影响电池片转换效率因素

一、禁带亮度

VOC随Eg的增大而增大,但另一方面,JSC随Eg的增大而减小。结果是可期望在某一个确定的Eg随处出现太阳电池效率的峰值。

二、温度

随温度的增加,效率η下降。SC对温度T很敏感,温度还对VOC起主要作用。

对于Si,温度每增加1°C,VOC下降室温值的0.4%,h也因而降低约同样的百分数。例如,一个硅电池在20°C时的效率为20%,当温度升到120°C时,效率仅为12%。又如GaAs电池,温度每升高1°C,VOC降低1.7mv 或降低0.2%。

三、复合寿命

希望载流子的复合寿命越长越好,这主要是因为这样做ISC大。在间接带隙半导体材料如Si中,离结100mm处也产生相当多的载流子,所以希望它们的寿命能大于1ms。在直接带隙材料,如GaAs或Gu2S中,只要10ns的复合寿命就已足够长了。长寿命也会减小暗电流并增大VOC。

达到长寿命的关键是在材料制备和电池的生产过程中,要避免形成复合中心。在加工过程中,适当而且经常进行工艺处理,可以使复合中心移走,因而延长寿命。

四 光强

将太阳光聚焦于太阳电池,可使一个小小的太阳电池产生出大量的电能。设想光强被浓缩了X倍,单位电池面积的输入功率和JSC都将增加X倍,同时VOC也随着增加(kT/q)lnX倍。因而输出功率的增加将大大超过X倍,而且聚光的结果也使转换效率提高了。

五 掺杂浓度及剖面分布

对VOC有明显的影响的另一因素是掺杂浓度。虽然Nd和Na出现在Voc定义的对数项中,它们的数量级也是很容易改变的。掺杂浓度愈高,Voc愈高。一种称为重掺杂效应的现象近年来已引起较多的关注,在高掺杂浓度下,由于能带结构变形及电子统计规律的变化,所有方程中的Nd和Na都应以(Nd)eff和(Na)eff代替。既然(Nd)eff和(Na)eff显现出峰值,那么用很高的Nd和Na不会再有好处,特别是在高掺杂浓度下寿命还会减小。

目前,在Si太阳电池中,掺杂浓度大约为1016cm-3,在直接带隙材料制做的太阳电池中约为1017 cm-3,为了减小串联电阻,前扩散区的掺杂浓度经常高于1019 cm-3,因此重掺杂效应在扩散区是较为重要的。

当Nd和Na或(Nd)eff和(Na)eff不均匀且朝着结的方向降低时,就会建立起一个电场,其方向能有助于光生载流子的收集,因而也改善了ISC。这种不均匀掺杂的剖面分布,在电池基区中通常是做不到的;而在扩散区中是很自然的。

六 表面复合速率

低的表面复合速率有助于提高ISC,并由于I0的减小而使VOC改善。

七 串联电阻

在任何一个实际的太阳电池中,都存在着串联电阻,其来源可以是引线、金属接触栅或电池体电阻。不过通常情况下,串联电阻主要来自薄扩散层。PN结收集的电流必须经过表

面薄层再流入最靠近的金属导线,这就是一条存在电阻的路线,显然通过金属线的密布可以使串联电阻减小。一定的串联电阻RS的影响是改变I-V曲线的位置

八 金属栅和光反射

在前表面上的金属栅线不能透过阳光。为了使ISC最大,金属栅占有的面积应最小。为了使RS小,一般是使金属栅做成又密又细的形状。

因为有太阳光反射的存在,不是全部光线都能进入Si中。裸Si表面的反射率约为40%。使用减反射膜可降低反射率。对于垂直地投射到电池上的单波长的光,用一种厚为1/4波长、折射率等于 (n为Si的折射率)的涂层能使反射率降为零。对太阳光,采用多层涂层能得到更好的效果。

一、禁带亮度

VOC随Eg的增大而增大,但另一方面,JSC随Eg的增大而减小。结果是可期望在某一个确定的Eg随处出现太阳电池效率的峰值。

二、温度

随温度的增加,效率η下降。SC对温度T很敏感,温度还对VOC起主要作用。

对于Si,温度每增加1°C,VOC下降室温值的0.4%,h也因而降低约同样的百分数。例如,一个硅电池在20°C时的效率为20%,当温度升到120°C时,效率仅为12%。又如GaAs电池,温度每升高1°C,VOC降低1.7mv 或降低0.2%。

三、复合寿命

希望载流子的复合寿命越长越好,这主要是因为这样做ISC大。在间接带隙半导体材料如Si中,离结100mm处也产生相当多的载流子,所以希望它们的寿命能大于1ms。在直接带隙材料,如GaAs或Gu2S中,只要10ns的复合寿命就已足够长了。长寿命也会减小暗电流并增大VOC。

达到长寿命的关键是在材料制备和电池的生产过程中,要避免形成复合中心。在加工过程中,适当而且经常进行工艺处理,可以使复合中心移走,因而延长寿命。

四 光强

将太阳光聚焦于太阳电池,可使一个小小的太阳电池产生出大量的电能。设想光强被浓缩了X倍,单位电池面积的输入功率和JSC都将增加X倍,同时VOC也随着增加(kT/q)lnX倍。因而输出功率的增加将大大超过X倍,而且聚光的结果也使转换效率提高了。

五 掺杂浓度及剖面分布

对VOC有明显的影响的另一因素是掺杂浓度。虽然Nd和Na出现在Voc定义的对数项中,它们的数量级也是很容易改变的。掺杂浓度愈高,Voc愈高。一种称为重掺杂效应的现象近年来已引起较多的关注,在高掺杂浓度下,由于能带结构变形及电子统计规律的变化,所有方程中的Nd和Na都应以(Nd)eff和(Na)eff代替。既然(Nd)eff和(Na)eff显现出峰值,那么用很高的Nd和Na不会再有好处,特别是在高掺杂浓度下寿命还会减小。

目前,在Si太阳电池中,掺杂浓度大约为1016cm-3,在直接带隙材料制做的太阳电池中约为1017 cm-3,为了减小串联电阻,前扩散区的掺杂浓度经常高于1019 cm-3,因此重掺杂效应在扩散区是较为重要的。

当Nd和Na或(Nd)eff和(Na)eff不均匀且朝着结的方向降低时,就会建立起一个电场,其方向能有助于光生载流子的收集,因而也改善了ISC。这种不均匀掺杂的剖面分布,在电池基区中通常是做不到的;而在扩散区中是很自然的。

六 表面复合速率

低的表面复合速率有助于提高ISC,并由于I0的减小而使VOC改善。

七 串联电阻

在任何一个实际的太阳电池中,都存在着串联电阻,其来源可以是引线、金属接触栅或电池体电阻。不过通常情况下,串联电阻主要来自薄扩散层。PN结收集的电流必须经过表

面薄层再流入最靠近的金属导线,这就是一条存在电阻的路线,显然通过金属线的密布可以使串联电阻减小。一定的串联电阻RS的影响是改变I-V曲线的位置

八 金属栅和光反射

在前表面上的金属栅线不能透过阳光。为了使ISC最大,金属栅占有的面积应最小。为了使RS小,一般是使金属栅做成又密又细的形状。

因为有太阳光反射的存在,不是全部光线都能进入Si中。裸Si表面的反射率约为40%。使用减反射膜可降低反射率。对于垂直地投射到电池上的单波长的光,用一种厚为1/4波长、折射率等于 (n为Si的折射率)的涂层能使反射率降为零。对太阳光,采用多层涂层能得到更好的效果。


相关文章

  • 光伏毕业论文参考
  • 目 录 摘要 1 ABSTRACT 2 1 绪论 3 2太阳能光伏电源系统的原理及组成 4 2.1太阳能电池方阵 4 2.1.1太阳能电池的工作原理 5 2.1.2 太阳能电池的种类及区别 5 2.1.3太阳能电池组件 5 2.2 充放电控 ...查看


  • 太阳能光伏发电系统效率浅谈
  • 龙源期刊网 http://www.qikan.com.cn 太阳能光伏发电系统效率浅谈 作者:钟智炬 来源:<科学与财富>2015年第18期 摘 要:通过分析太阳能光伏发电系统各组成部分对系统效率的影响,综合考虑各方因素,从而找 ...查看


  • 光伏发电技术效益
  • 太阳能光伏发电技术 引言 传统的燃料能源正在一天天减少,对环境造成的危害日益突出,同时全球还有20亿人得不到正常的能源供应.这个时候,全世界都把目光投向了可再生能源,希望可再生能源能够改变人类的能源结构,维持长远的可持续发展.这之中太阳能以 ...查看


  • 太阳能电池的基本原理
  • 第三章太阳能电池的基本原理 一.太阳能电池的结构和基本工作原理 无光照光照激发 太阳能电池的结构 二.太阳能电池的输出特性 1.光电池的电流电压特性 这就是负载电阻上电流与电压的关系,也就是光电池的伏安特性方程. 2.描述太阳能电池的参数 ...查看


  • 太阳能光伏技术与工程应用
  • 太阳能光伏技术与工程应用(一) 文章来源:中国幕墙工程网 作者:沈志春 日期:2009-05-13 17:02:09 文章概括 :太阳能是各种可再生能源中最重要的基本能源,生物质能.风能.海洋能.水能等都来自太阳能,广义地说,太阳能包含以上 ...查看


  • 提高太阳能电池效率的主要措施
  • S 光伏发电技术专题 PECIAL REPORTS ON PHOTOVOLTAIC POWER GENERATION TECHNOLOGY 提高太阳能电池效率的主要措施 庾莉萍 要有电学损失和光学损失.光学损失主要是表面反射,遮挡损失和电池 ...查看


  • 向湘君毕业论文1
  • 湖南理工职业技术学院 太阳能电池片制绒制备工艺 系 别: 太阳能工程系 专 业:光伏发电应用及其技术 班 级: 光伏发电1121班 姓 名: 梁 福 伟 学 号: [1**********]9 指导老师: 葛 庆 摘 要 为了提高太阳电池的 ...查看


  • 聚合物太阳能电池材料的研究进展
  • 课程名称:高等物理化学 论文题目:聚合物太阳能电池材料的研究进展姓 名:廉萌 学 号: 3112106006 聚合物太阳能电池材料的研究进展 摘要:聚合物太阳能电池由于成本低廉.轻薄.材料分子结构的可设计性等优点成为近年来太阳能电池研究与开 ...查看


  • 关于光伏板输出功率不等的解决方案
  • 关于光伏板输出功率不等的解决方案 本文根据北京某光伏电厂的汇流箱进行分析.仅供参考. 下面我们根据公司厂区内汇流箱在同等辐照度时输出功率不等问题进行研究探讨,下图为厂区内抽选汇流箱所带的组串的电流以及汇流箱电压和功率分析. 逆变器下汇流箱 ...查看


热门内容