长7致密油藏脆性指数计算方法及现场应用

2014年10月油气井测试第23卷第5期

*

7长致密油藏脆性指数计算方法及现场应用

张矿生

摘要

1

刘顺

1

蒋建方

2

刘光普

2

蒋睿

2

(1.长庆油田分公司油气工艺研究院陕西西安710021;2.中国石油大学提高采收率研究院北京102249)

长7致密油藏脆性指数的大小是该油组制定混合水压裂方案的重要依据。利用常规测井数据通过岩

并结合长7储层岩样室内三轴岩石力学石力学参数测井解释软件对目标井段的动态杨氏模量和泊松比进行计算,

试验获得的静态杨氏模量和泊松比,建立了杨氏模量和泊松比动静态之间的关系;数据显示,该区静态杨氏模量小于动态值,大约是0.569倍;泊松比的静态与动态值相当,互有大小;相关系数均大于0.9。形成了一种长7致密油室内岩样试验计算的和依测井数据解释的脆性指数大小比较接近,相差1.041倍,相藏定量计算脆性指数的方法,

关性较好。优选脆性指数较高的井层开展了现场试验,取得较好效果。

关键词

致密油藏

脆性指数

计算方法

应用

裂缝

杨氏模量

泊松比

文献标识码:A

文章编号:1004-4388(2014)05-0029-04

中图分类号:TE155

0引言

鄂尔多斯盆地延长组长7油层组为致密油藏,

[1,2]

RickmanR提出了岩石脆性特征参数与压裂裂缝形态的对应关系

试验的

[11]

,如图1所示。可见,岩石的脆性

储层裂缝延伸的形态越复杂;当岩石特征参数越大,

脆性特征参数大于50%后,储层的裂缝形态将趋向形成缝网

目前是长庆油田分公司进行混合水压裂

期望通过实现缝网压裂和体积改造达到主要油组,

提高产能的目的。而储层的脆性指数是评价水力压裂能否形成有效裂缝网络和达到何种裂缝复杂性

[3]

的主要参数,如何获得长7储层的脆性指数大。

[8]

小成为该区目标井压裂工艺方案制定的重要依据验

[4]

脆性指数的计算方法主要分为室内岩心试

[5-7]

和测井资料解释。室内通过对岩心进行硬

普氏冲击试验、应力—应变测试和矿度和韧性测试、

具有直接、物组成分析等可以计算脆性指数的大小,

准确的优点,但存在每一施工井段现场取心的困难。通过测井资料解释可以获得每一井段的有关动态岩但需要转化为静态值才能计算脆性指石力学参数,

测井资料,结合室内岩数。利用岩石力学解释软件、

石力学参数测定,建立一种适合长7致密储层的脆性指数的计算方法。

2

2.1

长7油藏岩性特征

岩性及其矿物组成据167块砂岩样品鉴定

[12]

,长7储层为细—粉

以长石砂岩、岩屑质长石砂岩为主,岩屑以变砂岩,

质岩屑和火山岩屑为主,沉积岩屑很少;其碎屑物中,长石占40.20%,石英占27.10%,岩屑占

[9-10]

1脆性指数对裂缝形态复杂性的影响

非常规油气藏的研究是近年国内热点

12.30%;填隙物平均含量为13.86%,主要成分是高

[基金项目]中国石油天然气股份公司重大科技专项“长庆油田油气当量上产5000万吨关键技术研究—采油采气关键技术研究”(2011E -2602-2)资助。

[作者简介]张矿生,1976年生,zks -cq@petrochina.com.cn 。男,硕士,高级工程师,从事油气田开发及开采技术研究,

岭石、水云母、绿泥石和铁方解石,占填隙物总量的86.82%;矿物平均密度2.54g /cm3。可见长7油层组矿物成熟度低,岩性致密。2.2

岩石力学特征

长7储层三轴岩石力学试验结果如表1所示,平均抗压强度、杨氏模量和泊松比分别为154.6MPa 、22833MPa 和0.27,显示岩石具有一定致密性和塑性特征;杨氏模量和泊松比存在一定差别,反映了储层的非均质性。

表1

长7致密储层岩样三轴力学试验

井号井深围压

抗压强度杨氏模量(m )(MPa )(MPa )(MPa )泊松比安352466.[1**********]0.229安352473.[1**********]0.232新1542135.[1**********]0.230新1542140.[1**********]0.269里182482.[1**********]0.287里992197.[1**********]0.325里892283.[1**********]0.328环56

2479.7

25

148

28800

0.260

3

岩石特征参数的测井解释

3.1

ROCK测井解释软件

ROCK系统是一套利用常规和全波测井资料进

行岩石力学参数与地应力参数计算的测井数字处理系统,

提供了全井剖面测井数字处理的数据输入与输出、参数选取、分析处理、图形显示等多种功能,主要包括岩石的泊松比、杨氏模量、弹性体积模量、波速比、

上覆地层应力梯度、破裂压力梯度、水平最小主应力梯度、水平最小主应力等参数。3.2

动态杨氏模量和泊松比的测井解释

通过ROCK软件,利用安35井的常规测井数据,

通过中子、密度和自然伽玛以及中子、声波和自然伽玛的两次交汇,计算了该井所有井段的岩石力学参数,通过分层与列表,进一步计算了各个井段的地应力大小剖面

[16]

对应表1所示该井取心深度2466.0m 的动态杨氏模量和泊松比分别为37720MPa 和0.231,2473.5m 则为34040MPa 和0.225。采用相同方法对其他井、段的岩石力学参数进行了解释,数据见图2、图3中动态值。3.3

动静态杨氏模量和泊松比的关系

根据室内岩样三轴力学试验的测定参数(见表

1)和ROCK岩石力学参数测井解释软件对上述井、段的计算结果,通过数学回归处理,建立了杨氏模量和泊松比的动态与静态之间的关系,结果如图2和图3所示。可见,

动静态杨氏模量具有较大差别,静态值小于动态值,大约是0.569倍;而动静态泊松比基本接近,

互有大小;杨氏模量和泊松比对应的相关系数R2

分别为0.9024和0.9325,均显示了较高的相关性;回归的动静态杨氏模量和动静态泊松比的关系式分别为

E s =0.569E d +0.0207

(1)υs =0.9243υd +0.0214

(2)

式中:E S ,

E d ———岩石静态和动态杨氏模量,MPa ;υS ,υd ———岩石静态和动态泊松比,无因次

4脆性指数的计算

脆性指数大小的判定主要有定性和定量两种方

法,定性分析是对现场取心通过X 射线衍射方法测定矿物组分,

定性分析脆性矿物(一般为石英、长石、石灰石和白云石)与黏土矿物的相对含量。而定量分析是根据岩石力学参数中杨氏模量与泊松比

的大小分别取50%的权值进行计算。泊松比反映了岩石在应力作用下的破裂能力,杨氏模量反映了岩石破裂后的支撑能力

[11]

,它们对储层岩石的可压

性和水力压裂过程中裂缝延伸的复杂性具有重要作用和影响。杨氏模量越高、

泊松比越低,岩石的脆性越强,

压裂越容易形成复杂的裂缝形态。RickmanR等人针对北美地区Fortworth 盆地Barnett 页岩储层的研究,提出了采用静态杨氏模量与泊松比计算岩石脆性指数的数学方程

[11]

,即

E BRIT=(E S -1ˑ 104)/(8ˑ 104-1ˑ 104)ˑ 100(3)

υBRIT=(υS -0.40)/(0.15-0.40)ˑ 100

(4)T BRIT=(E BRIT+υBRIT)/2(5)

式中:E BRIT—

——归一化杨氏模量对脆性特征参数的分量,

无因次;υBRIT———归一化泊松比对脆性特征参数的分量,

无因次;T BRIT———归一化总脆性特征参数,无因次。不同致密油气藏和页岩油气藏受沉积环境、地质作用等诸多因素影响,在矿物组成、孔隙结构、胶结程度等方面存在各自的特征和的特性。上述定量计算脆性指数的方法是RickmanR等人专门针对北美地区Barnett 页岩储层的岩石力学参数建立的,具有明显的地域性,在不同的目标研究区块应建立相应计算脆性指数的方法。

长7致密油藏在陕北地区杨氏模量范围为1.186ˑ 104 3.875ˑ 104MPa ,泊松比范围为0.143

0.376,而在陇东地区杨氏模量范围为1.254ˑ 10

4

4.102ˑ 104MPa ,泊松比范围为0.172 0.357。因而长7致密油藏的杨氏模量最大值取4.0ˑ

104MPa ,最小值取1.0ˑ 104MPa ,泊松比最大值取

0.4,最小值取0.15。则长7致密油藏脆性指数的计算公式为

E BRIT=(E 4S -1ˑ 10)/(4ˑ 104-1ˑ 104)ˑ 100(6)

υBRIT=(υS -0.40)/(0.15-0.40)ˑ 100

(7)T BRIT=(E BRIT+υBRIT)/2

(8)

依据(1) (2)式和(6) (8)式和岩样测定的岩石力学参数,计算了表1中测试井段对应的脆性指数(见表2)。两种脆性指数的计算结果比较接近,

也具有较好的相关性,R2

=0.937,见图4。表2

长7致密储层脆性指数

据岩样试验数据计算据测井数据转换计算井号井深(m )杨氏模量

脆性杨氏模量

脆性(MPa )泊松比

指数(MPa )泊松比

指数安352466.0211500.22952.78216700.23552.47安35

2473.5

194000.23249.27195800.22950.09新1542135.0

216000.23053.33226000.25051.06新1542140.0172200.26938.23181300.25841.95里182482.7276000.28751.93263300.28350.62里992197.4232800.32537.13208300.31834.43里892283.0236200.32837.10240100.33736.04环56

2479.7

28800

0.260

59.33

29510

0.251

62.

39

5现场应用

采用储层改造体积模型计算了不同脆性指数下

的储层改造体积,从图5可见,脆性指数对油藏改造体积影响明显

因此,要优选脆性指数较高的井层开展体积改造,

以获得较好效果。按照该原则,优选A 井开展滑溜水+线性胶+冻胶”的大规模混合水压裂。该井于2013年10月完成施工,实际施工总液量

1209.2m 3,其中基液68.6m 3,滑溜水1113.1m 3

,活性水27.5m 3;总砂量100.5m 3,其中40/70目低密度陶粒33.5m 3

20/40目陶粒67.0m 3;前置液130m 3,携砂液1051.7m 3

,前置液百分数11.0%,排量

8.0m 3/min,平均砂比9.6%。压后采用本文模型

计算实际施工的SRV和ESRV分别为1260029和254926.9m 3,可见实际施工的施工参数、裂缝参数以及储层改造体积与设计基本吻合,实际施工达到了设计要求。

表3

电性参数

井号电阻

RA B C

82.145.438.0

时差(s /m)213.9220.0222.9

视孔隙度(%)11.110.110.9

物性参数

含油

孔隙度渗透率

饱和度

(%)(mD )

(%)7.288.327.79

0.160.140.18

25.418.127.5

脆性指数57.941.743.1

砂量(m 3)100.550.040.0

表3对比了A 井与邻井B 和C 的电性、物性、压裂施工参数和试油结果,由表3可知,试验井采用本文提出的模型和设计方法完成了现场试验,取得了较好的增产效果。

试验井A 与邻井储层参数及改造效果对比

施工参数

平均

排量

砂比

(m 3/min)

(%)9.912.335.0

8.06.01.8

总液量(m 3)1285.2557.1140.1

返排量(m 3)614.7519.775.5

压裂方式混合水压裂混合水压裂交联液压裂

试油结果日产油日产水(t )(m 3)13.44.86.5

0.00.03.8

6结论

(1)建立了利用常规测井数据计算长7致密油

[8]Mike Mullen ,RusselRoundtree,Bob Barree.A Composite

Determination of Mechanical RockProperties for Stimula-tion Design (What to Do When You Don'tHave a Sonic C ].SPE 108139,2007.Log )[

[9]姜瑞忠,王平,卫喜辉,等.国外致密气藏钻完井技术现J ].特种油气藏,2012,19(2):6-11,15.状与启示[

[10]李庆辉,陈勉,金衍,等.新型压裂技术在页岩气开发中J ].特种油气藏,2012,19(6):1-7.的应用[[11]RickmanR,Mullen M ,Petre E et al .A Practical Use of

Shale Petro-Physics for Stimulation Design Optimization :All Shale Plays Are not Clones of the Barnett Shale [C ].SPE115258,2008.

[12]姚泾利,陈世加,路俊刚,等.鄂尔多斯盆地胡尖山地区

J ].石油实验地质,2013,35长7储层特征及影响因素[

(2):162-166,173.

本文收稿日期:2014-08-25

编辑:许兰婷

相关性好。藏动静态杨氏模量和泊松比的转换方程,

(2)形成了一种长7致密油藏计算脆性指数的与室内测定的数据吻合性较好。方法,

(3)脆性指数越高,储层改造体积越大。优选取脆性指数较高的井开展油藏体积改造现场试验,得较好效果。

[1]G RCoulter ,B C Gross ,C L Thomson.Barnett Shale Hybrid

Fracs-One Operator's Design ,Application ,and Results[C ].SPE 102063,2006.

[2]Zhou Zongqiang ,Mu Lijun ,Li Xianwen et al .Hybrid Frac-turing Treatments Unleash Tight Field [C ].IADC /SPE156179,2012.

[3]Cipolla C L ,Warpinski N R,Mayerhofer M J et al .The Re-lationship between Fracture Complexity ,ReservoirProper-ties ,and Fracture Treatment Design [C ].SPE 115769,2008.

[4]章星,杨胜来,张洁,等.致密低渗气藏启动压力梯度实J ].特种油气藏,2011,18(5):103-104,134.验研究[

[5]刘荣和,冯文光,龙玲,等.致密碳酸盐岩石力学与声学

.大庆石油地质与开发,2008,27(6):131实验研究[J ]

-135.

[6]蔡新滨,孙进忠,陈祥.岩体波动参数的测试及动静力学

J ].岩石力学与工程学报,2005,24(增参数的综合应用[

1):4956-4964.

[7]耿乃光,郝晋升,李纪汉,等.岩石动态与静态杨氏模量

.第二届全国岩石动力学学术会的对比测量研究[C ]

湖北宜昌.1990:50-54.议,

ed AB into four flow units and DJ into five flow units and LN into five flowing units.Facies studies and well pressure buildup analysis validates the results of depletion pressure.According to the trial practice ,it prove that this method is accurate and liable ,which re-duces uncertainty of evaluation to seepage barriers and is a Complement research method for the existing reservoir seepage barriers.Key words :formation pressure ,Main Pay reservoir ,depletion pressure ,seepage barrier

·Evaluation &Application ·

Researchof Well Testing Technology to Heterogeneous Reservoirin Horizontal Well and Its Application Analysis.2014,23(5):20 22

Wang Zhiyuan ,Xu Jianping ,Lu Mei ,Chang Wenli (Testing Company Dagang Oilfield ),Wang Yun (Beach Sea Development Compa-ny ,Dagang Oilfield )

The pressure of heterogeneity reservoir with permeability anisotropy at horizontal and vertical -horizontal direction and its characteristics of derivative curve are studied to understand the influencing law of reservoir heterogeneity to pressure dynamics and its capacity of the horizontal well.It is recognized that the vertical -horizontal permeability anisotropy is not only an important factor affecting the level of well development ,but also is a basis for screening whether a reservoir suiting for development of the horizontal well or not.horizontal well test analysis techniques with heterogeneous reservoir is applied to analyze well testing data to determine the reservoir horizontal per-meability and vertical permeability ,reservoir permeability anisotropy index.On basis of this ,horizontal wells and vertical wells are an-alyzed which provides a basis for field development wells suitable type selection.

Key words :horizontal well ,permeability ,anisotropy index ,pressure dynamic ,capacity

Integrated Application of Well and Oil Testing Data of K 21Well in Oil and Gas Exploration at Sangonghe Group of K Area.2014,23(5):23 24,28

Peng Haijun ,Tang Yong ,Dai Canxing ,Zhang Lei ,You Xincai (Exploration and Development ResearchInstitute ,Xinjiang Oilfield Company )

In 2013,formation Sangonghe of K21well obtained the important breakthrough of oil and gas exploration in Xinjiang oilfield.For the beginning of production ,the two perforated small zones had differences in fluid properties and physical characters to cause problems such as whether the two subzones are all belonged the same reservoir or not ,why the producing yield are low for a long term after larger scale fracturing ,and whether has the potential of increased yield or not and so on.Through comprehensive application of formation test and production test of K21well and based on objective analysis of formation fluid ,formation pressure system and reservoir parameters ,the above problems have been solved more satisfactorily.Key words :data ,exploration ,allocation ,oil testing

Analysis of Yield Error for Swabbing Production Well in Low Permeability Reservoir.2014,23(5):25 28Ma Huali ,Tie Zhijie (Oil Test and Production Branch Company ,Daqing Oilfield Co.,Ltd )For non-flowing well of low permeability reservoir ,swabbing production is the main capacity manner of the conventional oil test.But

testing data obtained by swabbing for production has its unique place ,namely because of swabbing to gain production in cycle ,change of its bottom hole pressure does not continuously decline ,while ,flow pressure shows serrated changes with the alternation of pumping and recovery.The modern well testing theory ,taking continuously acquiring production as a condition ,can't conduct the productivity a-nalysis from these data which results in vague even unreasonable understanding to productivity of the swabbing well.Applying capacity data by oil test and pumping production to developing prediction ,blind optimistic predictions are often caused.Based on evaluation theory of unstable production and combined with characteristics of pumping capacity ,capacity variation law of the low permeability res-ervoir is analyzed.The result shows that for non-flowing well of low permeability reservoir ,early productivity is high and declines rapid-ly.The lower the permeability ,the early production declines faster ,the margin is greater ,the contribution to total recovery is greater ,

and error of the high capacity is bigger.The shorter pumping cycle time ,the error of early high capacity is greater.Key words :low permeability ,oil test ,production ,swabbing ,unstable ,IPR,capacity evaluation

Calculation Method about Brittleness Index in Chang 7Dense Reservoirand Its Field Application.2014,23(5):29 32Zhang Kuangsheng ,Liu Shun (Oil and Gas Technology ResearchInstitute ,Changqing Oilfield Company ),Jiang Jianfang ,Liu Guang-pu ,Jiang Rui(Enhanced Oil RecoveryInstitute ,China University of Petroleum Beijing )

Brittleness index size in Chang 7dense reservoir is an important basis for developing the fracturing program with mixed water in this oil group.By using conventional logging data and through logging interpretation software from rock dynamic parameter ,Young's modulus and Poisson's ratio of the target well section are calculated and combined with triaxial rock mechanics test of the Chang 7reservoir rock samples ,static Young's modulus and Poisson's ratio are obtained to establish the relationship of Young's modulus and Poisson's ratio be-tween static and dynamic.The data shows that the static value of Young's modulus at this area is less than dynamics ,be about 0.569times ,static of Poisson's ratio is quite to dynamic values ,be mutual size ;and correlation coefficient is greater than 0.9.A method of quantitative calculation to brittleness index of the Chang7dense reservoir is formed ,and test calculation by indoor rock sample is rela-tively close to brittleness index by the logging data interpretation ,a difference of 1.041times ,which shows a good correlation.Field trials conducted in wells with preferred brittleness index have achieved a better result.

Key words :dense reservoir ,brittleness index ,calculation method ,application ,crack ,Young's modulus ,Poisson's ratio Evaluation of Average Pressure.2014,23(5):33 35Xiang Shudong (China National Logging Services CO.,Ltd )

With production advance of oilfield ,using stage of the test pressure recovery can obtain attenuation situation of formation pressure.Closed storage model is the basis of the evaluation to the average pressure.When the production reaching dynamic equilibrium of pro-duction wells ,each well has formed its own drain region ,and average pressure within the ideal drain region can take closed boundary model as a basis.On basis of this ,the MBH and analytical simulation method are described.MBH is a correction method for evalua-ting the average pressure ,and analytical simulation method is based on the actual interpretation of the shut-segment data ,which is the

most reliable one to estimate the average pressure of the producing well.Key words :average pressure ,drain region ,MBH ,analytical simulation

2014年10月油气井测试第23卷第5期

*

7长致密油藏脆性指数计算方法及现场应用

张矿生

摘要

1

刘顺

1

蒋建方

2

刘光普

2

蒋睿

2

(1.长庆油田分公司油气工艺研究院陕西西安710021;2.中国石油大学提高采收率研究院北京102249)

长7致密油藏脆性指数的大小是该油组制定混合水压裂方案的重要依据。利用常规测井数据通过岩

并结合长7储层岩样室内三轴岩石力学石力学参数测井解释软件对目标井段的动态杨氏模量和泊松比进行计算,

试验获得的静态杨氏模量和泊松比,建立了杨氏模量和泊松比动静态之间的关系;数据显示,该区静态杨氏模量小于动态值,大约是0.569倍;泊松比的静态与动态值相当,互有大小;相关系数均大于0.9。形成了一种长7致密油室内岩样试验计算的和依测井数据解释的脆性指数大小比较接近,相差1.041倍,相藏定量计算脆性指数的方法,

关性较好。优选脆性指数较高的井层开展了现场试验,取得较好效果。

关键词

致密油藏

脆性指数

计算方法

应用

裂缝

杨氏模量

泊松比

文献标识码:A

文章编号:1004-4388(2014)05-0029-04

中图分类号:TE155

0引言

鄂尔多斯盆地延长组长7油层组为致密油藏,

[1,2]

RickmanR提出了岩石脆性特征参数与压裂裂缝形态的对应关系

试验的

[11]

,如图1所示。可见,岩石的脆性

储层裂缝延伸的形态越复杂;当岩石特征参数越大,

脆性特征参数大于50%后,储层的裂缝形态将趋向形成缝网

目前是长庆油田分公司进行混合水压裂

期望通过实现缝网压裂和体积改造达到主要油组,

提高产能的目的。而储层的脆性指数是评价水力压裂能否形成有效裂缝网络和达到何种裂缝复杂性

[3]

的主要参数,如何获得长7储层的脆性指数大。

[8]

小成为该区目标井压裂工艺方案制定的重要依据验

[4]

脆性指数的计算方法主要分为室内岩心试

[5-7]

和测井资料解释。室内通过对岩心进行硬

普氏冲击试验、应力—应变测试和矿度和韧性测试、

具有直接、物组成分析等可以计算脆性指数的大小,

准确的优点,但存在每一施工井段现场取心的困难。通过测井资料解释可以获得每一井段的有关动态岩但需要转化为静态值才能计算脆性指石力学参数,

测井资料,结合室内岩数。利用岩石力学解释软件、

石力学参数测定,建立一种适合长7致密储层的脆性指数的计算方法。

2

2.1

长7油藏岩性特征

岩性及其矿物组成据167块砂岩样品鉴定

[12]

,长7储层为细—粉

以长石砂岩、岩屑质长石砂岩为主,岩屑以变砂岩,

质岩屑和火山岩屑为主,沉积岩屑很少;其碎屑物中,长石占40.20%,石英占27.10%,岩屑占

[9-10]

1脆性指数对裂缝形态复杂性的影响

非常规油气藏的研究是近年国内热点

12.30%;填隙物平均含量为13.86%,主要成分是高

[基金项目]中国石油天然气股份公司重大科技专项“长庆油田油气当量上产5000万吨关键技术研究—采油采气关键技术研究”(2011E -2602-2)资助。

[作者简介]张矿生,1976年生,zks -cq@petrochina.com.cn 。男,硕士,高级工程师,从事油气田开发及开采技术研究,

岭石、水云母、绿泥石和铁方解石,占填隙物总量的86.82%;矿物平均密度2.54g /cm3。可见长7油层组矿物成熟度低,岩性致密。2.2

岩石力学特征

长7储层三轴岩石力学试验结果如表1所示,平均抗压强度、杨氏模量和泊松比分别为154.6MPa 、22833MPa 和0.27,显示岩石具有一定致密性和塑性特征;杨氏模量和泊松比存在一定差别,反映了储层的非均质性。

表1

长7致密储层岩样三轴力学试验

井号井深围压

抗压强度杨氏模量(m )(MPa )(MPa )(MPa )泊松比安352466.[1**********]0.229安352473.[1**********]0.232新1542135.[1**********]0.230新1542140.[1**********]0.269里182482.[1**********]0.287里992197.[1**********]0.325里892283.[1**********]0.328环56

2479.7

25

148

28800

0.260

3

岩石特征参数的测井解释

3.1

ROCK测井解释软件

ROCK系统是一套利用常规和全波测井资料进

行岩石力学参数与地应力参数计算的测井数字处理系统,

提供了全井剖面测井数字处理的数据输入与输出、参数选取、分析处理、图形显示等多种功能,主要包括岩石的泊松比、杨氏模量、弹性体积模量、波速比、

上覆地层应力梯度、破裂压力梯度、水平最小主应力梯度、水平最小主应力等参数。3.2

动态杨氏模量和泊松比的测井解释

通过ROCK软件,利用安35井的常规测井数据,

通过中子、密度和自然伽玛以及中子、声波和自然伽玛的两次交汇,计算了该井所有井段的岩石力学参数,通过分层与列表,进一步计算了各个井段的地应力大小剖面

[16]

对应表1所示该井取心深度2466.0m 的动态杨氏模量和泊松比分别为37720MPa 和0.231,2473.5m 则为34040MPa 和0.225。采用相同方法对其他井、段的岩石力学参数进行了解释,数据见图2、图3中动态值。3.3

动静态杨氏模量和泊松比的关系

根据室内岩样三轴力学试验的测定参数(见表

1)和ROCK岩石力学参数测井解释软件对上述井、段的计算结果,通过数学回归处理,建立了杨氏模量和泊松比的动态与静态之间的关系,结果如图2和图3所示。可见,

动静态杨氏模量具有较大差别,静态值小于动态值,大约是0.569倍;而动静态泊松比基本接近,

互有大小;杨氏模量和泊松比对应的相关系数R2

分别为0.9024和0.9325,均显示了较高的相关性;回归的动静态杨氏模量和动静态泊松比的关系式分别为

E s =0.569E d +0.0207

(1)υs =0.9243υd +0.0214

(2)

式中:E S ,

E d ———岩石静态和动态杨氏模量,MPa ;υS ,υd ———岩石静态和动态泊松比,无因次

4脆性指数的计算

脆性指数大小的判定主要有定性和定量两种方

法,定性分析是对现场取心通过X 射线衍射方法测定矿物组分,

定性分析脆性矿物(一般为石英、长石、石灰石和白云石)与黏土矿物的相对含量。而定量分析是根据岩石力学参数中杨氏模量与泊松比

的大小分别取50%的权值进行计算。泊松比反映了岩石在应力作用下的破裂能力,杨氏模量反映了岩石破裂后的支撑能力

[11]

,它们对储层岩石的可压

性和水力压裂过程中裂缝延伸的复杂性具有重要作用和影响。杨氏模量越高、

泊松比越低,岩石的脆性越强,

压裂越容易形成复杂的裂缝形态。RickmanR等人针对北美地区Fortworth 盆地Barnett 页岩储层的研究,提出了采用静态杨氏模量与泊松比计算岩石脆性指数的数学方程

[11]

,即

E BRIT=(E S -1ˑ 104)/(8ˑ 104-1ˑ 104)ˑ 100(3)

υBRIT=(υS -0.40)/(0.15-0.40)ˑ 100

(4)T BRIT=(E BRIT+υBRIT)/2(5)

式中:E BRIT—

——归一化杨氏模量对脆性特征参数的分量,

无因次;υBRIT———归一化泊松比对脆性特征参数的分量,

无因次;T BRIT———归一化总脆性特征参数,无因次。不同致密油气藏和页岩油气藏受沉积环境、地质作用等诸多因素影响,在矿物组成、孔隙结构、胶结程度等方面存在各自的特征和的特性。上述定量计算脆性指数的方法是RickmanR等人专门针对北美地区Barnett 页岩储层的岩石力学参数建立的,具有明显的地域性,在不同的目标研究区块应建立相应计算脆性指数的方法。

长7致密油藏在陕北地区杨氏模量范围为1.186ˑ 104 3.875ˑ 104MPa ,泊松比范围为0.143

0.376,而在陇东地区杨氏模量范围为1.254ˑ 10

4

4.102ˑ 104MPa ,泊松比范围为0.172 0.357。因而长7致密油藏的杨氏模量最大值取4.0ˑ

104MPa ,最小值取1.0ˑ 104MPa ,泊松比最大值取

0.4,最小值取0.15。则长7致密油藏脆性指数的计算公式为

E BRIT=(E 4S -1ˑ 10)/(4ˑ 104-1ˑ 104)ˑ 100(6)

υBRIT=(υS -0.40)/(0.15-0.40)ˑ 100

(7)T BRIT=(E BRIT+υBRIT)/2

(8)

依据(1) (2)式和(6) (8)式和岩样测定的岩石力学参数,计算了表1中测试井段对应的脆性指数(见表2)。两种脆性指数的计算结果比较接近,

也具有较好的相关性,R2

=0.937,见图4。表2

长7致密储层脆性指数

据岩样试验数据计算据测井数据转换计算井号井深(m )杨氏模量

脆性杨氏模量

脆性(MPa )泊松比

指数(MPa )泊松比

指数安352466.0211500.22952.78216700.23552.47安35

2473.5

194000.23249.27195800.22950.09新1542135.0

216000.23053.33226000.25051.06新1542140.0172200.26938.23181300.25841.95里182482.7276000.28751.93263300.28350.62里992197.4232800.32537.13208300.31834.43里892283.0236200.32837.10240100.33736.04环56

2479.7

28800

0.260

59.33

29510

0.251

62.

39

5现场应用

采用储层改造体积模型计算了不同脆性指数下

的储层改造体积,从图5可见,脆性指数对油藏改造体积影响明显

因此,要优选脆性指数较高的井层开展体积改造,

以获得较好效果。按照该原则,优选A 井开展滑溜水+线性胶+冻胶”的大规模混合水压裂。该井于2013年10月完成施工,实际施工总液量

1209.2m 3,其中基液68.6m 3,滑溜水1113.1m 3

,活性水27.5m 3;总砂量100.5m 3,其中40/70目低密度陶粒33.5m 3

20/40目陶粒67.0m 3;前置液130m 3,携砂液1051.7m 3

,前置液百分数11.0%,排量

8.0m 3/min,平均砂比9.6%。压后采用本文模型

计算实际施工的SRV和ESRV分别为1260029和254926.9m 3,可见实际施工的施工参数、裂缝参数以及储层改造体积与设计基本吻合,实际施工达到了设计要求。

表3

电性参数

井号电阻

RA B C

82.145.438.0

时差(s /m)213.9220.0222.9

视孔隙度(%)11.110.110.9

物性参数

含油

孔隙度渗透率

饱和度

(%)(mD )

(%)7.288.327.79

0.160.140.18

25.418.127.5

脆性指数57.941.743.1

砂量(m 3)100.550.040.0

表3对比了A 井与邻井B 和C 的电性、物性、压裂施工参数和试油结果,由表3可知,试验井采用本文提出的模型和设计方法完成了现场试验,取得了较好的增产效果。

试验井A 与邻井储层参数及改造效果对比

施工参数

平均

排量

砂比

(m 3/min)

(%)9.912.335.0

8.06.01.8

总液量(m 3)1285.2557.1140.1

返排量(m 3)614.7519.775.5

压裂方式混合水压裂混合水压裂交联液压裂

试油结果日产油日产水(t )(m 3)13.44.86.5

0.00.03.8

6结论

(1)建立了利用常规测井数据计算长7致密油

[8]Mike Mullen ,RusselRoundtree,Bob Barree.A Composite

Determination of Mechanical RockProperties for Stimula-tion Design (What to Do When You Don'tHave a Sonic C ].SPE 108139,2007.Log )[

[9]姜瑞忠,王平,卫喜辉,等.国外致密气藏钻完井技术现J ].特种油气藏,2012,19(2):6-11,15.状与启示[

[10]李庆辉,陈勉,金衍,等.新型压裂技术在页岩气开发中J ].特种油气藏,2012,19(6):1-7.的应用[[11]RickmanR,Mullen M ,Petre E et al .A Practical Use of

Shale Petro-Physics for Stimulation Design Optimization :All Shale Plays Are not Clones of the Barnett Shale [C ].SPE115258,2008.

[12]姚泾利,陈世加,路俊刚,等.鄂尔多斯盆地胡尖山地区

J ].石油实验地质,2013,35长7储层特征及影响因素[

(2):162-166,173.

本文收稿日期:2014-08-25

编辑:许兰婷

相关性好。藏动静态杨氏模量和泊松比的转换方程,

(2)形成了一种长7致密油藏计算脆性指数的与室内测定的数据吻合性较好。方法,

(3)脆性指数越高,储层改造体积越大。优选取脆性指数较高的井开展油藏体积改造现场试验,得较好效果。

[1]G RCoulter ,B C Gross ,C L Thomson.Barnett Shale Hybrid

Fracs-One Operator's Design ,Application ,and Results[C ].SPE 102063,2006.

[2]Zhou Zongqiang ,Mu Lijun ,Li Xianwen et al .Hybrid Frac-turing Treatments Unleash Tight Field [C ].IADC /SPE156179,2012.

[3]Cipolla C L ,Warpinski N R,Mayerhofer M J et al .The Re-lationship between Fracture Complexity ,ReservoirProper-ties ,and Fracture Treatment Design [C ].SPE 115769,2008.

[4]章星,杨胜来,张洁,等.致密低渗气藏启动压力梯度实J ].特种油气藏,2011,18(5):103-104,134.验研究[

[5]刘荣和,冯文光,龙玲,等.致密碳酸盐岩石力学与声学

.大庆石油地质与开发,2008,27(6):131实验研究[J ]

-135.

[6]蔡新滨,孙进忠,陈祥.岩体波动参数的测试及动静力学

J ].岩石力学与工程学报,2005,24(增参数的综合应用[

1):4956-4964.

[7]耿乃光,郝晋升,李纪汉,等.岩石动态与静态杨氏模量

.第二届全国岩石动力学学术会的对比测量研究[C ]

湖北宜昌.1990:50-54.议,

ed AB into four flow units and DJ into five flow units and LN into five flowing units.Facies studies and well pressure buildup analysis validates the results of depletion pressure.According to the trial practice ,it prove that this method is accurate and liable ,which re-duces uncertainty of evaluation to seepage barriers and is a Complement research method for the existing reservoir seepage barriers.Key words :formation pressure ,Main Pay reservoir ,depletion pressure ,seepage barrier

·Evaluation &Application ·

Researchof Well Testing Technology to Heterogeneous Reservoirin Horizontal Well and Its Application Analysis.2014,23(5):20 22

Wang Zhiyuan ,Xu Jianping ,Lu Mei ,Chang Wenli (Testing Company Dagang Oilfield ),Wang Yun (Beach Sea Development Compa-ny ,Dagang Oilfield )

The pressure of heterogeneity reservoir with permeability anisotropy at horizontal and vertical -horizontal direction and its characteristics of derivative curve are studied to understand the influencing law of reservoir heterogeneity to pressure dynamics and its capacity of the horizontal well.It is recognized that the vertical -horizontal permeability anisotropy is not only an important factor affecting the level of well development ,but also is a basis for screening whether a reservoir suiting for development of the horizontal well or not.horizontal well test analysis techniques with heterogeneous reservoir is applied to analyze well testing data to determine the reservoir horizontal per-meability and vertical permeability ,reservoir permeability anisotropy index.On basis of this ,horizontal wells and vertical wells are an-alyzed which provides a basis for field development wells suitable type selection.

Key words :horizontal well ,permeability ,anisotropy index ,pressure dynamic ,capacity

Integrated Application of Well and Oil Testing Data of K 21Well in Oil and Gas Exploration at Sangonghe Group of K Area.2014,23(5):23 24,28

Peng Haijun ,Tang Yong ,Dai Canxing ,Zhang Lei ,You Xincai (Exploration and Development ResearchInstitute ,Xinjiang Oilfield Company )

In 2013,formation Sangonghe of K21well obtained the important breakthrough of oil and gas exploration in Xinjiang oilfield.For the beginning of production ,the two perforated small zones had differences in fluid properties and physical characters to cause problems such as whether the two subzones are all belonged the same reservoir or not ,why the producing yield are low for a long term after larger scale fracturing ,and whether has the potential of increased yield or not and so on.Through comprehensive application of formation test and production test of K21well and based on objective analysis of formation fluid ,formation pressure system and reservoir parameters ,the above problems have been solved more satisfactorily.Key words :data ,exploration ,allocation ,oil testing

Analysis of Yield Error for Swabbing Production Well in Low Permeability Reservoir.2014,23(5):25 28Ma Huali ,Tie Zhijie (Oil Test and Production Branch Company ,Daqing Oilfield Co.,Ltd )For non-flowing well of low permeability reservoir ,swabbing production is the main capacity manner of the conventional oil test.But

testing data obtained by swabbing for production has its unique place ,namely because of swabbing to gain production in cycle ,change of its bottom hole pressure does not continuously decline ,while ,flow pressure shows serrated changes with the alternation of pumping and recovery.The modern well testing theory ,taking continuously acquiring production as a condition ,can't conduct the productivity a-nalysis from these data which results in vague even unreasonable understanding to productivity of the swabbing well.Applying capacity data by oil test and pumping production to developing prediction ,blind optimistic predictions are often caused.Based on evaluation theory of unstable production and combined with characteristics of pumping capacity ,capacity variation law of the low permeability res-ervoir is analyzed.The result shows that for non-flowing well of low permeability reservoir ,early productivity is high and declines rapid-ly.The lower the permeability ,the early production declines faster ,the margin is greater ,the contribution to total recovery is greater ,

and error of the high capacity is bigger.The shorter pumping cycle time ,the error of early high capacity is greater.Key words :low permeability ,oil test ,production ,swabbing ,unstable ,IPR,capacity evaluation

Calculation Method about Brittleness Index in Chang 7Dense Reservoirand Its Field Application.2014,23(5):29 32Zhang Kuangsheng ,Liu Shun (Oil and Gas Technology ResearchInstitute ,Changqing Oilfield Company ),Jiang Jianfang ,Liu Guang-pu ,Jiang Rui(Enhanced Oil RecoveryInstitute ,China University of Petroleum Beijing )

Brittleness index size in Chang 7dense reservoir is an important basis for developing the fracturing program with mixed water in this oil group.By using conventional logging data and through logging interpretation software from rock dynamic parameter ,Young's modulus and Poisson's ratio of the target well section are calculated and combined with triaxial rock mechanics test of the Chang 7reservoir rock samples ,static Young's modulus and Poisson's ratio are obtained to establish the relationship of Young's modulus and Poisson's ratio be-tween static and dynamic.The data shows that the static value of Young's modulus at this area is less than dynamics ,be about 0.569times ,static of Poisson's ratio is quite to dynamic values ,be mutual size ;and correlation coefficient is greater than 0.9.A method of quantitative calculation to brittleness index of the Chang7dense reservoir is formed ,and test calculation by indoor rock sample is rela-tively close to brittleness index by the logging data interpretation ,a difference of 1.041times ,which shows a good correlation.Field trials conducted in wells with preferred brittleness index have achieved a better result.

Key words :dense reservoir ,brittleness index ,calculation method ,application ,crack ,Young's modulus ,Poisson's ratio Evaluation of Average Pressure.2014,23(5):33 35Xiang Shudong (China National Logging Services CO.,Ltd )

With production advance of oilfield ,using stage of the test pressure recovery can obtain attenuation situation of formation pressure.Closed storage model is the basis of the evaluation to the average pressure.When the production reaching dynamic equilibrium of pro-duction wells ,each well has formed its own drain region ,and average pressure within the ideal drain region can take closed boundary model as a basis.On basis of this ,the MBH and analytical simulation method are described.MBH is a correction method for evalua-ting the average pressure ,and analytical simulation method is based on the actual interpretation of the shut-segment data ,which is the

most reliable one to estimate the average pressure of the producing well.Key words :average pressure ,drain region ,MBH ,analytical simulation


相关文章

  • 致密油藏体积压裂技术应用
  • 第34卷第3期新疆石油地质 Vol.34,No.3致密油藏体积压裂技术应用 王文东,赵广渊,苏玉亮,丰子泰 (中国石油大学石油工程学院,山东青岛266580) 摘 要:体积压裂技术在北美页岩油气藏的开发中取得了显著的效果.对体积压裂的概念和 ...查看


  • 石油工程新理论与技术讲座论文
  • 石油工程新理论与技术讲座论文 摘要:随着各大油田步入开发阶段的后期,传统的油藏类型面临高含水.驱动能量不足.提高采收率困难等等问题,而非常规油气藏的开采难度较大,并且部分存在地形问题难以开采,或者技术不成熟无法大规模开采的问题,导致石油行业 ...查看


  • 低渗透储层四性关系综合研究
  • 第! " 卷第#期#$$%年&月石! 油! 物! 探 ' () *+, -. /01*2) -*(/3. 4'5) 2*(32) 1(67! 89:; ! " 49; # ! 7 文章编号 #%>$$$&g ...查看


  • 鄂尔多斯盆地延长组致密油特征_姚泾利
  • 150 2013年4月 石 油 勘 探 与 开 发 Vol.40 No.2 PETROLEUM EXPLORATION AND DEVELOPMENT 文章编号:1000-0747(2013)02-0150-09 DOI: 10.11698 ...查看


  • 远程遥控投球装置在层间暂堵多缝压裂技术中的应用
  • 第36卷 第1期2014年1 月石 油 钻 采 工 艺 OIL DRILLING & PRODUCTION TECHNOLOGYVol. 36 No. 1Jan. 2014 01 – 0104 – 03 doi:10.13639/j ...查看


  • 世界十大石油科技
  • 1. 细粒沉积岩形成机理研究有效指导油气勘探 随着数字露头.矿物元素分析QEMSCAN.水槽模拟实验.成像测井等先进技术的广泛应用,二十一世纪以来,细粒沉积学在细粒沉积过程模拟.泥页岩成岩作用与精细表征等方面取得重大进展,加深了细粒沉积岩形 ...查看


  • 石油工程基础大纲
  • 中国地质大学研究生院 硕士研究生入学考试<石油工程基础>考试大纲 一.试卷结构 (一)题型比例(总分150分) 1.基本概念题(约占20%) 2.图形及方法题(约占30%) 3.简述题(约占50%) 4.计算题(约占50%) 二 ...查看


  • 第六章水力压裂技术
  • 第六章 水力压裂技术 水力压裂是油气井增产.注水井增注的一项重要技术措施,不仅广泛用于低渗透油气藏,而且在中.高渗油气藏的增产改造中也取得了很好的效果.它是利用地面高压泵组,将高粘液体以大大超过地层吸收能力的排量注入井中,在井底憋起高压,当 ...查看


  • 开发方案编写标准格式正在编写
  • 关于编写方案标准格式几点说明 一. 目的意义 随着油藏开发的需要,在油田投入开发.新增储量上报.老区综合调整.方案实施之前,均需要编写开发方案.调整方案.为使方案规范化.标准化,特编制标准格式.本次格式为讨论稿. 二. 方案内容编写依据 本 ...查看


热门内容