塞压缩气缸中的气体。连杆在工作中承受着急剧变化的动载荷。连杆由连杆体及连杆盖两部分组成。连杆体及连杆盖上的大头孔用螺栓和螺母与曲轴装在一起。为了减少磨损和便于维修,连杆的大头孔内装有薄壁金属轴瓦。轴瓦有钢质的底,底的内表面浇有一层耐磨巴氏合金轴瓦金属。在连杆体大头和连杆盖之间有一组垫片,可以用来补偿轴瓦的磨损。连杆小头用活塞销与活塞连接。小头孔内压入青铜衬套,以减少小头孔与活塞销的磨损,同时便于在磨损后进行修理和更换。

在发动机工作过程中,连杆受膨胀气体交变压力的作用和惯性力的作用,连杆除应具有足够的强度和刚度外,还应尽量减小连杆自身的质量,以减小惯性力的作用。连杆杆身一般都采用从大头到小头逐步变小的工字型截面形状。为了保证发动机运转均衡,同一发动机中各连杆的质量不能相差太大,因此,在连杆部件的大、小头两端设置了去不平衡质量的凸块,以便在称量后切除不平衡质量。连杆大、小头两端对称分布在连杆中截面的两侧。考虑到装夹、安放、搬运等要求,连杆大、小头的厚度相等(基本尺寸相同)。在连杆小头的顶端设有油孔(或油槽),发动机工作时,依靠曲轴的高速转动,把气缸体下部的润滑油飞溅到小头顶端的油孔内,以润滑连杆小头衬套与活塞销之间的摆动运动副。

连杆的作用是把活塞和曲轴联接起来,使活塞的往复直线运动变为曲柄的回转运动,以输出动力。因此,连杆的加工精度将直接影响柴油机的性能,而工艺的选择又是直接影响精度的主要因素。反映连杆精度的参数主要有5个:(1)连杆大端中心面和小端中心面相对连杆杆身中心面的对称度;(2)连杆大、小头孔中心距尺寸精度;(3)连杆大、小头孔平行度;(4)连杆大、小头孔尺寸精度、形状精度;(5)连杆大头螺栓孔与接合面的垂直度。

1.2 连杆的主要技术要求

连杆上需进行机械加工的主要表面为:大、小头孔及其两端面,连杆体与连杆盖的结合面及连杆螺栓定位孔等。连杆总成的主要技术要求(图1-1)如下。

图(1—1)连杆总成

1.2.1 大、小头孔的尺寸精度、形状精度

为了使大头孔与轴瓦及曲轴、小头孔与活塞销能密切配合,减少冲击的不良影响和便于传热。大头孔公差等级为IT6,表面粗糙度Ra应不大于0.4μm;大头孔的圆柱度公差为0.012 mm,小头孔公差等级为IT8,表面粗糙度Ra应不大于3.2μm。小头压衬套的底孔的圆柱度公差为0.0025 mm,素线平行度公差为0.04/100 mm。

1.2.2 大、小头孔轴心线在两个互相垂直方向的平行度

两孔轴心线在连杆轴线方向的平行度误差会使活塞在汽缸中倾斜,从而造成汽缸壁磨损不均匀,同时使曲轴的连杆轴颈产生边缘磨损,所以两孔轴心线在连杆轴线方向的平行度公差较小;而两孔轴心线在垂直于连杆轴线方向的平行度误差对不均匀磨损影响较小,因而其公差值较大。两孔轴心线在连杆的轴线方向的平行度在100 mm长度上公差为0.04 mm;在垂直与连杆轴心线方向的平行度在100 mm长度上公差为0.06 mm。

1.2.3 大、小头孔中心距

大小头孔的中心距影响到汽缸的压缩比,即影响到发动机的效率,所以规定了比较高的要求:190±0.05 mm。

1.2.4 连杆大头孔两端面对大头孔中心线的垂直度

连杆大头孔两端面对大头孔中心线的垂直度,影响到轴瓦的安装和磨损,甚至引起烧伤;所以对它也提出了一定的要求:规定其垂直度公差等级应不低于IT9(大头孔两端面对大头孔的轴心线的垂直度在100 mm长度上公差为0.08 mm)。

1.2.5 大、小头孔两端面的技术要求

连杆大、小头孔两端面间距离的基本尺寸相同,但从技术要求是不同的,大头两端面的尺寸公差等级为IT9,表面粗糙度Ra不大于0.8μm, 小头两端面的尺寸公差等级为IT12,表面粗糙度Ra不大于6.3μm。这是因为连杆大头两端面与曲轴连杆轴颈两轴肩端面间有配合要求,而连杆小头两端面与活塞销孔座内档之间没有配合要求。连杆大头端面间距离尺寸的公差带正好落在连杆小头端面间距离尺寸的公差带中,这给连杆的加工带来许多方便。

1.2.6 螺栓孔的技术要求

在前面已经说过,连杆在工作过程中受到急剧的动载荷的作用。这一动载荷又传递到连杆体和连杆盖的两个螺栓及螺母上。因此除了对螺栓及螺母要提出高的技术要求外,对于安装这两个动力螺栓孔及端面也提出了一定的要求。规定:螺栓孔按IT8级公差等级和表面粗糙度Ra应不大于6.3μm加工;两螺栓孔在大头孔剖分面的对称度公差为0.25 mm。

1.2.7 有关结合面的技术要求

在连杆受动载荷时,接合面的歪斜使连杆盖及连杆体沿着剖分面产生相对错位,影响到曲轴的连杆轴颈和轴瓦结合不良,从而产生不均匀磨损。结合面的平行度将影响到连杆体、连杆盖和垫片贴合的紧密程度,因而也影响到螺栓的受力情况和曲轴、轴瓦的磨损。对于本连杆,要求结合面的平面度的公差为0.025 mm。

1.3 连杆的材料和毛坯

连杆在工作中承受多向交变载荷的作用,要求具有很高的强度。因此,连杆材料一般采用高强度碳钢和合金钢;如45钢、55钢、40Cr、40CrMnB等。近年来也有采用球墨铸铁的,粉末冶金零件的尺寸精度高,材料损耗少,成本低。随着粉末冶金锻造工艺的出现和应用,使粉末冶金件的密度和强度大为提高。因此,采用粉末冶金的办法制造连杆是一个很有发展前途的制造方法。

连杆毛坯制造方法的选择,主要根据生产类型、材料的工艺性(可塑性,可锻性)及零件对材料的组织性能要求,零件的形状及其外形尺寸,毛坯车间现有生产条件及采用先进的毛坯制造方法的可能性来确定毛坯的制造方法。根据生产纲领为大量生产,连杆多用模锻制造毛坯。连杆模锻形式有两种,一种是体和盖分开锻造,另一种是将体和盖锻成—体。整体锻造的毛坯,需要在以后的机械加工过程中将其切开,为保证切开后粗镗孔余量的均匀,最好将整体连杆大头孔锻成椭圆形。相对于分体锻造而言,整体锻造存在所需锻造设备动力大和金属纤维被切断等问题,但由于整体锻造的连杆毛坯具有材料损耗少、锻造工时少、模具少等优点,故用得越来越多,成为连杆毛坯的一种主要形式。总之,毛坯的种类和制造方法的选择应使零件总的生产成本降低,性能提高。

目前我国有些生产连杆的工厂,采用

了连杆辊锻工艺。图(1-2)为连杆辊锻示

意图.毛坯加热后,通过上锻辊模具2和

下锻辊模具4的型槽,毛坏产生塑性变形,

从而得到所需要的形状。用辊锻法生产的

连杆锻件,在表面质量、内部金属组织、

金属纤维方向以及机械强度等方面都可达

到模锻水平,并且设备简单,劳动条件好,

生产率较高,便于实现机械化、自动化,

适于在大批大量生产中应用。辊锻需经多

次逐渐成形。

图(1-2)连杆辊锻示意图

图(1-3)、图(1-4)给出了连杆的锻造工艺过程,将棒料在炉中加热至1140~1200C0,先在辊锻机上通过四个型槽进行辊锻制坯见图(1-3),然后在锻压机上进行预锻和终锻,再在压床上冲连杆大头孔并切除飞边见图(1-4)。锻好后的连杆毛坯需经调质处理,使之得到细致均匀的回火索氏体组织,以改善性能,减少毛坯内应力。为了提高毛坯精度,连杆的毛坯尚需进行热校正。

连杆必须经过外观缺陷、内部探伤、毛坯尺寸及质量等的全面检查,方能进入机械加工生产线。

1.4 连杆的机械加工工艺过程

由上述技术条件的分析可知,连杆的尺寸精度、形状精度以及位置精度的要求都很高,但是连杆的刚性比较差,容易产生变形,这就给连杆的机械加工带来了很多困难,必须充分的重视。

盖的结合面及连杆螺栓孔定位面,次要加工表面为轴瓦锁口槽、油孔、大头两侧面及体和盖上的螺栓座面等。

连杆的机械加工路线是围绕着主要表面的加工来安排的。连杆的加工路线按连杆的分合可分为三个阶段:第一阶段为连杆体和盖切开之前的加工;第二阶段为连杆体和盖切开后的加工;第三阶段为连杆体和盖合装后的加工。第一阶段的加工主要是为其后续加工准备精基准(端面、小头孔和大头外侧面);第二阶段主要是加工除精基准以外的其它表面,包括大头孔的粗加工,为合装做准备的螺栓孔和结合面的粗加工,以及轴瓦锁口槽的加工等;第三阶段则主要是最终保证连杆各项技术要求的加工,包括连杆合装后大头孔的半精加工和端面的精加工及大、小头孔的精加工。如果按连杆合装前后来分,合装之前的工艺路线属主要表面的粗加工阶段,合装之后的工艺路线则为主要表面的半精加工、精加工阶段。

1.5 连杆的机械加工工艺过程分析

1.5.1 工艺过程的安排

在连杆加工中有两个主要因素影响加工精度:

(1)连杆本身的刚度比较低,在外力(切削力、夹紧力)的作用下容易变形。

(2)连杆是模锻件,孔的加工余量大,切削时将产生较大的残余内应力,并引起内应力重新分布。

因此,在安排工艺进程时,就要把各主要表面的粗、精加工工序分开,即把粗加工安排在前,半精加工安排在中间,精加工安排在后面。这是由于粗加工工序的切削余量大,因此切削力、夹紧力必然大,加工后容易产生变形。粗、精加工分开后,粗加工产生的变形可以在半精加工中修正;半精加工中产生的变形可以在精加工中修正。这样逐步减少加工余量,切削力及内应力的作用,逐步修正加工后的变形,就能最后达到零件的技术条件。

各主要表面的工序安排如下:

(1)两端面:粗铣、精铣、粗磨、精磨

(2)小头孔:钻孔、扩孔、铰孔、精镗、压入衬套后再精镗

(3)大头孔:扩孔、粗镗、半精镗、精镗、金刚镗、珩磨

一些次要表面的加工,则视需要和可能安排在工艺过程的中间或后面。

1.5.2 定位基准的选择

在连杆机械加工工艺过程中,大部分工序选用连杆的一个指定的端面和小头孔作为主要基面,并用大头处指定一侧的外表面作为另一基面。这是由于:端面的面积大,定位比较稳定,用小头孔定位可

直接控制大、小头孔的中心距。这样就使各

工序中的定位基准统一起来,减少了定位误

差。具体的办法是,如图(1—5)所示:在

安装工件时,注意将成套编号标记的一面不

与夹具的定位元件接触(在设计夹具时亦作

相应的考虑)。在精镗小头孔(及精镗小头

衬套孔)时,也用小头孔(及衬套孔)作为

基面,这时将定位销做成活动的称“假销”。

当连杆用小头孔(及衬套孔)定位夹紧后,

再从小头孔中抽出假销进行加工。

为了不断改善基面的精度,基面的加工

与主要表面的加工要适当配合:即在粗加工

大、小头孔前,粗磨端面,在精镗大、小头

孔前,精磨端面。

由于用小头孔和大头孔外侧面作基面,所以这些表面的加工安排得比较早。在小头孔作为定位基面前

的加工工序是钻孔、扩孔和铰孔,这些工序对于铰后

在第一道工序中,工件的各个表面都是毛坯表面,定位和夹紧的条件都较差,而加工余量和切削力都较大,如果再遇上工件本身的刚性差,则对加

工精度会有很大影响。因此,第一道工序的定位和夹紧方法的选择,对于整个工艺过程的加工精度常有深远的影响。连杆的加工就是如此,在连杆加工工艺路线中,在精加工主要表面开始前,先粗铣两个端面,其中粗磨端面又是以毛坯端面定位。因此,粗铣就是关键工序。在粗铣中工件如何定位呢?一个方法是以毛坯端面定位,在侧面和端部夹紧,粗铣一个端面后,翻身以铣好的面定位,铣另一个毛坯面。但是由于毛坯面不平整,连杆的刚性差,定位夹紧时工件可能变形,粗铣后,端面似乎平整了,一放松,工件又恢复变形,影响后续工序的定位精度。另一方面是以连杆的大头外形及连杆身的对称面定位。这种定位方法使工件在夹紧时的变形较小,同时可以铣工件的端面,使一部分切削力互相抵消,易于得到平面度较好的平面。同时,由于是以对称面定位,毛坯在加工后的外形偏差也比较小。

1.5.3 确定合理的夹紧方法

既然连杆是一个刚性比较差的工件,就应该十分注意夹紧力的大小,作用力的方向及着力点的选择,避免因受夹紧力的作用而产生变形,以影响加工精度。在加工连杆的夹具中,可以看出设计人员注意了夹紧力的作用方向和着力点的选择。在粗铣两端面的夹具中,夹紧力的方向与端面平行,在夹紧力的作用方向上,大头端部与小头端部的刚性高,变形小,既使有一些变形,亦产生在平行于端面的方向上,很少或不会影响端面的平面度。夹紧力通过工件直接作用在定位元件上,可避免工件产生弯曲或扭转变形。

在加工大小头孔工序中,主要夹紧力垂直作用于大头端面上,并由定位元件承受,以保证所加工孔的圆度。在精镗大小头孔时,只以大平面(基面)定位,并且只夹紧大头这一端。小头一端以假销定位后,用螺钉在另一侧面夹紧。小头一端不在端面上定位夹紧,避免可能产生的变形。

1.5.4 连杆两端面的加工

采用粗铣、精铣、粗磨、精磨四道工序,并将精磨工序安排在精加工大、小头孔之前,以便改善基面的平面度,提高孔的加工精度。粗磨在转盘磨床上,使用砂瓦拼成的砂轮端面磨削。这种方法的生产率较高。精磨在M7130型平面磨床上用砂轮的周边磨削,这种办法的生产率低一些,但精度较高。

1.5.5 连杆大、小头孔的加工

连杆大、小头孔的加工是连杆机械加工的重要工序,它的加工精度对连杆质量有较大的影响。

小头孔是定位基面,在用作定位基面之前,它经过了钻、扩、铰三道工序。钻时以小头孔外形定位,这样可以保证加工后的孔与外圆的同轴度误差较小。

小头孔在钻、扩、铰后,在金刚镗床上与大头孔同时精镗,达到IT6级公差等级,然后压入衬套,再以衬套内孔定位精镗大头孔。由于衬套的内孔与外圆存在同轴度误差,这种定位方法有可能使精镗后的衬套孔与大头孔的中心距超差。

大头孔经过扩、粗镗、半精镗、精镗、金刚镗和珩磨达到IT6级公差等级。表面粗糙度Ra 为0.4μm,大头孔的加工方法是在铣开工序后,将连杆与连杆体组合在一起,然后进行精镗大头孔的工序。这样,在铣开以后可能产生的变形,可以在最后精镗工序中得到修正,以保证孔的形状精度。

1.5.6 连杆螺栓孔的加工

连杆的螺栓孔经过钻、扩、铰工序。加工时以大头端面、小头孔及大头一侧面定位。

为了使两螺栓孔在两个互相垂直方向平行度保持在公差范围内,在扩和铰两个工步中用上下双导向套导向。从而达到所需要的技术要求。

粗铣螺栓孔端面采用工件翻身的方法,这样铣夹具没有活动部分,能保证承受较大的铣削力。精铣时,为了保证螺栓孔的两个端面与连杆大头端面垂直,使用两工位夹具。连杆在夹具的工位上铣完一个螺栓孔的两端面后,夹具上的定位板带着工件旋转1800 ,铣另一个螺栓孔的两端面。这样,螺栓孔两端面与大头孔端面的垂直度就由夹具保证。

1.5.7 连杆体与连杆盖的铣开工序

剖分面(亦称结合面)的尺寸精度和位置精度由夹具本身的制造精度及对刀精度来保证。为了保证铣开后的剖分面的平面度不超过规定的公差0.03mm ,并且剖分面与大头孔端面保证一定的垂直度,除夹具本身要保证精度外,锯片的安装精度的影响也很大。如果锯片的端面圆跳动不超过0.02 mm,则铣开的剖分面能达到图纸的要求,否则可能超差。但剖分面本身的平面度、粗糙度对连杆盖、连杆体装配后的结合强度有较大的影响。因此,在剖分面铣开以后再经过磨削加工。

1.5.8 大头侧面的加工

以基面及小头孔定位,它用一个圆销(小头孔)。装夹工件铣两侧面至尺寸,保证对称(此对称平面为工艺用基准面)。

1.6 连杆加工工艺设计应考虑的问题

1.6.1 工序安排

连杆加工工序安排应注意两个影响精度的因素:(1)连杆的刚度比较低,在外力作用下容易变形;(2)连杆是模锻件,孔的加工余量大,切削时会产生较大的残余内应力。因此在连杆加工工艺中,各主要表面的粗精加工工序一定要分开。

1.6.2 定位基准

精基准:以杆身对称面定位,便于保证对称度的要求,而且采用双面铣,可使部分切削力抵消。

统一精基准:以大小头端面,小头孔、大头孔一侧面定位。因为端面的面积大,定位稳定可靠;用小头孔定位可直接控制大小头孔的中心距。

1.6.3 夹具使用

应具备适应“一面一孔一凸台”的统一精基准。而大小头定位销是一次装夹中镗出,故须考虑“自为基准”情况,这时小头定位销应做成活动的,当连杆定位装夹后,再抽出定位销进行加工。

保证螺栓孔与螺栓端面的垂直度。为此,精铣端面时,夹具可考虑重复定位情况,如采用夹具限制7个自由度(其是长圆柱销限制4个,长菱形销限制2个)。长销定位目的就在于保证垂直度。但由于重复定位装御有困难,因此要求夹具制造精度较高,且采取一定措施,一方面长圆柱销削去一边,另一方面设计顶出工件的装置。

1.7 切削用量的选择原则

正确地选择切削用量,对提高切削效率,保证必要的刀具耐用度和经济性,保证加工质量,具有重要的作用。

1.7.1 粗加工时切削用量的选择原则

粗加工时加工精度与表面粗糙度要求不高,毛坯余量较大。因此,选择粗加工的切削用量时,要尽可能保证较高的单位时间金属切削量(金属切除率)和必要的刀具耐用度,以提高生产效率和降低加工成本。

金属切除率可以用下式计算: Zw ≈V.f.ap.1000

式中:Zw单位时间内的金属切除量(mm3/s) V切削速度(m/s) f 进给量(mm/r) ap切削深度(mm)

提高切削速度、增大进给量和切削深度,都能提高金属切除率。但是,在这三个因素中,影响刀具耐用度最大的是切削速度,其次是进给量,影响最小的是切削深度。所以粗加工切削用量的选择原则是:首先考虑选择一个尽可能大的吃刀深度ap,其次选择一个较大的进给量度f,最后确定一个合适的切削速度V.

选用较大的ap和f以后,刀具耐用度t 显然也会下降,但要比V对t的影响小得多,只要稍微降低一下V便可以使t回升到规定的合理数值,因此,能使V、f、ap的乘积较大,从而保证较高的金属切除率。此外,增大ap可使走刀次数减少,增大f又有利于断屑。因此,根据以上原则选择粗加工切削用量对提高生产效率,减少刀具消耗,降低加工成本是比较有利的。

1)切削深度的选择:

粗加工时切削深度应根据工件的加工余量和由机床、夹具、刀具和工件组成的工艺系统的刚性来确定。在保留半精加工、精加工必要余量的前提下,应当尽

量将粗加工余量一次切除。只有当总加工余量太大,一次切不完时,才考虑分几次走刀。

2)进给量的选择:

粗加工时限制进给量提高的因素主要是切削力。因此,进给量应根据工艺系统的刚性和强度来确定。选择进给量时应考虑到机床进给机构的强度、刀杆尺寸、刀片厚度、工件的直径和长度等。在工艺系统的刚性和强度好的情况下,可选用大一些的进给量;在刚性和强度较差的情况下,应适当减小进给量。

3)切削速度的选择:

粗加工时,切削速度主要受刀具耐用度和机床功率的限制。切削深度、进给量和切削速度三者决定了切削功率,在确定切削速度时必须考虑到机床的许用功率。如超过了机床的许用功率,则应适当降低切削速度。

1.7.2 精加工时切削用量的选择原则

精加工时加工精度和表面质量要求较高,加工余量要小且均匀。因此,选择精加工的切削用量时应先考虑如何保证加工质量,并在此基础上尽量提高生产效率。

1)切削深度的选择:

精加工时的切削深度应根据粗加工留下的余量确定。通常希望精加工余量不要留得太大,否则,当吃刀深度较大时,切削力增加较显著,影响加工质量。

2)进给量的选择:

精加工时限制进给量提高的主要因素是表面粗糙度。进给量增大时,虽有利于断屑,但残留面积高度增大,切削力上升,表面质量下降。

3)切削速度的选择:

切削速度提高时,切削变形减小,切削力有所下降,而且不会产生积屑瘤和鳞刺。一般选用切削性能高的刀具材料和合理的几何参数,尽可能提高切削速度。只有当切削速度受到工艺条件限制而不能提高时,才选用低速,以避开积屑瘤产生的范围。

由此可见,精加工时选用较小的吃刀深度ap和进给量f,并在保证合理刀具耐用度的前提下,选取尽可能高的切削速度V,以保证加工精度和表面质量,同时满足生产率的要求。

1.8 确定各工序的加工余量、计算工序尺寸及公差

1.8.1 确定加工余量

用查表法确定机械加工余量:

(根据《机械加工工艺手册》第一卷 表3.2—25 表3.2—26 表3.2—27)

则连杆两端面总的加工余量为: A总=

A2

ii1

n

=(A粗铣+A精铣+A粗磨+A精磨)2 =(1.5+0.6+0.3+0.1)2 =500.55mm

(2)、连杆铸造出来的总的厚度为H=38+500.55=430.55mm

1.8.2 确定工序尺寸及其公差

(根据《机械制造技术基础课程设计指导教程》 表2—29 表2—34) 

表1.8.2 小头孔各工序尺寸及其公差

1.9 计算工艺尺寸链

1.9.1 连杆盖的卡瓦槽的计算

增环为:A2 ; 减环为:A3 ;封闭环为:A0 1)、A0极限尺寸为:

A0maxAimax

i1m



im1

A

n1

imin

= 30.20-4.95 = 25.25 mm

A0minAimin

i1m

im1

A

n1

imax

= 29.8-5.1 = 24.7 mm 2)、A0的上、下偏差为:

ESA0ESAi

i1m

im1

EIA

n1

i

=0.20-(-0.05)

=0.25(mm)

EIA0EIAi

i1m

im1

ESA

n

1

i

=-0.20-0.10 =-0.30(mm)

3)、A0的公差为:

T0ESA0EIA0

= 0.25-(0.30)

= 0.55 mm

4)、A0的基本尺寸为:

A0=A2A3

= 30-5

= 25 mm

5)、A0的最终工序尺寸为:

0.25

A0= 25(0.30)mm

1.9.2 连杆体的卡瓦槽的计算

增环为:A1 ;

1)、A0极限尺寸为:

A0maxAimax

i1m



im1

A

n1

imin

= 13.30-4.95

= 8.35 mm

A0minAimin

i1m

im1

A

n1

imax

=12.9-5.1 =7.8 mm 2)、A0的上、下偏差为:

ESA0ESAi

i1m

im1

EIA

n1

i

= 0.30-(-0.05)

= 0.35 mm

EIA0EIAi

i1m

im1

ESA

n1

i

= -0.10-0.10 = -0.20 mm

3)、A0的公差为:

T0ESA0EIA0

=0.35-(-0.20)

=0.55 mm

4)、A0的基本尺寸为:

A0=A1A2

=13-5 = 8 mm

5)、A0的最终工序尺寸为:

0.35

A0= 8(0.20)m

1.10 工时定额的计算 1.10.1 铣连杆大小头平面

选用X52K机床

根据《机械制造工艺设计手册》表2.4—81选取数据

铣刀直径D = 100 mm 切削速度Vf = 2.47 m/s

切削宽度 ae= 60 mm 铣刀齿数Z = 6 切削深度ap = 3 mm 则主轴转速n = 1000v/D = 475 r/min

根据表3.1—31 按机床选取n = 500 /min 则实际切削速度V = Dn/(1000×60) = 2.67 m/s 铣削工时为:按表2.5—10

L= 3 mm L1 = ae(dae)+1.5 =50 mm L2 = 3 mm 基本时间tj = L/fm z = (3+50+3)/(500×0.18×6) = 0.11 min

按表2.5—46 辅助时间ta = 0.4×0.45 = 0.18 min 1.10.2 粗磨大小头平面 选用M7350磨床

根据《机械制造工艺设计手册》表2.4—170选取数据

砂轮直径D = 40 mm 磨削速度V = 0.33 m/s

切削深度ap = 0.3 mm fr0 = 0.033 mm/r Z = 8 则主轴转速n = 1000v/D = 158.8 r/min

根据表3.1—48 按机床选取n = 100 r/min 则实际磨削速度V = Dn/(1000×60) = 0.20 m/s 磨削工时为:按表2.5—11

基本时间tj = zbk/nfr0z = (0.3×1)/(100×0.033×8) = 0.01 min 按表3.1—40 辅助时间ta = 0.21 min 1.10.3 加工小头孔

(1) 钻小头孔 选用钻床Z3080 根据《机械制造工艺设计手册》表2.4—38(41)选取数据 钻头直径D = 20 mm 切削速度V = 0.99 mm 切削深度ap = 10 mm 进给量f = 0.12 mm/r 则主轴转速n = 1000v/D = 945 r/min

根据表3.1—30 按机床选取n = 1000 r/min

则实际钻削速度V = Dn/(1000×60) = 1.04 m/s 钻削工时为:按表2.5—7

L = 10 mm L1 = 1.5 mm L2 = 2.5mm 基本时间tj = L/fn = (10+1.5+2.5)/(0.12×1000) = 0.12 min 按表2.5—41 辅助时间ta = 0.5 min 按表2.5—42 其他时间tq = 0.2 min (2) 扩小头孔 选用钻床Z3080 根据《机械制造工艺设计手册》表2.4—53选取数据

扩刀直径D = 30 mm 切削速度V = 0.32 m/s 切削深度ap = 1.5 mm 进给量 f = 0.8 mm/r 则主轴转速n =1000v/D = 203 r/min

根据表3.1—30 按机床选取n = 250 r/min 则实际切削速度V = Dn/(1000×60) = 0.39 m/s 扩削工时为:按表2.5—7

L = 10 mm L1 = 3 mm 基本时间tj=L/fn=(10+3)/(0.8×250)=0.07 min

按表2.5—41 辅助时间ta=0.25 min (3) 铰小头孔 选用钻床Z3080 根据《机械制造工艺设计手册》表2.4—81选取数据

铰刀直径D = 30 mm 切削速度V = 0.22 m/s 切削深度ap = 0.10 mm 进给量f = 0.8 mm/r 则主轴转速n = 1000v/D = 140 r/min

根据表3.1—31 按机床选取n = 200 r/min 则实际切削速度V = Dn/(1000×60) = 0.32 m/s 铰削工时为: 按表2.5—7 L=10 mm L1 =0 L2=3 mm

基本时间tj = L/fn = (10+3)/(0.8×200) = 0.09 min

按表2.5—41 辅助时间ta = 0.25 min 1.10.4 铣大头两侧面

选用铣床X62W

根据《机械制造工艺设计手册》表2.4—77(88)选取数据

铣刀直径D = 20 mm 切削速度V = 0.64 m/s 铣刀齿数Z = 3 切削深度ap = 4 mm af = 0.10 mm/r 则主轴转速n = 1000v/D = 611 r/min

根据表3.1—74 按机床选取n=750 r/min 则实际切削速度V = Dn/(1000×60) = 0.78 m/s 铣削工时为:按表2.5—10

L=40 mm L1=ae(dae)+1.5=8.5 mm L2=2.5 mm

基本时间tj = L/fmz = (40+8.5+2.5)/(750×0.10×3)=0.23 min

按表2.5—46 辅助时间ta = 0.4×0.45 = 0.18 min

1.10.5、扩大头孔

选用钻床床Z3080 刀具:扩孔钻

根据《机械制造工艺设计手册》表2.4—54选取数据

扩孔钻直径D = 60 mm 切削速度V = 1.29 m/s

进给量f = 0.50 mm/r 切削深度ap =3.0 mm 走刀次数I = 1

则主轴转速n = 1000v/D=410 r/min

根据表3.1—41 按机床选取n=400 r/min

则实际切削速度V=Dn/(1000×60)=1.256 m/s

扩削工时为: 按表2.5—7

L = 40 mm L1 = 3 mm L2 =3 mm

l33tj40基本时间: 10.23(min)

(ctgkr1~2) l12

l22~41.10.6 铣开连杆体和盖

选用铣床X62W

根据《机械制造工艺设计手册》表2.4—79(90)选取数据

铣刀直径D = 63 mm 切削速度V = 0.34 m/s

切削宽度ae = 3 mm 铣刀齿数Z = 24

切削深度ap = 2 mm af = 0.015 mm/r d = 40 mm

则主轴转速n = 1000v/D = 103 r/min

根据表3.1—74 按机床选取n=750 r/min

则实际切削速度V = Dn/(1000×60) = 2.47 m/s 按表2.5—10 22d(d2ap) L = 22dapap(dapap)Dap L1 = - +2 = 6 mm

L2 = 2 mm

基本时间tj= Li/FM = (17+6+2)/(148) = 0.17 min

按表2.5—46 辅助时间ta=0.4×0.45=0.18 min

1.10.7 加工连杆体

(1) 粗铣连杆体结合面 选用铣床X62W

根据《机械制造工艺设计手册》表2.4—74(84)选取数据

铣刀直径D = 75 mm 切削速度V = 0.35 m/s

切削宽度ae = 0.5 mm 铣刀齿数Z = 8

切削深度ap=2 mm af = 0.12 mm/r

则主轴转速n = 1000v/D = 89 r/min

根据表3.1—74 按机床选取n = 750 r/min

则实际切削速度V = Dn/(1000×60) = 2.94 m/s

铣削工时为: 按表2.5—10 L = 38 mm L1 = ae(dae)+1.5 = 7.5 mm L2 = 2.5 mm

基本时间tj = L/fnz = (38+7.5+2.5)/(2.96×60×8) = 0.03 min

按表2.5—46 辅助时间ta=0.4×0.45=0.18 min

(2) 精铣连杆体结合面 选用铣床X62W

根据《机械制造工艺设计手册》表2.4—84选取数据

铣刀直径D = 75 mm 切削速度V = 0.42 m/s

铣刀齿数Z = 8 切削深度ap = 2 mm

af=0.7 mm/r 切削宽度ae=0.5 mm

则主轴转速n = 1000v/D =107 r/min

根据表3.1—74 按机床选取n = 750 r/min

则实际切削速度V = Dn/(1000×60) = 2.94 m/s

铣削工时为:按表2.5L = 38 mm L1 = -ae)+1.5 = 7.5 mm L2 = 2.5 mm

基本时间tj = L/fmz = (38+7.5+2.5)/(2.96×60×8) = 0.03 min

按表2.5—46 辅助时间ta = 0.4×0.45 = 0.18 min

(3) 粗锪连杆两螺栓底面 选用钻床Z3025

根据《机械制造工艺设计手册》表2.4—67选取数据

锪刀直径D = 28 mm 切削速度V = 0.2 m/s

锪刀齿数Z = 6 切削深度ap = 3 mm 进给量f = 0.10 mm/r

则主轴转速n = 1000v/D = 50.9 r/min

根据表3.1—30 按机床选取n = 750 r/min

则实际切削速度V = Dn/(1000×60) = 2.94 m/s

锪削工时为: 按表2.5—7

L = 28 mm L1 = 1.5 mm

基本时间tj = L/fn = (28+1.5)/(0.10×750×8) = 0.04 min

(4) 铣轴瓦锁口槽 选用铣床X62W

根据《机械制造工艺设计手册》表2.4—90选取数据

铣刀直径D = 63 mm 切削速度V = 0.31 m/s

铣刀齿数Z = 24 切削深度ap = 2 mm

切削宽度ae = 0.5 mm af = 0.02 mm/r

则主轴转速n = 1000v/D = 94 r/min

根据表3.1—74 按机床选取n=100 r/min

则实际切削速度V = Dn/(1000×60) = 0.33 m/s

铣削工时为: 按表2.5—10

L = 5 mm L1=0.5×63+1.5 = 33 mm L2 = 1.5 mm

基本时间tj=L/fmz=(5+33+1.5)/(100×24)=0.02 min

按表2.5—46 辅助时间ta=0.4×0.45=0.18 min

(5) 精铣螺栓座面 选用铣床X62W

根据《机械制造工艺设计手册》表2.4—90选取数据

铣刀直径D = 63 mm 切削速度V = 0.47 m/s

铣刀齿数Z = 24 切削深度ap = 2 mm

切削宽度ae = 5 mm af=0.015 mm/r

则主轴转速n = 1000v/D = 142 r/min

根据表3.1—31 按机床选取n = 150 r/min

则实际切削速度V = Dn/(1000×60) = 0.49 m/s

铣削工时为: 按表2.5—10 L = 28 mm L1 = ae(dae)+1.5 = 19 mm L2 = 3 mm

基本时间tj=L/fmz = (28+19+3)/(150×24) = 0.02 min

按表2.5—46 辅助时间ta = 0.4×0.45 = 0.18 min

(7) 精磨结合面 选用磨床M7130

根据《机械制造工艺设计手册》表2.4—170选取数据

砂轮直径D = 40 mm 切削速度V = 0.330 m/s

切削深度ap = 0.1 mm 进给量fr0 = 0.006 mm/r

则主轴转速n = 1000v/D = 157 r/min

根据表3.1—48 按机床选取n = 100 r/min

则实际切削速度V = Dn/(1000×60) = 0.20 m/s

磨削工时为: 按表2.5—11

基本时间tj= zbk/nfr0z=0.02 min (zb=0.1 k=1 z=8)

1.10.8 铣、磨连杆盖结合面

(1) 粗铣连杆上盖结合面 选用铣床X62W

根据《机械制造工艺设计手册》表2.4—74(84)选取数据

铣刀直径D = 75 mm 切削速度V = 0.35 m/s

切削宽度ae = 3 mm 铣刀齿数Z = 8 af = 0.12 mm/r

则主轴转速n = 1000v/D = 89 r/min

根据表3.1—74 按机床选取n = 100 r/min

则实际切削速度V = Dn/(1000×60) = 0.39 m/s

铣削工时为:按表L = 38 mm L1 = ae(d-ae)+1.5 = 16 mm L2 = 2.5 mm

基本时间tj = L/fmz=(38+16+2.5)/(100×8) = 0.07 min

按表2.5—46 辅助时间ta=0.4×0.45=0.18 min

(2) 精铣连杆上盖结合面 选用铣床X62W

根据《机械制造工艺设计手册》表2.4—84选取数据

铣刀直径D = 75 mm 切削速度V = 0.42 m/s

切削宽度ae = 0.5 mm 铣刀齿数Z = 8 进给量f = 0.7 mm/r

则主轴转速n = 1000v/D = 107 r/min

根据表3.1—74 按机床选取n = 110 r/min

则实际切削速度V = Dn/(1000×60) = 0.43 m/s

铣削工时为:按表2.5—10

L = 38 mm L1 = ae(d-ae)+1.5 = 7.5 mm L2 = 2.5 mm

基本时间tj = L/fmz = (38+7.5+2.5)/(110×8) = 0.6 min

按表2.5—46 辅助时间ta=0.4×0.45=0.18 min

(3) 粗铣螺母座面 选用铣床X62W

根据《机械制造工艺设计手册》表2.4—88选取数据

铣刀直径D = 63 mm 切削速度V = 0.34 m/s

铣刀齿数Z = 24 切削宽度ae = 5 mm af = 0.15 mm/r

则主轴转速n = 1000v/D = 103 r/min

根据表3.1—74 按机床选取n = 100 r/min

则实际切削速度V = Dn/(1000×60) = 0.39 m/s

铣削工时为:按表L = 28mm L1 = -ae)+1.5 = 17.5 mm L2 = 2.5 mm

基本时间tj = L/fmz = (28+17.5+2.5)/(100×24) = 0.02 min

按表2.5—46 辅助时间ta=0.4×0.45=0.18 min

(4) 铣轴瓦锁口槽 选用铣床X62W

根据《机械制造工艺设计手册》表2.4—90选取数据

铣刀直径D = 63 mm 切削速度V = 0.31 m/s

铣刀齿数Z = 24 切削深度ap = 2 mm

切削宽度ae = 0.6 mm af = 0.02 mm/r

则主轴转速n = 1000v/D = 94 r/min

根据表3.1—74按机床选取n = 100 r/min

则实际切削速度V = Dn/(1000×60) = 0.33 m/s

铣削工时为: 按表2.5—10

L = 5 mm L1 = 0.5×63+1.5 = 33 mm L2 = 1.5 mm

基本时间tj =L/fmz = (5+33+1.5)/(100×24) = 0.02 min

按表2.5—46 辅助时间ta = 0.4×0.45 = 0.18 min

(5) 精磨结合面 选用磨床M7350

根据《机械制造工艺设计手册》表2.4—170选取数据

砂轮直径D = 40 mm 切削速度V = 0.330 m/s

切削深度ap = 0.1 mm 进给量fr0 = 0.006 mm/r

则主轴转速n = 1000v/D = 157 r/min

根据表3.1—48 按机床选取n = 100 r/min

则实际切削速度V = Dn/(1000×60) = 0.20 m/s

磨削工时为: 按表2.5—11

基本时间tj = zbk/nfr0z= 0.02 min (zb=0.1 k=1 z=8)

1.10.9 铣、钻、镗(连杆总成体)

(1) 精铣连杆盖上两螺母座面 选用铣床X62W

根据《机械制造工艺设计手册》表2.4—90选取数据

铣刀直径D = 63 mm 切削速度V = 0.47 m/s

切削宽度ae = 5 mm 铣刀齿数Z = 24

切削深度ap = 2 mm af = 0.015 mm/r

则主轴转速n = 1000v/D = 142 r/min

根据表3.1—74 按机床选取n = 150 r/min

则实际切削速度V = Dn/(1000×60) = 0.49 m/s

铣削工时为: 按表2.5—10 L = 28 mm L1 = ae(d-ae)+1.5 = 17.5 mm L2 = 2.5 mm

基本时间tj = L/fmz = (28+17.5+2.5)/(150×24) = 0.02 min

按表2.5—46 辅助时间ta = 0.4×0.45 = 0.18 min

(2)、从连杆上方钻、扩、铰螺栓孔

a) 钻螺栓孔 选用钻床Z3025 根据《机械制造工艺设计手册》表2.4—38(41)选取数据

切削速度V = 0.99 m/s 切削深度ap = 5 mm

进给量f = 0.08 mm/r 钻头直径D = 10 mm

则主轴转速n = 1000v/D = 1910 r/min

根据表3.1—30 按机床选取n = 910 r/min

则实际切削速度V = Dn/(1000×60) = 0.99 m/s

钻削工时为: 按表2.5—7

L = 34 mm L1 = 1.5 mm L2 = 2 mm

基本时间tj = L/fn = (34+1.5+2)/(0.08×1910) = 0.23 min

按表2.5—41 辅助时间ta = 0.5 min

按表2.5—42 其他时间tq=0.2 min

b) 扩螺栓孔 选用钻床Z3025

根据《机械制造工艺设计手册》表2.4—53选取数据

扩刀直径D = 10 mm 切削速度V = 0.40 m/s

切削深度ap = 1.0 mm 进给量f = 0.6 mm/r

则主轴转速n = 1000v/D = 764 r/min

根据表3.1—30 按机床选取n=764 r/min

则实际切削速度V = Dn/(1000×60) = 0.40 m/s

扩削工时为: 按表2.5—7

L = 34 mm L1 = 2 mm

基本时间tj = L/fn = (34+2)/(0.6×764) = 0.07 min

按表2.5—41 辅助时间ta=0.25 min

c)铰螺栓孔

根据《机械制造工艺设计手册》表2.4—81选取数据

铰刀直径D = 12.2 mm 切削速度V = 0.22 m/s

切削深度ap = 0.10 mm 进给量f = 0.2 mm/r

则主轴转速n = 1000v/D = 140 r/min

根据表3.1—31 按机床选取n = 200 r/min

则实际切削速度V =Dn/(1000×60) = 0.127 m/s

铰削工时为: 按表2.5—7

L = 34 mm L1 = 2 mm L2 = 3 mm

基本时间tj = L/fn = (34+2+3)/(0.8×200) = 0.23 min

(3) 从连杆盖上方给螺栓孔口倒角

根据《机械制造工艺设计手册》表2.4—67选取数据

切削速度V = 0.2 m/s 切削深度ap = 3 mm

进给量f = 0.10 mm/r Z = 8

根据表3.1—30 按机床选取n = 750 r/min

切削工时为: 按表2.5—7

基本时间tj = L/fn = (0.5+1.5)/750×0.10 = 0.03 min

1.10.10 粗镗大头孔

选用镗床T68

根据《机械制造工艺设计手册》表2.4—66选取数据

铣刀直径D = 65 mm 切削速度V = 0.16 m/s

进给量f = 0.30 mm/r 切削深度ap = 3.0 mm

则主轴转速n = 000v/D = 47 r/min

根据表3.1—41 按机床选取n = 800 r/min

则实际切削速度V = Dn/(1000×60) = 2.72 m/s

镗削工时为: 按表2.5—3

L = 38 mm L1 = 3.5 mm L2 = 5 mm

基本时间tj = Li/fn = (38+3.5+5)/(0.30×800) = 0.19 min

按表2.5—67 辅助时间ta = 0.50 min

1.10.11 大头孔两端倒角

选用机床X62W

根据《机械制造工艺设计手册》表2.4—67选取数据

切削速度V = 0.2 m/s 切削深度ap = 3 mm

进给量f = 0.10 mm/r Z = 8

根据表3.1—30 按机床选取n = 750 r/min

切削工时为: 按表2.5—7

基本时间tj = L/fn = (0.5+1.5)/750×0.10 = 0.03 min

1.10.12精磨大小头两平面(先标记朝上)

选用磨床M7130

根据《机械制造工艺设计手册》表2.4—170选取数据

切削速度V = 0.413 m/s 切削深度ap = 0.10 mm

进给量f = 0.006 mm/r

磨削工时为: 按表2.5—7

基本时间 tj = lbzbk/1000vfafr0z

=0.1×70×0.02×1.1/(1000×60)×0.413×0.006×20×0.1

=0.03 min

1.10.13 半精镗大头孔及精镗小头孔

选用镗床T2115

(1)根据《机械制造工艺设计手册》表2.4—66选取数据

镗刀直径D = 65.5 mm 切削速度V = 0.20 m/s

进给量f = 0.2 mm/r 切削深度ap = 1 mm

根据表3.1—39 按机床选取n = 1000 r/min

镗削工时为: 按表2.5—3

L = 38 mm L1 = 3.5 mm L2 = 5 mm

基本时间tj= Li/fn = (38+3.5+5)/(0.20×1000) = 0.23 min

(2)根据《机械制造工艺设计手册》表2.4—66选取数据

镗刀直径D = 30 mm 切削速度V = 3.18 m/s

进给量f = 0.10 mm/r 切削深度ap = 1.0 mm

根据表3.1—39 按机床选取n = 2000 r/min

镗削工时为: 按表2.5—3

L = 38 mm L1 = 3.5 mm L2 = 5 mm

基本时间tj = Li/fn = (38+3.5+5)/(0.10×2000) = 0.23 min

1.10.14精镗大头孔

选用镗床T2115

根据《机械制造工艺设计手册》表2.4—66选取数据

镗刀直径D = 65.4 mm 切削速度V = 0.20 m/s

进给量f = 0.2 mm/r 切削深度ap = 1 mm

根据表3.1—39 按机床选取n = 1000 r/min

镗削工时为: 按表2.5—3

L = 38 mm L1 = 3.5 mm L2 = 5 mm

基本时间tj = Li/fn = (38+3.5+5)/(0.20×1000) = 0.23 min

1.10.15 钻小头油孔

选用钻床Z3025

根据《机械制造工艺设计手册》表2.4—38(41)选取数据

切削速度V = 1.18 m/s 切削深度ap = 3 mm

进给量f = 0.05 mm/r

根据表3.1—30 按机床选取n = 1000 r/min 钻削工时为: 按表2.5—7

L = 6 mm L1 = 3 mm

基本时间tj = L/fn =(6+1)/(1000×0.05) = 0.14 min

1.10.16 小头孔两端倒角

选用机床X62W

根据《机械制造工艺设计手册》表2.4—67选取数据

切削速度V = 0.2 m/s 切削深度ap = 3 mm

进给量f = 0.10 mm/r Z = 8

根据表3.1—30 按机床选取n = 750 r/min 切削工时为: 按表2.5—7

基本时间tj = L/fn = (0.5+1.5)/750×0.10 = 0.03 min

1.10.17 镗小头孔衬套

选用镗床T2115

根据《机械制造工艺设计手册》表2.4—66选取数据

镗刀直径D = 30 mm 切削速度V = 0.25 m/s

进给量f = 0.2 mm/r 切削深度ap = 0.2 mm

根据表3.1—39 按机床选取n = 1000 r/min 镗削工时为: 按表2.5—3

L = 38 mm L1 = 3.5 mm L2 = 5 mm

基本时间tj = Li/fn = (38+3.5+5)/(0.20×1000) = 0.23 min

1.10.18 珩磨大头孔

根据《机械制造工艺设计手册》表2.4—66选取数据

切削速度V = 0.32 m/s 进给量f = 0.05 mm/r

切削深度ap = 0.05 mm

根据表3.1—39 按机床选取n = 1000 r/min

镗削工时为: 按表2.5—3

基本时间 tj=2Lnd/(1000×60)v

=(2×38×2)/(1000×0.32)

=0.47 min

1.11 连杆的检验

连杆在机械加工中要进行中间检验,加工完毕后要进行最终检验,检验项目按图纸上的技术要求进行。

1.11.1 观察外表缺陷及目测表面粗糙度

1.11.2 连杆大头孔圆柱度的检验

用量缸表,在大头孔内分三个断面测量其内径,每个断面测量两个方向,三个断面测量的最大值与最小值之差的一半即圆柱度。

1.11.3 连杆体、连杆上盖对大头孔中心线的对称度的检验

采用图(1-6)所示专用检具(用一平尺安装上百分表)。用结合面为定位基准分别测量连杆体、连杆上盖两个半圆的半径值,其差为对称度误差。

1.11.4 连杆大小头孔平行度的检验

如图(1—7)所示,将连杆大小头孔穿入专用心轴,在平台上用等高V形铁支撑连杆大头孔心轴,测量小头孔心轴在最高位置时两端面的差值,其差值的一半即为平行度。

图(1—7)大小头孔平行度的检验图

1.11.5 连杆螺钉孔与结合面垂直度的检验

制做专用垂直度检验心轴,其检测心轴直径公差,分三个尺寸段制做,配以不同公差的螺钉,检查其接触面积,一般在90%以上为合格,或配用塞尺检测,塞尺厚度的一半为垂直度公差值。

第二章 夹具设计

2.1夹具的定义及分类

在机械制造工业中,为了达到保证产品质量、改善劳动条件、提高劳动生产率及降低成本的目的,在工艺过程中,除机床等设备外,还大量使用着各种工艺装备。它包括夹具、模具、刀具、辅助工具及测量工具等。因此,广义地说,夹具是一种保证产品质量并便利和加速工艺过程的一种工艺装备。不同的夹具,其结构形式、工作情况、设计原则都不同,但就其数量和在生产中所占的地位来说,应以“机床夹具”为首。 所谓机床夹具就是机床上所使用的一种辅助设备,用它来准确地确定工件与刀具的相对位置,即将工件进行定位及夹紧,以保证完成加工所需要的工件与机床的相对位置。所以机床夹具是用以使工件定位和夹紧的机床附加装置。 至于使刀具定位、夹紧并实现某种特定切削运动的辅助设备成为辅助工具,也成为刀具用的夹具。

2.2设计机床夹具的方法和步骤

机床夹具设计是工艺装备设计中的一个重要组成部分,是保证产品质量和提高劳动生产率的一项重要技术措施。在设计过程中,应深入生产实际,进行调查研究,吸取国内外的先进技术,制造出合理的设计方案,再进行具体设计。设计步骤如下: (1)深入生产实际调查研究 在深入生产实际调查研究中,应当掌握以下面一些资料: 工件图纸:详细阅读工件图纸,了解工件被加工表面的技术要求,该件在机械钟的位置和作用,以及装配中的特殊要求。 工艺文件:了解工件的工艺过程,本工序的加工要求,工件已加工面及待加工面的状况,基准面选择的情况,可用的机床设备的主要规格,与夹具连接部分的尺寸及切削用量等。 夹具的结构形式应与工件批量大小相合应,做到经济合理。制造与使用夹具的情况,有无通用零部件可供选用;工厂有无压缩空气站;制造和使用夹具的工人的技术状况等。 (2)确定工件的定位方法和刀具的导向方式 工件在夹具中的地位应符合定位原理,合理地设置定位件和导向件时,应尽量采用通用标准。 (3)确定工件的加紧方式和设计夹紧机构 夹紧力的作用点和方向应符合夹紧原则。一般来说,手动夹紧时不必算出夹紧力的确切值,只有在机动夹紧时,才进行夹紧力计算,以便决定动力部件的尺寸。 (4)确定夹具其他部分的结构形式 如分度装置,对刀元件和夹具体等。 (5)绘制夹具总装配图 在绘制总装配图时,尽量采用1:1比例,主视图应选取面对操作者的工作位置。绘图时,先用红线或双点划线画出工件的轮廓和主要表面,如定位表面、加紧表

面和被加工表面等。其中,被加工表面用网纹线或粗实线画出加工余量。工件在夹具上可看成是一个假想的透明体,按定位元件、导向元件、夹紧机构、传动装置等顺序,画出具体结构,最后画夹具体,并在显眼的部位画出符号,以便标注夹具编号。 (6)标注各部分主要尺寸、公差配合和技术要求 (7)标注零件编号及编制零件明细表 在标注零件编号时,标注件可直接标出国家标注代号。明细表要注明夹具名称、编号、序号、零件名称及材料、数量等。 (8)绘制夹具零件图 拆绘夹具零件图的顺序和绘制夹具总装配图的顺序相同。

2.3设计机床夹具时应注意的问题

对机床夹具的基础要求是:工件定位正确,定位精度满足加工要求;工件夹紧牢固可靠;操作安全方便;成本低廉。为此,在设计机床夹具时,应注意以下一些问题:

(1) 定位精度

工件在夹具中的定位精度,主要与定位基准是否与工序基准重合、定位基准的形式和精度、定位元件的形式和精度、定位元件的布置方式、定位基准与定位元件的配合状况等因素有关。这些因素所造成的误差,可以通过数学计算求得。在采用取提高定位精度的措施时,要注意到夹具制造上的可能性。在总的定位精度满足加工要求的条件下,不要过高的提高工作在夹具中的定位精度。 夹具在机床上的定位精度,主要与夹具定位表面与机床配合处的位置精度,夹具与机床连接处的配合间隙等因素有关。因此,提高夹具制造精度,减少配合间隙就能提高夹具在机床上的定位精度。如果定位精度要求很高,而通过提高夹具制造精度的措施已不可能或不合理时,应采用调整法或就地加工法解决,即在安装夹具时找正定位表面的准确位置,或在夹具安装后加工定位表面,使夹具在机床上获得高精度定位。 刀具在夹具上的导向精度通常利用导向元件或对刀元件来保证。因此影响刀具在夹具上的导向精度的因素有:导套中心到定位元件的定位表面的位置精度、刀具与导套的间隙、导套底面到工件顶面的距离等。导向误差可通过数学计算求得。对刀的精度取决于对刀元件的位置精度和对刀技巧。 夹具中,当两个或两个以上定位元件限制同一自由度时,将产生过定位现象。定位基准的形位误差较大时,过定位将造成不良影响。夹具中出现过定位时,可通过撤消多余定位元件,使多余定元件失去重复限制自由度能力,增加过定位元件与定位基准的配合间隙等办法来解决。

(2) 夹紧方式

选择夹紧方式时,要注意以下几点:夹紧力应通过或靠近主要支承点所组成的平面内;夹紧力应通过或靠近主要支承点,或在支承点所组成的平面内;夹紧力应靠近切削部位,并在工件刚性较好的部位;夹紧力应垂直主要定位基准,以避免因夹紧破坏工件原有的定位状态;夹紧必须可靠,但夹紧力不可过大,以免工件或夹具产生过大变形。为防止工件变形,可采用多点夹紧或宽爪夹紧,以降低单位面积的夹紧力,或在工件刚性薄弱部位,安放适当的辅助支承。

(3) 结构设计

夹紧机构既要可靠,又要和生产纲领相适应,这样才能符合多、快、好、省的原则。大批生产中使用的夹具和中小批生产中使用的夹具,在结构上应有所区别。 在大批生产中,既要解决工件的质量问题,又要解决工件的产量问题。因此,在设计夹具时,应采用高效、省力的夹具结构。 在中小批生产中,采用夹具的主要目的是保证加工质量和扩大机床的工艺性能,以及便于多品种生产等。因此,对夹具机构的要求,主要是精度和通用性,效率问题比较次要。所以应尽量采用各种形式的通用夹具、可调夹具和组合夹具等配以适当的专用附件,以满足生产要求。在设计专用夹具时,要充分采用通用部件及标准元件,以提高夹具标准化程度。

(4) 夹具结构的刚度和强度

夹具的零部件应有足够的刚度和强度。特别是加工精度要求较高,或加工中切削力较大时更应注意。若刚度和强大不足,夹具在使用中会产生较大变形或损坏,从而影响加工精度。

(5) 夹具与机床和刀具的位置关系

夹具与机床、刀具的位置关系极为密切。除了联系尺寸与配合关系正确外,还要检查夹具的轮廓尺寸是否与机床相适应。对于回转夹具,应按其回转时的空间关系来检查是否与机床发生干涉。另外,还应注意刀杆、刀架与夹具运动部分是否协调。所以,在设计夹具时,要充分掌握机床和夹具的有关资料,必要时应做实际测量。

(6) 操作使用安全

夹具应保证操作方便、实用安全。夹具的旋转部分应注意平衡和有防护装置。对于排削和冷却液的流向等问题。

(7) 结构的工艺

夹具上与定位有关的尺寸及形状位置,都有较高的精度要求。并且,一般是在装配时通过测量、找正或直接加工而获得的。因此,在实际夹具结构时,必须

充分考虑其工艺性,以保证夹具零件在加工和装配时能便于加工、测量和找正。同时还应考虑便于维修等问题。

2.4夹具零部件的选择

2.4.1定位元件

我设计的夹具是精镗连杆小头孔的夹具。为保证大头孔与小头孔的平行度、大头孔与端面的垂直度,并且为了保证大头孔余量均匀,采用固定V块(左边部分)限制X轴和Y轴方向的移动,活动螺钉(右边)与固定V块共同限制Z轴方向的转动。共限制工件的6个自由度,实现完全定位。如图3-1所示:

图3-1整体三维图

图3-2 3.4.3 夹具体

夹具体是用来将夹具各个部分连接成为一个整体的元件,它是夹具上最大的和最复杂的元件。在它上面要安装定位元件、夹紧装置、刀具引导件以及其它各种装置和元件。此外在本体上还应有夹具在机床上安装用的定位部分,以保证夹

具在机床上获得所需的相对位置。夹具体也是承受负荷最大的元件,承受着工作时的切削力、夹紧力和惯性力。在钻削过程中,为了保证钻孔的位置精度和在一定程度上提高钻头刚度,要使用钻模套(图示黑色部分),并由定位元件对其进行定位(图示不锈钢色部分)。对夹具本体的一般要求主要有下列几点:

(1) 足够的刚度和强度,由于夹具体承受的负荷最大,故需要足够的刚度和强度以保证质量。

(2) 较轻的重量 在大型夹具中,为了减轻夹具体的重量,可以使用轻合金,如铝合金;也可以在承力大的地方用加强筋,在不受力的地方制成中空的,或设置减轻孔去掉不必要的金属。

(3) 安装要稳定 夹具体在机床或工作台上安装要稳定,这一点对不固定在机床或工作台上的夹具更为重要。夹具越高,定位地面应越大。另外,为保证与机床工作台良好接触和定位稳定,夹具体定位底面应适当挖空。

(4) 工艺性要好 因为夹具体是单件生产,一般都是利用通用机床和万能机床进行加工和测量的,因此,要求形状简单,结构紧凑,具有良好工艺性,这是对夹具体的一条重要要求。

(5) 便于清理切削和脏物 为了便于维护夹具的清洁和防止锈蚀,对于铸造本体的非加工表面应涂以润滑油,对钢制的夹具体表面可以进行氧化处理。

(6) 保证使用安全 一般的夹具本体的外表面转角要倒圆,在使用中要经常翻转的夹具,应在本体上装以便于操作的手柄。

结束语:

通过对汽车连杆的机械加工工艺及对粗加工大头孔夹具和铣结合面夹具的设计,使我学到了许多有关机械加工的知识,主要归纳为以下两个方面:

第一方面:连杆件外形较复杂,而刚性较差。且其技术要求很高,所以适当的选择机械加工中的定位基准,是能否保证连杆技术要求的重要问题之一。在连杆的实际加工过程中,选用连杆的大小头端面及小头孔作为主要定位基面,同时选用大头孔两侧面作为一般定位基准。为保证小头孔尺寸精度和形状精度,可采用自为基准的加工原则;保证大小头孔的中心距精度要求,可采用互为基准原则加工。

对于加工主要表面,按照“先基准后一般”的加工原则。连杆的主要加工表面为大小头孔和两端面,较重要的加工表面为连杆体和盖的结合面及螺栓孔定位面,次要的加工表面为轴瓦锁口槽、油孔、大头两侧面及连杆体和盖上的螺栓座面等。

连杆机械加工路线是围绕主要加工表面来安排的。连杆加工路线按连杆的分合可以分为三个阶段:第一个阶段为连杆体和盖切开之前的加工;第二个阶段为连杆体和盖的切开加工;第三个阶段为连杆体和盖合装后的加工。

第二方面:主要是关于夹具的设计方法及其步骤。

(1)、定位方案的设计:主要确定工件的定位基准及定位基面;工件的六点定位原则;定位元件的选用等。

(2)、导向及对刀装置的设计:由于本设计主要设计的是扩大头孔夹具和铣结合面夹具,所以主要考虑的是选用钻套的类型及排屑问题,以及对刀块的类型,从而确定钻套和对刀块的位置尺寸及公差。

(3)、夹紧装置的设计:针对连杆的加工特点及加工的批量,对连杆的夹紧装置应满足装卸工件方便、迅速的特点,所以一般都采用自动夹紧装置。

(4)、夹具体设计:连杆的结构特点是比较小,设计时应注意夹具体结构尺寸的大小。夹具体的作用是将定位及夹具装置连接成一体,并能正确安装在机床上,加工时能承受一部分切削力。所以夹具体的材料一般采用铸铁。

(5)、定位精度和定位误差的计算:对用于粗加工的夹具,都应该进行定位误差和稳定性的计算,以及设计的夹具能否满足零件加工的各项尺寸要求。

(6)、绘制夹具装备图及夹具零件图。

韶 关 学 院

课程设计说明书

题 目:汽车连杆的机械加工工艺规程及工艺

装备设计

学生姓名:林鸿海

学 号:[1**********]

系(院):物理与机电工程学院机电系

专 业:机械设计制造及其自动化

班 级:3班

指导教师姓名及职称:胡松喜讲师,李湘勤助教

起止时间:

目录

第一章 汽车连杆加工工艺 1.1 连杆的结构特点 --------------------------------------------------------------------------------(1) 1.2 连杆的主要技术要求---------------------------------------------------------------------------(1) 1.3连杆的材料和毛坯 -----------------------------------------------------------------------------(3) 1.4连杆的机械加工工艺过程----------------------------------------------------------------------(5) 1.5 连杆的机械加工工艺过程分析 -------------------------------------------------------------(7) 1.6 连杆加工工艺设计应考虑的问题 -----------------------------------------------------------(10) 1.7 切削用量的选择原则 --------------------------------------------------------------------------(11) 1.8 确定各工序的加工余量、计算工序尺寸及公差-------------------------------------------(12) 1.9 计算工艺尺寸链 ------------------------------------------------------------------------------(15) 1.10 工时定额的计算 ------------------------------------------------------------------------------(17) 1.11 连杆的检验 ------------------------------------------------------------------------------------(27) 第二章 夹具设计 2.1夹具的定义及分类-------------------------------------------------------------------------------(28)

2.2设计机床夹具的方法和步骤-------------------------------------------------------------------(28)

2.3设计机床夹具时应注意的问题----------------------------------------------------------------(29)

2.4夹具零部件的选择-------------------------------------------------------------------------------(30) 结束语:-------------------------------------------------------------------------------------------------(32)

摘 要

连杆是柴油机的主要传动件之一,本文主要论述了连杆的加工工艺及其夹具设计。连杆的尺寸精度、形状精度以及位置精度的要求都很高,而连杆的刚性比较差,容易产生变形,因此在安排工艺过程时,就需要把各主要表面的粗精加工工序分开。逐步减少加工余量、切削力及内应力的作用,并修正加工后的变形,就能最后达到零件的技术要求。

第一章 汽车连杆加工工艺

1.1 连杆的结构特点

连杆是汽车发动机中的主要传动部件之一,它在柴油机中,把作用于活塞顶面的膨胀的压力传递给曲轴,又受曲轴的驱动而带动活塞压缩气缸中的气体。连杆在工作中承受着急剧变化的动载荷。连杆由连杆体及连杆盖两部分组成。连杆体及连杆盖上的大头孔用螺栓和螺母与曲轴装在一起。为了减少磨损和便于维修,连杆的大头孔内装有薄壁金属轴瓦。轴瓦有钢质的底,底的内表面浇有一层耐磨巴氏合金轴瓦金属。在连杆体大头和连杆盖之间有一组垫片,可以用来补偿轴瓦的磨损。连杆小头用活塞销与活塞连接。小头孔内压入青铜衬套,以减少小头孔与活塞销的磨损,同时便于在磨损后进行修理和更换。

在发动机工作过程中,连杆受膨胀气体交变压力的作用和惯性力的作用,连杆除应具有足够的强度和刚度外,还应尽量减小连杆自身的质量,以减小惯性力的作用。连杆杆身一般都采用从大头到小头逐步变小的工字型截面形状。为了保证发动机运转均衡,同一发动机中各连杆的质量不能相差太大,因此,在连杆部件的大、小头两端设置了去不平衡质量的凸块,以便在称量后切除不平衡质量。连杆大、小头两端对称分布在连杆中截面的两侧。考虑到装夹、安放、搬运等要求,连杆大、小头的厚度相等(基本尺寸相同)。在连杆小头的顶端设有油孔(或油槽),发动机工作时,依靠曲轴的高速转动,把气缸体下部的润滑油飞溅到小头顶端的油孔内,以润滑连杆小头衬套与活塞销之间的摆动运动副。

连杆的作用是把活塞和曲轴联接起来,使活塞的往复直线运动变为曲柄的回转运动,以输出动力。因此,连杆的加工精度将直接影响柴油机的性能,而工艺的选择又是直接影响精度的主要因素。反映连杆精度的参数主要有5个:(1)连杆大端中心面和小端中心面相对连杆杆身中心面的对称度;(2)连杆大、小头孔中心距尺寸精度;(3)连杆大、小头孔平行度;(4)连杆大、小头孔尺寸精度、形状精度;(5)连杆大头螺栓孔与接合面的垂直度。

1.2 连杆的主要技术要求

连杆上需进行机械加工的主要表面为:大、小头孔及其两端面,连杆体与连杆盖的结合面及连杆螺栓定位孔等。连杆总成的主要技术要求(图1-1)如下。

图(1—1)连杆总成

1.2.1 大、小头孔的尺寸精度、形状精度

为了使大头孔与轴瓦及曲轴、小头孔与活塞销能密切配合,减少冲击的不良影响和便于传热。大头孔公差等级为IT6,表面粗糙度Ra应不大于0.4μm;大头孔的圆柱度公差为0.012 mm,小头孔公差等级为IT8,表面粗糙度Ra应不大于3.2μm。小头压衬套的底孔的圆柱度公差为0.0025 mm,素线平行度公差为0.04/100 mm。

1.2.2 大、小头孔轴心线在两个互相垂直方向的平行度

两孔轴心线在连杆轴线方向的平行度误差会使活塞在汽缸中倾斜,从而造成汽缸壁磨损不均匀,同时使曲轴的连杆轴颈产生边缘磨损,所以两孔轴心线在连杆轴线方向的平行度公差较小;而两孔轴心线在垂直于连杆轴线方向的平行度误差对不均匀磨损影响较小,因而其公差值较大。两孔轴心线在连杆的轴线方向的平行度在100 mm长度上公差为0.04 mm;在垂直与连杆轴心线方向的平行度在100 mm长度上公差为0.06 mm。

1.2.3 大、小头孔中心距

大小头孔的中心距影响到汽缸的压缩比,即影响到发动机的效率,所以规定了比较高的要求:190±0.05 mm。

1.2.4 连杆大头孔两端面对大头孔中心线的垂直度

连杆大头孔两端面对大头孔中心线的垂直度,影响到轴瓦的安装和磨损,甚至引起烧伤;所以对它也提出了一定的要求:规定其垂直度公差等级应不低于IT9(大头孔两端面对大头孔的轴心线的垂直度在100 mm长度上公差为0.08 mm)。

1.2.5 大、小头孔两端面的技术要求

连杆大、小头孔两端面间距离的基本尺寸相同,但从技术要求是不同的,大头两端面的尺寸公差等级为IT9,表面粗糙度Ra不大于0.8μm, 小头两端面的尺寸公差等级为IT12,表面粗糙度Ra不大于6.3μm。这是因为连杆大头两端面与曲轴连杆轴颈两轴肩端面间有配合要求,而连杆小头两端面与活塞销孔座内档之间没有配合要求。连杆大头端面间距离尺寸的公差带正好落在连杆小头端面间距离尺寸的公差带中,这给连杆的加工带来许多方便。

1.2.6 螺栓孔的技术要求

在前面已经说过,连杆在工作过程中受到急剧的动载荷的作用。这一动载荷又传递到连杆体和连杆盖的两个螺栓及螺母上。因此除了对螺栓及螺母要提出高的技术要求外,对于安装这两个动力螺栓孔及端面也提出了一定的要求。规定:螺栓孔按IT8级公差等级和表面粗糙度Ra应不大于6.3μm加工;两螺栓孔在大头孔剖分面的对称度公差为0.25 mm。

1.2.7 有关结合面的技术要求

在连杆受动载荷时,接合面的歪斜使连杆盖及连杆体沿着剖分面产生相对错位,影响到曲轴的连杆轴颈和轴瓦结合不良,从而产生不均匀磨损。结合面的平行度将影响到连杆体、连杆盖和垫片贴合的紧密程度,因而也影响到螺栓的受力情况和曲轴、轴瓦的磨损。对于本连杆,要求结合面的平面度的公差为0.025 mm。

1.3 连杆的材料和毛坯

连杆在工作中承受多向交变载荷的作用,要求具有很高的强度。因此,连杆材料一般采用高强度碳钢和合金钢;如45钢、55钢、40Cr、40CrMnB等。近年来也有采用球墨铸铁的,粉末冶金零件的尺寸精度高,材料损耗少,成本低。随着粉末冶金锻造工艺的出现和应用,使粉末冶金件的密度和强度大为提高。因此,采用粉末冶金的办法制造连杆是一个很有发展前途的制造方法。

连杆毛坯制造方法的选择,主要根据生产类型、材料的工艺性(可塑性,可锻性)及零件对材料的组织性能要求,零件的形状及其外形尺寸,毛坯车间现有生产条件及采用先进的毛坯制造方法的可能性来确定毛坯的制造方法。根据生产纲领为大量生产,连杆多用模锻制造毛坯。连杆模锻形式有两种,一种是体和盖分开锻造,另一种是将体和盖锻成—体。整体锻造的毛坯,需要在以后的机械加工过程中将其切开,为保证切开后粗镗孔余量的均匀,最好将整体连杆大头孔锻成椭圆形。相对于分体锻造而言,整体锻造存在所需锻造设备动力大和金属纤维被切断等问题,但由于整体锻造的连杆毛坯具有材料损耗少、锻造工时少、模具少等优点,故用得越来越多,成为连杆毛坯的一种主要形式。总之,毛坯的种类和制造方法的选择应使零件总的生产成本降低,性能提高。

目前我国有些生产连杆的工厂,采用

了连杆辊锻工艺。图(1-2)为连杆辊锻示

意图.毛坯加热后,通过上锻辊模具2和

下锻辊模具4的型槽,毛坏产生塑性变形,

从而得到所需要的形状。用辊锻法生产的

连杆锻件,在表面质量、内部金属组织、

金属纤维方向以及机械强度等方面都可达

到模锻水平,并且设备简单,劳动条件好,

生产率较高,便于实现机械化、自动化,

适于在大批大量生产中应用。辊锻需经多

次逐渐成形。

图(1-2)连杆辊锻示意图

图(1-3)、图(1-4)给出了连杆的锻造工艺过程,将棒料在炉中加热至1140~1200C0,先在辊锻机上通过四个型槽进行辊锻制坯见图(1-3),然后在锻压机上进行预锻和终锻,再在压床上冲连杆大头孔并切除飞边见图(1-4)。锻好后的连杆毛坯需经调质处理,使之得到细致均匀的回火索氏体组织,以改善性能,减少毛坯内应力。为了提高毛坯精度,连杆的毛坯尚需进行热校正。

连杆必须经过外观缺陷、内部探伤、毛坯尺寸及质量等的全面检查,方能进入机械加工生产线。

1.4 连杆的机械加工工艺过程

由上述技术条件的分析可知,连杆的尺寸精度、形状精度以及位置精度的要求都很高,但是连杆的刚性比较差,容易产生变形,这就给连杆的机械加工带来了很多困难,必须充分的重视。

盖的结合面及连杆螺栓孔定位面,次要加工表面为轴瓦锁口槽、油孔、大头两侧面及体和盖上的螺栓座面等。

连杆的机械加工路线是围绕着主要表面的加工来安排的。连杆的加工路线按连杆的分合可分为三个阶段:第一阶段为连杆体和盖切开之前的加工;第二阶段为连杆体和盖切开后的加工;第三阶段为连杆体和盖合装后的加工。第一阶段的加工主要是为其后续加工准备精基准(端面、小头孔和大头外侧面);第二阶段主要是加工除精基准以外的其它表面,包括大头孔的粗加工,为合装做准备的螺栓孔和结合面的粗加工,以及轴瓦锁口槽的加工等;第三阶段则主要是最终保证连杆各项技术要求的加工,包括连杆合装后大头孔的半精加工和端面的精加工及大、小头孔的精加工。如果按连杆合装前后来分,合装之前的工艺路线属主要表面的粗加工阶段,合装之后的工艺路线则为主要表面的半精加工、精加工阶段。

1.5 连杆的机械加工工艺过程分析

1.5.1 工艺过程的安排

在连杆加工中有两个主要因素影响加工精度:

(1)连杆本身的刚度比较低,在外力(切削力、夹紧力)的作用下容易变形。

(2)连杆是模锻件,孔的加工余量大,切削时将产生较大的残余内应力,并引起内应力重新分布。

因此,在安排工艺进程时,就要把各主要表面的粗、精加工工序分开,即把粗加工安排在前,半精加工安排在中间,精加工安排在后面。这是由于粗加工工序的切削余量大,因此切削力、夹紧力必然大,加工后容易产生变形。粗、精加工分开后,粗加工产生的变形可以在半精加工中修正;半精加工中产生的变形可以在精加工中修正。这样逐步减少加工余量,切削力及内应力的作用,逐步修正加工后的变形,就能最后达到零件的技术条件。

各主要表面的工序安排如下:

(1)两端面:粗铣、精铣、粗磨、精磨

(2)小头孔:钻孔、扩孔、铰孔、精镗、压入衬套后再精镗

(3)大头孔:扩孔、粗镗、半精镗、精镗、金刚镗、珩磨

一些次要表面的加工,则视需要和可能安排在工艺过程的中间或后面。

1.5.2 定位基准的选择

在连杆机械加工工艺过程中,大部分工序选用连杆的一个指定的端面和小头孔作为主要基面,并用大头处指定一侧的外表面作为另一基面。这是由于:端面的面积大,定位比较稳定,用小头孔定位可

直接控制大、小头孔的中心距。这样就使各

工序中的定位基准统一起来,减少了定位误

差。具体的办法是,如图(1—5)所示:在

安装工件时,注意将成套编号标记的一面不

与夹具的定位元件接触(在设计夹具时亦作

相应的考虑)。在精镗小头孔(及精镗小头

衬套孔)时,也用小头孔(及衬套孔)作为

基面,这时将定位销做成活动的称“假销”。

当连杆用小头孔(及衬套孔)定位夹紧后,

再从小头孔中抽出假销进行加工。

为了不断改善基面的精度,基面的加工

与主要表面的加工要适当配合:即在粗加工

大、小头孔前,粗磨端面,在精镗大、小头

孔前,精磨端面。

由于用小头孔和大头孔外侧面作基面,所以这些表面的加工安排得比较早。在小头孔作为定位基面前

的加工工序是钻孔、扩孔和铰孔,这些工序对于铰后

在第一道工序中,工件的各个表面都是毛坯表面,定位和夹紧的条件都较差,而加工余量和切削力都较大,如果再遇上工件本身的刚性差,则对加

工精度会有很大影响。因此,第一道工序的定位和夹紧方法的选择,对于整个工艺过程的加工精度常有深远的影响。连杆的加工就是如此,在连杆加工工艺路线中,在精加工主要表面开始前,先粗铣两个端面,其中粗磨端面又是以毛坯端面定位。因此,粗铣就是关键工序。在粗铣中工件如何定位呢?一个方法是以毛坯端面定位,在侧面和端部夹紧,粗铣一个端面后,翻身以铣好的面定位,铣另一个毛坯面。但是由于毛坯面不平整,连杆的刚性差,定位夹紧时工件可能变形,粗铣后,端面似乎平整了,一放松,工件又恢复变形,影响后续工序的定位精度。另一方面是以连杆的大头外形及连杆身的对称面定位。这种定位方法使工件在夹紧时的变形较小,同时可以铣工件的端面,使一部分切削力互相抵消,易于得到平面度较好的平面。同时,由于是以对称面定位,毛坯在加工后的外形偏差也比较小。

1.5.3 确定合理的夹紧方法

既然连杆是一个刚性比较差的工件,就应该十分注意夹紧力的大小,作用力的方向及着力点的选择,避免因受夹紧力的作用而产生变形,以影响加工精度。在加工连杆的夹具中,可以看出设计人员注意了夹紧力的作用方向和着力点的选择。在粗铣两端面的夹具中,夹紧力的方向与端面平行,在夹紧力的作用方向上,大头端部与小头端部的刚性高,变形小,既使有一些变形,亦产生在平行于端面的方向上,很少或不会影响端面的平面度。夹紧力通过工件直接作用在定位元件上,可避免工件产生弯曲或扭转变形。

在加工大小头孔工序中,主要夹紧力垂直作用于大头端面上,并由定位元件承受,以保证所加工孔的圆度。在精镗大小头孔时,只以大平面(基面)定位,并且只夹紧大头这一端。小头一端以假销定位后,用螺钉在另一侧面夹紧。小头一端不在端面上定位夹紧,避免可能产生的变形。

1.5.4 连杆两端面的加工

采用粗铣、精铣、粗磨、精磨四道工序,并将精磨工序安排在精加工大、小头孔之前,以便改善基面的平面度,提高孔的加工精度。粗磨在转盘磨床上,使用砂瓦拼成的砂轮端面磨削。这种方法的生产率较高。精磨在M7130型平面磨床上用砂轮的周边磨削,这种办法的生产率低一些,但精度较高。

1.5.5 连杆大、小头孔的加工

连杆大、小头孔的加工是连杆机械加工的重要工序,它的加工精度对连杆质量有较大的影响。

小头孔是定位基面,在用作定位基面之前,它经过了钻、扩、铰三道工序。钻时以小头孔外形定位,这样可以保证加工后的孔与外圆的同轴度误差较小。

小头孔在钻、扩、铰后,在金刚镗床上与大头孔同时精镗,达到IT6级公差等级,然后压入衬套,再以衬套内孔定位精镗大头孔。由于衬套的内孔与外圆存在同轴度误差,这种定位方法有可能使精镗后的衬套孔与大头孔的中心距超差。

大头孔经过扩、粗镗、半精镗、精镗、金刚镗和珩磨达到IT6级公差等级。表面粗糙度Ra 为0.4μm,大头孔的加工方法是在铣开工序后,将连杆与连杆体组合在一起,然后进行精镗大头孔的工序。这样,在铣开以后可能产生的变形,可以在最后精镗工序中得到修正,以保证孔的形状精度。

1.5.6 连杆螺栓孔的加工

连杆的螺栓孔经过钻、扩、铰工序。加工时以大头端面、小头孔及大头一侧面定位。

为了使两螺栓孔在两个互相垂直方向平行度保持在公差范围内,在扩和铰两个工步中用上下双导向套导向。从而达到所需要的技术要求。

粗铣螺栓孔端面采用工件翻身的方法,这样铣夹具没有活动部分,能保证承受较大的铣削力。精铣时,为了保证螺栓孔的两个端面与连杆大头端面垂直,使用两工位夹具。连杆在夹具的工位上铣完一个螺栓孔的两端面后,夹具上的定位板带着工件旋转1800 ,铣另一个螺栓孔的两端面。这样,螺栓孔两端面与大头孔端面的垂直度就由夹具保证。

1.5.7 连杆体与连杆盖的铣开工序

剖分面(亦称结合面)的尺寸精度和位置精度由夹具本身的制造精度及对刀精度来保证。为了保证铣开后的剖分面的平面度不超过规定的公差0.03mm ,并且剖分面与大头孔端面保证一定的垂直度,除夹具本身要保证精度外,锯片的安装精度的影响也很大。如果锯片的端面圆跳动不超过0.02 mm,则铣开的剖分面能达到图纸的要求,否则可能超差。但剖分面本身的平面度、粗糙度对连杆盖、连杆体装配后的结合强度有较大的影响。因此,在剖分面铣开以后再经过磨削加工。

1.5.8 大头侧面的加工

以基面及小头孔定位,它用一个圆销(小头孔)。装夹工件铣两侧面至尺寸,保证对称(此对称平面为工艺用基准面)。

1.6 连杆加工工艺设计应考虑的问题

1.6.1 工序安排

连杆加工工序安排应注意两个影响精度的因素:(1)连杆的刚度比较低,在外力作用下容易变形;(2)连杆是模锻件,孔的加工余量大,切削时会产生较大的残余内应力。因此在连杆加工工艺中,各主要表面的粗精加工工序一定要分开。

1.6.2 定位基准

精基准:以杆身对称面定位,便于保证对称度的要求,而且采用双面铣,可使部分切削力抵消。

统一精基准:以大小头端面,小头孔、大头孔一侧面定位。因为端面的面积大,定位稳定可靠;用小头孔定位可直接控制大小头孔的中心距。

1.6.3 夹具使用

应具备适应“一面一孔一凸台”的统一精基准。而大小头定位销是一次装夹中镗出,故须考虑“自为基准”情况,这时小头定位销应做成活动的,当连杆定位装夹后,再抽出定位销进行加工。

保证螺栓孔与螺栓端面的垂直度。为此,精铣端面时,夹具可考虑重复定位情况,如采用夹具限制7个自由度(其是长圆柱销限制4个,长菱形销限制2个)。长销定位目的就在于保证垂直度。但由于重复定位装御有困难,因此要求夹具制造精度较高,且采取一定措施,一方面长圆柱销削去一边,另一方面设计顶出工件的装置。

1.7 切削用量的选择原则

正确地选择切削用量,对提高切削效率,保证必要的刀具耐用度和经济性,保证加工质量,具有重要的作用。

1.7.1 粗加工时切削用量的选择原则

粗加工时加工精度与表面粗糙度要求不高,毛坯余量较大。因此,选择粗加工的切削用量时,要尽可能保证较高的单位时间金属切削量(金属切除率)和必要的刀具耐用度,以提高生产效率和降低加工成本。

金属切除率可以用下式计算: Zw ≈V.f.ap.1000

式中:Zw单位时间内的金属切除量(mm3/s) V切削速度(m/s) f 进给量(mm/r) ap切削深度(mm)

提高切削速度、增大进给量和切削深度,都能提高金属切除率。但是,在这三个因素中,影响刀具耐用度最大的是切削速度,其次是进给量,影响最小的是切削深度。所以粗加工切削用量的选择原则是:首先考虑选择一个尽可能大的吃刀深度ap,其次选择一个较大的进给量度f,最后确定一个合适的切削速度V.

选用较大的ap和f以后,刀具耐用度t 显然也会下降,但要比V对t的影响小得多,只要稍微降低一下V便可以使t回升到规定的合理数值,因此,能使V、f、ap的乘积较大,从而保证较高的金属切除率。此外,增大ap可使走刀次数减少,增大f又有利于断屑。因此,根据以上原则选择粗加工切削用量对提高生产效率,减少刀具消耗,降低加工成本是比较有利的。

1)切削深度的选择:

粗加工时切削深度应根据工件的加工余量和由机床、夹具、刀具和工件组成的工艺系统的刚性来确定。在保留半精加工、精加工必要余量的前提下,应当尽

量将粗加工余量一次切除。只有当总加工余量太大,一次切不完时,才考虑分几次走刀。

2)进给量的选择:

粗加工时限制进给量提高的因素主要是切削力。因此,进给量应根据工艺系统的刚性和强度来确定。选择进给量时应考虑到机床进给机构的强度、刀杆尺寸、刀片厚度、工件的直径和长度等。在工艺系统的刚性和强度好的情况下,可选用大一些的进给量;在刚性和强度较差的情况下,应适当减小进给量。

3)切削速度的选择:

粗加工时,切削速度主要受刀具耐用度和机床功率的限制。切削深度、进给量和切削速度三者决定了切削功率,在确定切削速度时必须考虑到机床的许用功率。如超过了机床的许用功率,则应适当降低切削速度。

1.7.2 精加工时切削用量的选择原则

精加工时加工精度和表面质量要求较高,加工余量要小且均匀。因此,选择精加工的切削用量时应先考虑如何保证加工质量,并在此基础上尽量提高生产效率。

1)切削深度的选择:

精加工时的切削深度应根据粗加工留下的余量确定。通常希望精加工余量不要留得太大,否则,当吃刀深度较大时,切削力增加较显著,影响加工质量。

2)进给量的选择:

精加工时限制进给量提高的主要因素是表面粗糙度。进给量增大时,虽有利于断屑,但残留面积高度增大,切削力上升,表面质量下降。

3)切削速度的选择:

切削速度提高时,切削变形减小,切削力有所下降,而且不会产生积屑瘤和鳞刺。一般选用切削性能高的刀具材料和合理的几何参数,尽可能提高切削速度。只有当切削速度受到工艺条件限制而不能提高时,才选用低速,以避开积屑瘤产生的范围。

由此可见,精加工时选用较小的吃刀深度ap和进给量f,并在保证合理刀具耐用度的前提下,选取尽可能高的切削速度V,以保证加工精度和表面质量,同时满足生产率的要求。

1.8 确定各工序的加工余量、计算工序尺寸及公差

1.8.1 确定加工余量

用查表法确定机械加工余量:

(根据《机械加工工艺手册》第一卷 表3.2—25 表3.2—26 表3.2—27)

则连杆两端面总的加工余量为: A总=

A2

ii1

n

=(A粗铣+A精铣+A粗磨+A精磨)2 =(1.5+0.6+0.3+0.1)2 =500.55mm

(2)、连杆铸造出来的总的厚度为H=38+500.55=430.55mm

1.8.2 确定工序尺寸及其公差

(根据《机械制造技术基础课程设计指导教程》 表2—29 表2—34) 

表1.8.2 小头孔各工序尺寸及其公差

1.9 计算工艺尺寸链

1.9.1 连杆盖的卡瓦槽的计算

增环为:A2 ; 减环为:A3 ;封闭环为:A0 1)、A0极限尺寸为:

A0maxAimax

i1m



im1

A

n1

imin

= 30.20-4.95 = 25.25 mm

A0minAimin

i1m

im1

A

n1

imax

= 29.8-5.1 = 24.7 mm 2)、A0的上、下偏差为:

ESA0ESAi

i1m

im1

EIA

n1

i

=0.20-(-0.05)

=0.25(mm)

EIA0EIAi

i1m

im1

ESA

n

1

i

=-0.20-0.10 =-0.30(mm)

3)、A0的公差为:

T0ESA0EIA0

= 0.25-(0.30)

= 0.55 mm

4)、A0的基本尺寸为:

A0=A2A3

= 30-5

= 25 mm

5)、A0的最终工序尺寸为:

0.25

A0= 25(0.30)mm

1.9.2 连杆体的卡瓦槽的计算

增环为:A1 ;

1)、A0极限尺寸为:

A0maxAimax

i1m



im1

A

n1

imin

= 13.30-4.95

= 8.35 mm

A0minAimin

i1m

im1

A

n1

imax

=12.9-5.1 =7.8 mm 2)、A0的上、下偏差为:

ESA0ESAi

i1m

im1

EIA

n1

i

= 0.30-(-0.05)

= 0.35 mm

EIA0EIAi

i1m

im1

ESA

n1

i

= -0.10-0.10 = -0.20 mm

3)、A0的公差为:

T0ESA0EIA0

=0.35-(-0.20)

=0.55 mm

4)、A0的基本尺寸为:

A0=A1A2

=13-5 = 8 mm

5)、A0的最终工序尺寸为:

0.35

A0= 8(0.20)m

1.10 工时定额的计算 1.10.1 铣连杆大小头平面

选用X52K机床

根据《机械制造工艺设计手册》表2.4—81选取数据

铣刀直径D = 100 mm 切削速度Vf = 2.47 m/s

切削宽度 ae= 60 mm 铣刀齿数Z = 6 切削深度ap = 3 mm 则主轴转速n = 1000v/D = 475 r/min

根据表3.1—31 按机床选取n = 500 /min 则实际切削速度V = Dn/(1000×60) = 2.67 m/s 铣削工时为:按表2.5—10

L= 3 mm L1 = ae(dae)+1.5 =50 mm L2 = 3 mm 基本时间tj = L/fm z = (3+50+3)/(500×0.18×6) = 0.11 min

按表2.5—46 辅助时间ta = 0.4×0.45 = 0.18 min 1.10.2 粗磨大小头平面 选用M7350磨床

根据《机械制造工艺设计手册》表2.4—170选取数据

砂轮直径D = 40 mm 磨削速度V = 0.33 m/s

切削深度ap = 0.3 mm fr0 = 0.033 mm/r Z = 8 则主轴转速n = 1000v/D = 158.8 r/min

根据表3.1—48 按机床选取n = 100 r/min 则实际磨削速度V = Dn/(1000×60) = 0.20 m/s 磨削工时为:按表2.5—11

基本时间tj = zbk/nfr0z = (0.3×1)/(100×0.033×8) = 0.01 min 按表3.1—40 辅助时间ta = 0.21 min 1.10.3 加工小头孔

(1) 钻小头孔 选用钻床Z3080 根据《机械制造工艺设计手册》表2.4—38(41)选取数据 钻头直径D = 20 mm 切削速度V = 0.99 mm 切削深度ap = 10 mm 进给量f = 0.12 mm/r 则主轴转速n = 1000v/D = 945 r/min

根据表3.1—30 按机床选取n = 1000 r/min

则实际钻削速度V = Dn/(1000×60) = 1.04 m/s 钻削工时为:按表2.5—7

L = 10 mm L1 = 1.5 mm L2 = 2.5mm 基本时间tj = L/fn = (10+1.5+2.5)/(0.12×1000) = 0.12 min 按表2.5—41 辅助时间ta = 0.5 min 按表2.5—42 其他时间tq = 0.2 min (2) 扩小头孔 选用钻床Z3080 根据《机械制造工艺设计手册》表2.4—53选取数据

扩刀直径D = 30 mm 切削速度V = 0.32 m/s 切削深度ap = 1.5 mm 进给量 f = 0.8 mm/r 则主轴转速n =1000v/D = 203 r/min

根据表3.1—30 按机床选取n = 250 r/min 则实际切削速度V = Dn/(1000×60) = 0.39 m/s 扩削工时为:按表2.5—7

L = 10 mm L1 = 3 mm 基本时间tj=L/fn=(10+3)/(0.8×250)=0.07 min

按表2.5—41 辅助时间ta=0.25 min (3) 铰小头孔 选用钻床Z3080 根据《机械制造工艺设计手册》表2.4—81选取数据

铰刀直径D = 30 mm 切削速度V = 0.22 m/s 切削深度ap = 0.10 mm 进给量f = 0.8 mm/r 则主轴转速n = 1000v/D = 140 r/min

根据表3.1—31 按机床选取n = 200 r/min 则实际切削速度V = Dn/(1000×60) = 0.32 m/s 铰削工时为: 按表2.5—7 L=10 mm L1 =0 L2=3 mm

基本时间tj = L/fn = (10+3)/(0.8×200) = 0.09 min

按表2.5—41 辅助时间ta = 0.25 min 1.10.4 铣大头两侧面

选用铣床X62W

根据《机械制造工艺设计手册》表2.4—77(88)选取数据

铣刀直径D = 20 mm 切削速度V = 0.64 m/s 铣刀齿数Z = 3 切削深度ap = 4 mm af = 0.10 mm/r 则主轴转速n = 1000v/D = 611 r/min

根据表3.1—74 按机床选取n=750 r/min 则实际切削速度V = Dn/(1000×60) = 0.78 m/s 铣削工时为:按表2.5—10

L=40 mm L1=ae(dae)+1.5=8.5 mm L2=2.5 mm

基本时间tj = L/fmz = (40+8.5+2.5)/(750×0.10×3)=0.23 min

按表2.5—46 辅助时间ta = 0.4×0.45 = 0.18 min

1.10.5、扩大头孔

选用钻床床Z3080 刀具:扩孔钻

根据《机械制造工艺设计手册》表2.4—54选取数据

扩孔钻直径D = 60 mm 切削速度V = 1.29 m/s

进给量f = 0.50 mm/r 切削深度ap =3.0 mm 走刀次数I = 1

则主轴转速n = 1000v/D=410 r/min

根据表3.1—41 按机床选取n=400 r/min

则实际切削速度V=Dn/(1000×60)=1.256 m/s

扩削工时为: 按表2.5—7

L = 40 mm L1 = 3 mm L2 =3 mm

l33tj40基本时间: 10.23(min)

(ctgkr1~2) l12

l22~41.10.6 铣开连杆体和盖

选用铣床X62W

根据《机械制造工艺设计手册》表2.4—79(90)选取数据

铣刀直径D = 63 mm 切削速度V = 0.34 m/s

切削宽度ae = 3 mm 铣刀齿数Z = 24

切削深度ap = 2 mm af = 0.015 mm/r d = 40 mm

则主轴转速n = 1000v/D = 103 r/min

根据表3.1—74 按机床选取n=750 r/min

则实际切削速度V = Dn/(1000×60) = 2.47 m/s 按表2.5—10 22d(d2ap) L = 22dapap(dapap)Dap L1 = - +2 = 6 mm

L2 = 2 mm

基本时间tj= Li/FM = (17+6+2)/(148) = 0.17 min

按表2.5—46 辅助时间ta=0.4×0.45=0.18 min

1.10.7 加工连杆体

(1) 粗铣连杆体结合面 选用铣床X62W

根据《机械制造工艺设计手册》表2.4—74(84)选取数据

铣刀直径D = 75 mm 切削速度V = 0.35 m/s

切削宽度ae = 0.5 mm 铣刀齿数Z = 8

切削深度ap=2 mm af = 0.12 mm/r

则主轴转速n = 1000v/D = 89 r/min

根据表3.1—74 按机床选取n = 750 r/min

则实际切削速度V = Dn/(1000×60) = 2.94 m/s

铣削工时为: 按表2.5—10 L = 38 mm L1 = ae(dae)+1.5 = 7.5 mm L2 = 2.5 mm

基本时间tj = L/fnz = (38+7.5+2.5)/(2.96×60×8) = 0.03 min

按表2.5—46 辅助时间ta=0.4×0.45=0.18 min

(2) 精铣连杆体结合面 选用铣床X62W

根据《机械制造工艺设计手册》表2.4—84选取数据

铣刀直径D = 75 mm 切削速度V = 0.42 m/s

铣刀齿数Z = 8 切削深度ap = 2 mm

af=0.7 mm/r 切削宽度ae=0.5 mm

则主轴转速n = 1000v/D =107 r/min

根据表3.1—74 按机床选取n = 750 r/min

则实际切削速度V = Dn/(1000×60) = 2.94 m/s

铣削工时为:按表2.5L = 38 mm L1 = -ae)+1.5 = 7.5 mm L2 = 2.5 mm

基本时间tj = L/fmz = (38+7.5+2.5)/(2.96×60×8) = 0.03 min

按表2.5—46 辅助时间ta = 0.4×0.45 = 0.18 min

(3) 粗锪连杆两螺栓底面 选用钻床Z3025

根据《机械制造工艺设计手册》表2.4—67选取数据

锪刀直径D = 28 mm 切削速度V = 0.2 m/s

锪刀齿数Z = 6 切削深度ap = 3 mm 进给量f = 0.10 mm/r

则主轴转速n = 1000v/D = 50.9 r/min

根据表3.1—30 按机床选取n = 750 r/min

则实际切削速度V = Dn/(1000×60) = 2.94 m/s

锪削工时为: 按表2.5—7

L = 28 mm L1 = 1.5 mm

基本时间tj = L/fn = (28+1.5)/(0.10×750×8) = 0.04 min

(4) 铣轴瓦锁口槽 选用铣床X62W

根据《机械制造工艺设计手册》表2.4—90选取数据

铣刀直径D = 63 mm 切削速度V = 0.31 m/s

铣刀齿数Z = 24 切削深度ap = 2 mm

切削宽度ae = 0.5 mm af = 0.02 mm/r

则主轴转速n = 1000v/D = 94 r/min

根据表3.1—74 按机床选取n=100 r/min

则实际切削速度V = Dn/(1000×60) = 0.33 m/s

铣削工时为: 按表2.5—10

L = 5 mm L1=0.5×63+1.5 = 33 mm L2 = 1.5 mm

基本时间tj=L/fmz=(5+33+1.5)/(100×24)=0.02 min

按表2.5—46 辅助时间ta=0.4×0.45=0.18 min

(5) 精铣螺栓座面 选用铣床X62W

根据《机械制造工艺设计手册》表2.4—90选取数据

铣刀直径D = 63 mm 切削速度V = 0.47 m/s

铣刀齿数Z = 24 切削深度ap = 2 mm

切削宽度ae = 5 mm af=0.015 mm/r

则主轴转速n = 1000v/D = 142 r/min

根据表3.1—31 按机床选取n = 150 r/min

则实际切削速度V = Dn/(1000×60) = 0.49 m/s

铣削工时为: 按表2.5—10 L = 28 mm L1 = ae(dae)+1.5 = 19 mm L2 = 3 mm

基本时间tj=L/fmz = (28+19+3)/(150×24) = 0.02 min

按表2.5—46 辅助时间ta = 0.4×0.45 = 0.18 min

(7) 精磨结合面 选用磨床M7130

根据《机械制造工艺设计手册》表2.4—170选取数据

砂轮直径D = 40 mm 切削速度V = 0.330 m/s

切削深度ap = 0.1 mm 进给量fr0 = 0.006 mm/r

则主轴转速n = 1000v/D = 157 r/min

根据表3.1—48 按机床选取n = 100 r/min

则实际切削速度V = Dn/(1000×60) = 0.20 m/s

磨削工时为: 按表2.5—11

基本时间tj= zbk/nfr0z=0.02 min (zb=0.1 k=1 z=8)

1.10.8 铣、磨连杆盖结合面

(1) 粗铣连杆上盖结合面 选用铣床X62W

根据《机械制造工艺设计手册》表2.4—74(84)选取数据

铣刀直径D = 75 mm 切削速度V = 0.35 m/s

切削宽度ae = 3 mm 铣刀齿数Z = 8 af = 0.12 mm/r

则主轴转速n = 1000v/D = 89 r/min

根据表3.1—74 按机床选取n = 100 r/min

则实际切削速度V = Dn/(1000×60) = 0.39 m/s

铣削工时为:按表L = 38 mm L1 = ae(d-ae)+1.5 = 16 mm L2 = 2.5 mm

基本时间tj = L/fmz=(38+16+2.5)/(100×8) = 0.07 min

按表2.5—46 辅助时间ta=0.4×0.45=0.18 min

(2) 精铣连杆上盖结合面 选用铣床X62W

根据《机械制造工艺设计手册》表2.4—84选取数据

铣刀直径D = 75 mm 切削速度V = 0.42 m/s

切削宽度ae = 0.5 mm 铣刀齿数Z = 8 进给量f = 0.7 mm/r

则主轴转速n = 1000v/D = 107 r/min

根据表3.1—74 按机床选取n = 110 r/min

则实际切削速度V = Dn/(1000×60) = 0.43 m/s

铣削工时为:按表2.5—10

L = 38 mm L1 = ae(d-ae)+1.5 = 7.5 mm L2 = 2.5 mm

基本时间tj = L/fmz = (38+7.5+2.5)/(110×8) = 0.6 min

按表2.5—46 辅助时间ta=0.4×0.45=0.18 min

(3) 粗铣螺母座面 选用铣床X62W

根据《机械制造工艺设计手册》表2.4—88选取数据

铣刀直径D = 63 mm 切削速度V = 0.34 m/s

铣刀齿数Z = 24 切削宽度ae = 5 mm af = 0.15 mm/r

则主轴转速n = 1000v/D = 103 r/min

根据表3.1—74 按机床选取n = 100 r/min

则实际切削速度V = Dn/(1000×60) = 0.39 m/s

铣削工时为:按表L = 28mm L1 = -ae)+1.5 = 17.5 mm L2 = 2.5 mm

基本时间tj = L/fmz = (28+17.5+2.5)/(100×24) = 0.02 min

按表2.5—46 辅助时间ta=0.4×0.45=0.18 min

(4) 铣轴瓦锁口槽 选用铣床X62W

根据《机械制造工艺设计手册》表2.4—90选取数据

铣刀直径D = 63 mm 切削速度V = 0.31 m/s

铣刀齿数Z = 24 切削深度ap = 2 mm

切削宽度ae = 0.6 mm af = 0.02 mm/r

则主轴转速n = 1000v/D = 94 r/min

根据表3.1—74按机床选取n = 100 r/min

则实际切削速度V = Dn/(1000×60) = 0.33 m/s

铣削工时为: 按表2.5—10

L = 5 mm L1 = 0.5×63+1.5 = 33 mm L2 = 1.5 mm

基本时间tj =L/fmz = (5+33+1.5)/(100×24) = 0.02 min

按表2.5—46 辅助时间ta = 0.4×0.45 = 0.18 min

(5) 精磨结合面 选用磨床M7350

根据《机械制造工艺设计手册》表2.4—170选取数据

砂轮直径D = 40 mm 切削速度V = 0.330 m/s

切削深度ap = 0.1 mm 进给量fr0 = 0.006 mm/r

则主轴转速n = 1000v/D = 157 r/min

根据表3.1—48 按机床选取n = 100 r/min

则实际切削速度V = Dn/(1000×60) = 0.20 m/s

磨削工时为: 按表2.5—11

基本时间tj = zbk/nfr0z= 0.02 min (zb=0.1 k=1 z=8)

1.10.9 铣、钻、镗(连杆总成体)

(1) 精铣连杆盖上两螺母座面 选用铣床X62W

根据《机械制造工艺设计手册》表2.4—90选取数据

铣刀直径D = 63 mm 切削速度V = 0.47 m/s

切削宽度ae = 5 mm 铣刀齿数Z = 24

切削深度ap = 2 mm af = 0.015 mm/r

则主轴转速n = 1000v/D = 142 r/min

根据表3.1—74 按机床选取n = 150 r/min

则实际切削速度V = Dn/(1000×60) = 0.49 m/s

铣削工时为: 按表2.5—10 L = 28 mm L1 = ae(d-ae)+1.5 = 17.5 mm L2 = 2.5 mm

基本时间tj = L/fmz = (28+17.5+2.5)/(150×24) = 0.02 min

按表2.5—46 辅助时间ta = 0.4×0.45 = 0.18 min

(2)、从连杆上方钻、扩、铰螺栓孔

a) 钻螺栓孔 选用钻床Z3025 根据《机械制造工艺设计手册》表2.4—38(41)选取数据

切削速度V = 0.99 m/s 切削深度ap = 5 mm

进给量f = 0.08 mm/r 钻头直径D = 10 mm

则主轴转速n = 1000v/D = 1910 r/min

根据表3.1—30 按机床选取n = 910 r/min

则实际切削速度V = Dn/(1000×60) = 0.99 m/s

钻削工时为: 按表2.5—7

L = 34 mm L1 = 1.5 mm L2 = 2 mm

基本时间tj = L/fn = (34+1.5+2)/(0.08×1910) = 0.23 min

按表2.5—41 辅助时间ta = 0.5 min

按表2.5—42 其他时间tq=0.2 min

b) 扩螺栓孔 选用钻床Z3025

根据《机械制造工艺设计手册》表2.4—53选取数据

扩刀直径D = 10 mm 切削速度V = 0.40 m/s

切削深度ap = 1.0 mm 进给量f = 0.6 mm/r

则主轴转速n = 1000v/D = 764 r/min

根据表3.1—30 按机床选取n=764 r/min

则实际切削速度V = Dn/(1000×60) = 0.40 m/s

扩削工时为: 按表2.5—7

L = 34 mm L1 = 2 mm

基本时间tj = L/fn = (34+2)/(0.6×764) = 0.07 min

按表2.5—41 辅助时间ta=0.25 min

c)铰螺栓孔

根据《机械制造工艺设计手册》表2.4—81选取数据

铰刀直径D = 12.2 mm 切削速度V = 0.22 m/s

切削深度ap = 0.10 mm 进给量f = 0.2 mm/r

则主轴转速n = 1000v/D = 140 r/min

根据表3.1—31 按机床选取n = 200 r/min

则实际切削速度V =Dn/(1000×60) = 0.127 m/s

铰削工时为: 按表2.5—7

L = 34 mm L1 = 2 mm L2 = 3 mm

基本时间tj = L/fn = (34+2+3)/(0.8×200) = 0.23 min

(3) 从连杆盖上方给螺栓孔口倒角

根据《机械制造工艺设计手册》表2.4—67选取数据

切削速度V = 0.2 m/s 切削深度ap = 3 mm

进给量f = 0.10 mm/r Z = 8

根据表3.1—30 按机床选取n = 750 r/min

切削工时为: 按表2.5—7

基本时间tj = L/fn = (0.5+1.5)/750×0.10 = 0.03 min

1.10.10 粗镗大头孔

选用镗床T68

根据《机械制造工艺设计手册》表2.4—66选取数据

铣刀直径D = 65 mm 切削速度V = 0.16 m/s

进给量f = 0.30 mm/r 切削深度ap = 3.0 mm

则主轴转速n = 000v/D = 47 r/min

根据表3.1—41 按机床选取n = 800 r/min

则实际切削速度V = Dn/(1000×60) = 2.72 m/s

镗削工时为: 按表2.5—3

L = 38 mm L1 = 3.5 mm L2 = 5 mm

基本时间tj = Li/fn = (38+3.5+5)/(0.30×800) = 0.19 min

按表2.5—67 辅助时间ta = 0.50 min

1.10.11 大头孔两端倒角

选用机床X62W

根据《机械制造工艺设计手册》表2.4—67选取数据

切削速度V = 0.2 m/s 切削深度ap = 3 mm

进给量f = 0.10 mm/r Z = 8

根据表3.1—30 按机床选取n = 750 r/min

切削工时为: 按表2.5—7

基本时间tj = L/fn = (0.5+1.5)/750×0.10 = 0.03 min

1.10.12精磨大小头两平面(先标记朝上)

选用磨床M7130

根据《机械制造工艺设计手册》表2.4—170选取数据

切削速度V = 0.413 m/s 切削深度ap = 0.10 mm

进给量f = 0.006 mm/r

磨削工时为: 按表2.5—7

基本时间 tj = lbzbk/1000vfafr0z

=0.1×70×0.02×1.1/(1000×60)×0.413×0.006×20×0.1

=0.03 min

1.10.13 半精镗大头孔及精镗小头孔

选用镗床T2115

(1)根据《机械制造工艺设计手册》表2.4—66选取数据

镗刀直径D = 65.5 mm 切削速度V = 0.20 m/s

进给量f = 0.2 mm/r 切削深度ap = 1 mm

根据表3.1—39 按机床选取n = 1000 r/min

镗削工时为: 按表2.5—3

L = 38 mm L1 = 3.5 mm L2 = 5 mm

基本时间tj= Li/fn = (38+3.5+5)/(0.20×1000) = 0.23 min

(2)根据《机械制造工艺设计手册》表2.4—66选取数据

镗刀直径D = 30 mm 切削速度V = 3.18 m/s

进给量f = 0.10 mm/r 切削深度ap = 1.0 mm

根据表3.1—39 按机床选取n = 2000 r/min

镗削工时为: 按表2.5—3

L = 38 mm L1 = 3.5 mm L2 = 5 mm

基本时间tj = Li/fn = (38+3.5+5)/(0.10×2000) = 0.23 min

1.10.14精镗大头孔

选用镗床T2115

根据《机械制造工艺设计手册》表2.4—66选取数据

镗刀直径D = 65.4 mm 切削速度V = 0.20 m/s

进给量f = 0.2 mm/r 切削深度ap = 1 mm

根据表3.1—39 按机床选取n = 1000 r/min

镗削工时为: 按表2.5—3

L = 38 mm L1 = 3.5 mm L2 = 5 mm

基本时间tj = Li/fn = (38+3.5+5)/(0.20×1000) = 0.23 min

1.10.15 钻小头油孔

选用钻床Z3025

根据《机械制造工艺设计手册》表2.4—38(41)选取数据

切削速度V = 1.18 m/s 切削深度ap = 3 mm

进给量f = 0.05 mm/r

根据表3.1—30 按机床选取n = 1000 r/min 钻削工时为: 按表2.5—7

L = 6 mm L1 = 3 mm

基本时间tj = L/fn =(6+1)/(1000×0.05) = 0.14 min

1.10.16 小头孔两端倒角

选用机床X62W

根据《机械制造工艺设计手册》表2.4—67选取数据

切削速度V = 0.2 m/s 切削深度ap = 3 mm

进给量f = 0.10 mm/r Z = 8

根据表3.1—30 按机床选取n = 750 r/min 切削工时为: 按表2.5—7

基本时间tj = L/fn = (0.5+1.5)/750×0.10 = 0.03 min

1.10.17 镗小头孔衬套

选用镗床T2115

根据《机械制造工艺设计手册》表2.4—66选取数据

镗刀直径D = 30 mm 切削速度V = 0.25 m/s

进给量f = 0.2 mm/r 切削深度ap = 0.2 mm

根据表3.1—39 按机床选取n = 1000 r/min 镗削工时为: 按表2.5—3

L = 38 mm L1 = 3.5 mm L2 = 5 mm

基本时间tj = Li/fn = (38+3.5+5)/(0.20×1000) = 0.23 min

1.10.18 珩磨大头孔

根据《机械制造工艺设计手册》表2.4—66选取数据

切削速度V = 0.32 m/s 进给量f = 0.05 mm/r

切削深度ap = 0.05 mm

根据表3.1—39 按机床选取n = 1000 r/min

镗削工时为: 按表2.5—3

基本时间 tj=2Lnd/(1000×60)v

=(2×38×2)/(1000×0.32)

=0.47 min

1.11 连杆的检验

连杆在机械加工中要进行中间检验,加工完毕后要进行最终检验,检验项目按图纸上的技术要求进行。

1.11.1 观察外表缺陷及目测表面粗糙度

1.11.2 连杆大头孔圆柱度的检验

用量缸表,在大头孔内分三个断面测量其内径,每个断面测量两个方向,三个断面测量的最大值与最小值之差的一半即圆柱度。

1.11.3 连杆体、连杆上盖对大头孔中心线的对称度的检验

采用图(1-6)所示专用检具(用一平尺安装上百分表)。用结合面为定位基准分别测量连杆体、连杆上盖两个半圆的半径值,其差为对称度误差。

1.11.4 连杆大小头孔平行度的检验

如图(1—7)所示,将连杆大小头孔穿入专用心轴,在平台上用等高V形铁支撑连杆大头孔心轴,测量小头孔心轴在最高位置时两端面的差值,其差值的一半即为平行度。

图(1—7)大小头孔平行度的检验图

1.11.5 连杆螺钉孔与结合面垂直度的检验

制做专用垂直度检验心轴,其检测心轴直径公差,分三个尺寸段制做,配以不同公差的螺钉,检查其接触面积,一般在90%以上为合格,或配用塞尺检测,塞尺厚度的一半为垂直度公差值。

第二章 夹具设计

2.1夹具的定义及分类

在机械制造工业中,为了达到保证产品质量、改善劳动条件、提高劳动生产率及降低成本的目的,在工艺过程中,除机床等设备外,还大量使用着各种工艺装备。它包括夹具、模具、刀具、辅助工具及测量工具等。因此,广义地说,夹具是一种保证产品质量并便利和加速工艺过程的一种工艺装备。不同的夹具,其结构形式、工作情况、设计原则都不同,但就其数量和在生产中所占的地位来说,应以“机床夹具”为首。 所谓机床夹具就是机床上所使用的一种辅助设备,用它来准确地确定工件与刀具的相对位置,即将工件进行定位及夹紧,以保证完成加工所需要的工件与机床的相对位置。所以机床夹具是用以使工件定位和夹紧的机床附加装置。 至于使刀具定位、夹紧并实现某种特定切削运动的辅助设备成为辅助工具,也成为刀具用的夹具。

2.2设计机床夹具的方法和步骤

机床夹具设计是工艺装备设计中的一个重要组成部分,是保证产品质量和提高劳动生产率的一项重要技术措施。在设计过程中,应深入生产实际,进行调查研究,吸取国内外的先进技术,制造出合理的设计方案,再进行具体设计。设计步骤如下: (1)深入生产实际调查研究 在深入生产实际调查研究中,应当掌握以下面一些资料: 工件图纸:详细阅读工件图纸,了解工件被加工表面的技术要求,该件在机械钟的位置和作用,以及装配中的特殊要求。 工艺文件:了解工件的工艺过程,本工序的加工要求,工件已加工面及待加工面的状况,基准面选择的情况,可用的机床设备的主要规格,与夹具连接部分的尺寸及切削用量等。 夹具的结构形式应与工件批量大小相合应,做到经济合理。制造与使用夹具的情况,有无通用零部件可供选用;工厂有无压缩空气站;制造和使用夹具的工人的技术状况等。 (2)确定工件的定位方法和刀具的导向方式 工件在夹具中的地位应符合定位原理,合理地设置定位件和导向件时,应尽量采用通用标准。 (3)确定工件的加紧方式和设计夹紧机构 夹紧力的作用点和方向应符合夹紧原则。一般来说,手动夹紧时不必算出夹紧力的确切值,只有在机动夹紧时,才进行夹紧力计算,以便决定动力部件的尺寸。 (4)确定夹具其他部分的结构形式 如分度装置,对刀元件和夹具体等。 (5)绘制夹具总装配图 在绘制总装配图时,尽量采用1:1比例,主视图应选取面对操作者的工作位置。绘图时,先用红线或双点划线画出工件的轮廓和主要表面,如定位表面、加紧表

面和被加工表面等。其中,被加工表面用网纹线或粗实线画出加工余量。工件在夹具上可看成是一个假想的透明体,按定位元件、导向元件、夹紧机构、传动装置等顺序,画出具体结构,最后画夹具体,并在显眼的部位画出符号,以便标注夹具编号。 (6)标注各部分主要尺寸、公差配合和技术要求 (7)标注零件编号及编制零件明细表 在标注零件编号时,标注件可直接标出国家标注代号。明细表要注明夹具名称、编号、序号、零件名称及材料、数量等。 (8)绘制夹具零件图 拆绘夹具零件图的顺序和绘制夹具总装配图的顺序相同。

2.3设计机床夹具时应注意的问题

对机床夹具的基础要求是:工件定位正确,定位精度满足加工要求;工件夹紧牢固可靠;操作安全方便;成本低廉。为此,在设计机床夹具时,应注意以下一些问题:

(1) 定位精度

工件在夹具中的定位精度,主要与定位基准是否与工序基准重合、定位基准的形式和精度、定位元件的形式和精度、定位元件的布置方式、定位基准与定位元件的配合状况等因素有关。这些因素所造成的误差,可以通过数学计算求得。在采用取提高定位精度的措施时,要注意到夹具制造上的可能性。在总的定位精度满足加工要求的条件下,不要过高的提高工作在夹具中的定位精度。 夹具在机床上的定位精度,主要与夹具定位表面与机床配合处的位置精度,夹具与机床连接处的配合间隙等因素有关。因此,提高夹具制造精度,减少配合间隙就能提高夹具在机床上的定位精度。如果定位精度要求很高,而通过提高夹具制造精度的措施已不可能或不合理时,应采用调整法或就地加工法解决,即在安装夹具时找正定位表面的准确位置,或在夹具安装后加工定位表面,使夹具在机床上获得高精度定位。 刀具在夹具上的导向精度通常利用导向元件或对刀元件来保证。因此影响刀具在夹具上的导向精度的因素有:导套中心到定位元件的定位表面的位置精度、刀具与导套的间隙、导套底面到工件顶面的距离等。导向误差可通过数学计算求得。对刀的精度取决于对刀元件的位置精度和对刀技巧。 夹具中,当两个或两个以上定位元件限制同一自由度时,将产生过定位现象。定位基准的形位误差较大时,过定位将造成不良影响。夹具中出现过定位时,可通过撤消多余定位元件,使多余定元件失去重复限制自由度能力,增加过定位元件与定位基准的配合间隙等办法来解决。

(2) 夹紧方式

选择夹紧方式时,要注意以下几点:夹紧力应通过或靠近主要支承点所组成的平面内;夹紧力应通过或靠近主要支承点,或在支承点所组成的平面内;夹紧力应靠近切削部位,并在工件刚性较好的部位;夹紧力应垂直主要定位基准,以避免因夹紧破坏工件原有的定位状态;夹紧必须可靠,但夹紧力不可过大,以免工件或夹具产生过大变形。为防止工件变形,可采用多点夹紧或宽爪夹紧,以降低单位面积的夹紧力,或在工件刚性薄弱部位,安放适当的辅助支承。

(3) 结构设计

夹紧机构既要可靠,又要和生产纲领相适应,这样才能符合多、快、好、省的原则。大批生产中使用的夹具和中小批生产中使用的夹具,在结构上应有所区别。 在大批生产中,既要解决工件的质量问题,又要解决工件的产量问题。因此,在设计夹具时,应采用高效、省力的夹具结构。 在中小批生产中,采用夹具的主要目的是保证加工质量和扩大机床的工艺性能,以及便于多品种生产等。因此,对夹具机构的要求,主要是精度和通用性,效率问题比较次要。所以应尽量采用各种形式的通用夹具、可调夹具和组合夹具等配以适当的专用附件,以满足生产要求。在设计专用夹具时,要充分采用通用部件及标准元件,以提高夹具标准化程度。

(4) 夹具结构的刚度和强度

夹具的零部件应有足够的刚度和强度。特别是加工精度要求较高,或加工中切削力较大时更应注意。若刚度和强大不足,夹具在使用中会产生较大变形或损坏,从而影响加工精度。

(5) 夹具与机床和刀具的位置关系

夹具与机床、刀具的位置关系极为密切。除了联系尺寸与配合关系正确外,还要检查夹具的轮廓尺寸是否与机床相适应。对于回转夹具,应按其回转时的空间关系来检查是否与机床发生干涉。另外,还应注意刀杆、刀架与夹具运动部分是否协调。所以,在设计夹具时,要充分掌握机床和夹具的有关资料,必要时应做实际测量。

(6) 操作使用安全

夹具应保证操作方便、实用安全。夹具的旋转部分应注意平衡和有防护装置。对于排削和冷却液的流向等问题。

(7) 结构的工艺

夹具上与定位有关的尺寸及形状位置,都有较高的精度要求。并且,一般是在装配时通过测量、找正或直接加工而获得的。因此,在实际夹具结构时,必须

充分考虑其工艺性,以保证夹具零件在加工和装配时能便于加工、测量和找正。同时还应考虑便于维修等问题。

2.4夹具零部件的选择

2.4.1定位元件

我设计的夹具是精镗连杆小头孔的夹具。为保证大头孔与小头孔的平行度、大头孔与端面的垂直度,并且为了保证大头孔余量均匀,采用固定V块(左边部分)限制X轴和Y轴方向的移动,活动螺钉(右边)与固定V块共同限制Z轴方向的转动。共限制工件的6个自由度,实现完全定位。如图3-1所示:

图3-1整体三维图

图3-2 3.4.3 夹具体

夹具体是用来将夹具各个部分连接成为一个整体的元件,它是夹具上最大的和最复杂的元件。在它上面要安装定位元件、夹紧装置、刀具引导件以及其它各种装置和元件。此外在本体上还应有夹具在机床上安装用的定位部分,以保证夹

具在机床上获得所需的相对位置。夹具体也是承受负荷最大的元件,承受着工作时的切削力、夹紧力和惯性力。在钻削过程中,为了保证钻孔的位置精度和在一定程度上提高钻头刚度,要使用钻模套(图示黑色部分),并由定位元件对其进行定位(图示不锈钢色部分)。对夹具本体的一般要求主要有下列几点:

(1) 足够的刚度和强度,由于夹具体承受的负荷最大,故需要足够的刚度和强度以保证质量。

(2) 较轻的重量 在大型夹具中,为了减轻夹具体的重量,可以使用轻合金,如铝合金;也可以在承力大的地方用加强筋,在不受力的地方制成中空的,或设置减轻孔去掉不必要的金属。

(3) 安装要稳定 夹具体在机床或工作台上安装要稳定,这一点对不固定在机床或工作台上的夹具更为重要。夹具越高,定位地面应越大。另外,为保证与机床工作台良好接触和定位稳定,夹具体定位底面应适当挖空。

(4) 工艺性要好 因为夹具体是单件生产,一般都是利用通用机床和万能机床进行加工和测量的,因此,要求形状简单,结构紧凑,具有良好工艺性,这是对夹具体的一条重要要求。

(5) 便于清理切削和脏物 为了便于维护夹具的清洁和防止锈蚀,对于铸造本体的非加工表面应涂以润滑油,对钢制的夹具体表面可以进行氧化处理。

(6) 保证使用安全 一般的夹具本体的外表面转角要倒圆,在使用中要经常翻转的夹具,应在本体上装以便于操作的手柄。

结束语:

通过对汽车连杆的机械加工工艺及对粗加工大头孔夹具和铣结合面夹具的设计,使我学到了许多有关机械加工的知识,主要归纳为以下两个方面:

第一方面:连杆件外形较复杂,而刚性较差。且其技术要求很高,所以适当的选择机械加工中的定位基准,是能否保证连杆技术要求的重要问题之一。在连杆的实际加工过程中,选用连杆的大小头端面及小头孔作为主要定位基面,同时选用大头孔两侧面作为一般定位基准。为保证小头孔尺寸精度和形状精度,可采用自为基准的加工原则;保证大小头孔的中心距精度要求,可采用互为基准原则加工。

对于加工主要表面,按照“先基准后一般”的加工原则。连杆的主要加工表面为大小头孔和两端面,较重要的加工表面为连杆体和盖的结合面及螺栓孔定位面,次要的加工表面为轴瓦锁口槽、油孔、大头两侧面及连杆体和盖上的螺栓座面等。

连杆机械加工路线是围绕主要加工表面来安排的。连杆加工路线按连杆的分合可以分为三个阶段:第一个阶段为连杆体和盖切开之前的加工;第二个阶段为连杆体和盖的切开加工;第三个阶段为连杆体和盖合装后的加工。

第二方面:主要是关于夹具的设计方法及其步骤。

(1)、定位方案的设计:主要确定工件的定位基准及定位基面;工件的六点定位原则;定位元件的选用等。

(2)、导向及对刀装置的设计:由于本设计主要设计的是扩大头孔夹具和铣结合面夹具,所以主要考虑的是选用钻套的类型及排屑问题,以及对刀块的类型,从而确定钻套和对刀块的位置尺寸及公差。

(3)、夹紧装置的设计:针对连杆的加工特点及加工的批量,对连杆的夹紧装置应满足装卸工件方便、迅速的特点,所以一般都采用自动夹紧装置。

(4)、夹具体设计:连杆的结构特点是比较小,设计时应注意夹具体结构尺寸的大小。夹具体的作用是将定位及夹具装置连接成一体,并能正确安装在机床上,加工时能承受一部分切削力。所以夹具体的材料一般采用铸铁。

(5)、定位精度和定位误差的计算:对用于粗加工的夹具,都应该进行定位误差和稳定性的计算,以及设计的夹具能否满足零件加工的各项尺寸要求。

(6)、绘制夹具装备图及夹具零件图。


相关文章

  • 钻连杆小头孔夹具设计课设
  • 前 言 1.设计题目 钻连杆小头孔夹具设计. 2.设计目的 (1)学习正确的调查研究方法,收集国内外有关资料,掌握正确的夹具设计思想.方法和手段,学会正确使用有关手册及其它技术资料. (2)能运用所学基本理论知识,正确解决工件在加工时的定位 ...查看


  • 机床夹具设计
  • 机 床 夹 具 设 计 班级: 姓名: 学号: 目录 1. 机床夹具设计概述 ................................................................................. ...查看


  • 机械制造课程设计说明书[连杆体]
  • 课程设计任务书 <机械制造技术> 课程设计任务书 1.设计题目: 设计下表选定零件的机械加工工艺规程及指定关键工序的专用机床夹具. 2.设计要求:熟练使用计算机辅助(软件自选),独立完成 (1) 毛坯图.零件-毛坯合图各一张 ( ...查看


  • 连杆铣槽夹具设计说明书
  • 毕 业 论 文 题目:连杆八槽铣削夹具槽设计 专 业 模具制造与设计 班 级 机电09高技3班 姓 名 严亚鹏 指导教师 冯高头 南 京 工 程 学 院 摘要 模具制造工艺学课程设计一般安排在完成了大学的全部基础课.技术基础课以及大部分专业 ...查看


  • 连杆工艺及扩孔夹具设计
  • 本科毕业设计论文 题 目 专业名称 学生姓名 指导教师 毕业时间 连杆工艺及扩孔夹具设计 机械设计制造及其自动化 任务书 一.题目 连杆工艺及扩孔夹具设计 二.指导思想和目的要求 1.本课题主要研究连杆的加工路线及扩孔夹具的设计: 2.在指 ...查看


  • 汽车连杆加工工艺
  • 连杆 连杆是发动机的主要传动件之一,本文主要论述了连杆的加工工艺及其夹具设计.连杆的尺寸精度.形状精度以及位置精度的要求都很高,而连杆的刚性比较差,容易产生变形,因此在安排工艺过程时,就需要把各主要表面的粗精加工工序分开.逐步减少加工余量. ...查看


  • 杠杆课程设计说明书
  • 气门摇杆支座机械加工工艺规程及工艺装备设计 1.零件的工艺分析及生产类型的确定 1.1零件用途 气门摇杆支座是柴油机一个主要零件.是柴油机摇杆座的结合部,Φ20(+0.10-+0.16)孔装摇杆轴,轴上两端各装一进气门摇杆,摇杆座通过两个Φ ...查看


  • 数控专业毕业设计课题
  • 数控技术专业毕业设计课题 1.零件的数控加工工艺编制(要求见附页) 2.手机外壳造型设计(要求见附页) 3.数控车床零件加工(要求见附页) 4.数控铣床及加工中心产品加工(要求见附页) 5.CA6140普通车床数控化改造(要求见附页) 6. ...查看


  • 计算机专业毕业论文题目_大全(1)
  • 目 录 ASP 类计算机专业毕业论文题目.................................................................................................... ...查看


热门内容