产品包装生产线课程设计(方案三)原创,优秀

产品包装生产线(方案3)

1.设计课题概述

如下图所示,输送线1上为小包装产品,其尺寸为长宽高

600200200,采取步进式输送方式,送第一包产品至托盘A上(托盘A上

平面与输送线1的上平面同高)后,托盘A下降200mm,第二包产品送到后,托盘A上升200mm,然后,把产品推入输送线2。原动机转速为2400rpm,产品输送数量分三档可调,每分钟向输送线2分别输送 8 ,16 , 24 件小包装产品。

图1功能简图

2.设计课题工艺分析

由题目和功能简图可以看出,推动产品在输送线1上运动的是执行机构1,在A处使产品上升,下降的是执行构件2,在A处把产品推到下一个工位的是执行构件3,三个执行构件的运动协调关系如图所示。

图2 运动循环图

图1中T1为执行构件1的工作周期,T2是执行构件2的工作周期,T3是执行构件3的工作周期。由图2可以看出,执行构件1是作连续往复移动的,而执

行构件2则有一个间歇往复运动,执行构件3作一个间歇往复运动。三个执行构件的工作周期关系为:2T1= T2。执行构件3的动作周期为其工作周期的1/4。

3.设计课题运动功能分析及运动功能系统图

根据前面的分析可知,驱动执行构件1工作的执行机构应该具有运动功能如图3所示。该运动功能把一个连续的单向转动转换为连续的往复移动,主动件每转动一周,从动件(执行构件1)往复运动两次,主动件的转速分别为4、8、12 rpm。

图3 执行机构1的运动功能

由于电动机转速为2400rpm,为了在执行机构1的主动件上分别得到4、8、

12 rpm的转速,则由电动机到执行机构之间的传动比iz有3种分别为:

n2400iz1600

n14

iz2iz3

n2400300 n28n2400200n312

总传动比由定传动比ic与变传动比iv组成,满足以下关系式:

iz1 = iciv1 iz2=iciv2 iz3=iciv3

三种传动比中iz1最大,iz3最小。由于定传动比ic是常数,因此3种变传动比中

iv1最大,iv3最小。若采用滑移齿轮变速,其最大传动比最好不要大于4,即:

iv14

令:

iv1=4

则有:

ic

iz1600150 iv14

故变传动比的其他值为:

iv2iv3

iz2300

2ic150iz32004ic1503

于是,有级变速单元如图4:

图4 有级变速运动功能单元

为保证系统过载时不至于损坏,在电动机和传动系统之间加一个过载保护环节。过载保护运动功能单元可采用带传动实现,这样,该运动功能单元不仅具有过载保护能力,还具有减速功能,如图5所示。

图5 过载保护运动功能单元

整个传动系统仅靠过载保护功能单元的减速功能不能实现全部定传动比,因此,在传动系统中还要另加减速运动功能单元,减速比为

i150ic60 2.52.5

减速运动功能单元如图6所示。

图6 执行机构1的运动功能

根据上述运动功能分析,可以得到实现执行构件1运动的功能系统图,如图7

所示。

2400rpm i = 2.5 i = 4, 2 ,1.33 i =60

图7 实现执行构件1运动的运动功能系统图

为了使用同一原动机驱动执行构件2,应该在图7所示的运动功能系统图加上1个运动分支功能单元,使其能够驱动分支执行构件2,该运动分支功能单元如图8所示。

图8 运动分支功能单元

执行构件2的执行运动是间歇往复移动。执行构件3的执行运动为间歇往复移动,其运动方向与执行构件1的运动方向垂直。为了使执行构件2和执行构件3的运动和执行构件1的运动保持正确的空间关系,可以加一个运动传动方向转换功能单元,如图9所示。

图9 运动传动方向转换的运动功能单元

经过运动传递方向转换功能单元输出的运动需要分成两个运动分支分别驱动执行构件2的一个运动和执行构件3的一个运动。因此,需要加一个运动分支功能分支单元,如图10所示。

图10 运动分支功能单元

执行构件2的一个运动是间歇往复移动,考虑采用两个运动单元,将连续转动转换成间歇单向转动,再转换成间歇往复移动。如图11所示。

图11

连续转动转换为间歇往复移动的运动功能单元

根据上述分析可以得出实现执行构件1和执行构件2运动功能的运动功能系统图,如图12所示。

图12 执行构件1、2的运动功能系统图

执行构件3需要进行间歇往复移动,为此,需要将连续转动转换为间歇转动。考虑采用一个运动系数为的间歇运动单元,如图13所示。

图13间歇运动功能单元

尽管执行构件3在一个工作周期内,其间歇时间很长,运动时间很短,但是当其运动时,运动则是连续的、周期的。因此,需要把图13中的运动功能单元的输出运动转换为整周运动,于是在其后加一个运动放大功能单元,如图14所示。

i =1/4

图14 运动放大功能单元

然后,再把该运动功能单元输出的运动转换为往复移动,其运动功能单元如图15所示。

图15 把连续转动转换为往复移动的运动功能单元

根据上述分析,可以画出整个系统的运动功能系统图,如图

16所示。 1 2 3 4

图16 产品包装生产线(方案3)的运动功能系统图

4.设计课题运动方案拟定

根据图16所示的运动功能系统图,选择适当的机构替代运动功能系统图中的各个运动功能单元,便可拟定出机械系统运动方案。

图16中的运动功能单元1是原动机。根据产品包装生产线的工作要求,可以选择电动机作为原动机。如图17所示。

2400rpm

图17 电动机替代运动功能单元1

图16中的运动功能单元2是过载保护单元兼具减速功能,可以选择带传动实现,如图18所示。

2

图18 带传动替代过载保护功能单元2

图16中的运动功能单元3是有级变速功能单元,可以选择滑移齿轮变速传动替代,如图19所示。

i4,2,1.33

图19 滑移齿轮变速替代运动功能单元3

图16中的运动功能单元4是减速功能,可以选择2级齿轮传动代替,如图20所示。 i=60

图20 2级齿轮传动替代运动功能单元4

图16中运动功能单元5是运动分支功能单元,可以用运动功能单元7锥齿

轮传动的主动轮、运动功能单元6导杆滑块结构的曲柄与运动功能单元4的运动输出齿轮固连替代,如图21所示。

5

图21 2个运动功能单元的主动件固联替代运动功能单元5

图16中的运动功能单元6将连续传动转换为间歇往复移动,可以选择导杆滑块机构替代,如图22所示。

图22 导杆滑块机构替代运动功能单元6

图16中的运动功能单元7是运动传递方向转换功能单元,可以用圆锥齿轮传动替代,如图23所示。

图23圆锥齿轮传动替代运动功能单元7

运动单元8的类型与运动单元5相同。

图16中的运动功能单元9是将连续转动转换为间歇往复移动,可以用凸轮机构固联来实现,如图24所示。

图24凸轮机构固联替代功能单元9

图16中运动功能单元10是把连续转动转换为间歇转动的运动功能单元,可以用槽轮机构替代。如图25所示。

该槽轮机构如下图所示。

图25 用槽轮传动替代运动功能单元10

10

图16中的运动功能单元11是运动放大功能单元,把运动功能单元10中槽轮在一个工作周期中输出的1/4周的转动转换为一周的运动,用圆柱齿轮机构替代,其传动比为i=1/4。

图16中运动功能单元12是把连续转动转换为连续往复移动的运动功能单元,可以用曲柄滑块机构替代,如图26所示。

12

图 26用曲柄滑块机构替代运动功能单元12

根据上述分析,按照图16各个运动单元连接顺序把个运动功能单元的替代机构一次连接便形成了产品包装生产线(方案3)的运动方案简图,如图27所示。

图27-(a)

27-(b)

图27-(c)

图27 产品包装生产线(方案3)的运动方案简图

5. 设计课题运动方案设计

1) 滑移齿轮传动设计

A. 确定齿轮齿数

如图19中齿轮5,6,7,8,9,10组成了滑移齿轮有级变速单元,其齿数分别为z5, z6 ,z7 ,z8 ,z9 ,z10。由前面分析可知:

iv14iv22iv3

4

1.333

按最小不根切齿数取z9=17,则z10= iv1 * z9=4×17= 68

为了改善传动性能应使相互啮合的齿轮齿数互为质数,取z10= 69。其齿数和为z9+ z10=17+69=86,为满足传动比和中心距要求,三对齿轮均取角度变位齿

轮,其齿数:z530,z656,z726,z860,z917,z1069。

B. 计算齿轮几何尺寸

表2 滑移齿轮7、8参数

表3 滑移齿轮9、10参数

2) 定轴齿轮传动设计

A. 圆柱齿轮传动设计

由图可知,齿轮11、12、13、14实现运动功能单元4的减速功能,它所实现的传动比为60。由于齿轮11、12、13、14是2级齿轮传动,这2级齿轮传动的传动比可如此确定

z11z1317,

于是

z12z143.249z1155

z1117z1317

z1255z1455

由图27 -(c)可知,齿轮32、33实现运动功能单元15的放大功能,它所

实现的传动比为1/4,齿轮33可按最小不根切齿数确定,即

z3317 则齿轮32的齿数为:17468 为使传动比更接近于要求,取

z3317

z3269

取模数m=2 mm,计算各个齿轮参数。

表4 定轴圆柱齿轮11、12参数(齿轮13、14与11、12对应相同)

B. 圆锥齿轮传动设计

由图27-(a)可知,圆锥齿轮17、18,23、24均起改变运动方向的作用,两圆锥齿轮的轴交角为90o,齿数取最小不根切当量齿数17即可,取模数m=2mm,尺寸按标准齿轮计算。

表6圆锥齿轮17、18参数

C. 执行机构1的设计

该执行机构是曲柄滑块机构,由曲柄19,滑块,导杆20,连杆21和滑枕22组成。其中大滑块的行程h=480mm,现对机构进行参数计算。 该机构具有急回特性,在导杆20与曲柄19的轨迹圆相切时候,从动件处于两个极限位置,此时导杆的末端分别位于C1和C2位置。取定C1C2的长度,使其满足:

C1C2h

利用平行四边形的特点,由下图可知滑块移动的距离E1E2= C1C2=h,这样就利用了机构急回运动特性,使滑块移动了指定的位移。 设极位夹角为θ,显然导杆20的摆角就是θ,取机构的行程速比系数K=1.5,由此可得极位夹角和导杆20的长度。

K10.5

18036K12.5h2240l776.656mm

sin18sin2

180

设计的曲柄滑块机构如图28所示

图28 曲柄滑块机构设计

先随意选定一点为D,以D为圆心,l为半径做圆。再过D作竖直线,以之为基础线,左右各作射线,与之夹角18°,交圆与C1和C2点。则弧C1C2即为导杆顶部转过的弧线,当导轨从C1D摆到C2D的时候,摆角为36°。接着取最高点为C,在C和C1之间做平行于C1C2的直线m,该线为滑枕22的导路,距离D点的距离为

llcossl

2

在C1点有机构最大压力角,设导杆21的长度为l1,最大压力角的正弦等于

llcos

sinmax

要求最大压力角小于100,所以有

2l1

776.6561cos18109.452mm

2sinmax2sin10

l1越大,压力角越小,取l1=200~400mm。

曲柄19的回转中心在过D点的竖直线上,曲柄越长,曲柄受力越小,可选

l1

llsin

AD

12l~l23

取AD=500mm,据此可以得到曲柄19的长度

l2ADsin500sin18154.51mm

2

D. 不完全齿轮16、17的设计

曲柄由不完全齿轮控制其转动周期和动停时间比,由运动周期得到主动轮与

oo

从动轮运动周期之比为1:4,主动轮16从0转到180,从动轮17转两周,主动轮从180o转到360o期间,从动轮停止,故确定主动轮为不完全齿轮,一半有齿,另一半无齿,从动轮为标准完全齿轮,确定模数为3mm,主动轮假想齿数和从动轮齿数分别为101和25,则中心距a=136.5mm。

E. 执行机构2的设计

如图27(b)所示,执行机构2有一个运动是将连续传动转换为间歇往复移动,选用直动平底从动件盘形凸轮机构(27、29)来实现。凸轮基圆半径100mm,无偏距,升程为200mm。推程为正弦加速,回程为余弦加速。

图29 直动平底从动件盘形凸轮轮廓

F. 执行构件3的设计

(1)槽轮机构的设计

① 确定槽轮槽数

根据图27(c)可知,在拨盘圆销数k=1时,槽轮槽数z=4。 ② 槽轮槽间角

360

90 z

③ 槽轮每次转位时拨盘的转角2α=180o-2β=90° ④ 中心距

槽轮机构的中心距应该根据具体结构确定,在结构尚不确定的情况下暂定为a=150mm ⑤ 拨盘圆销的回转半径

r

0.707 1 sina

r=λa=0.7071*150=106.065 mm

⑥ 槽轮半径

R

cos0.707 1

a

R=ξa=0.7071*150=106.065 mm

⑦ 锁止弧张角

γ=360°-2α=270°

⑧ 圆销半径

r106.065rA17.6675mm

66

圆整后得: rA18 mm ⑨ 槽轮槽深

h>(λ+ξ-1)*a+=80.13 mm

⑩ 锁止弧半径

rs

取 88mm。

(2)曲柄滑块机构设计

由题目可知,滑块的行程为h=200mm,考虑到曲柄滑块的急回特性,使滑块导轨与曲柄轴心之间增加适当的偏距,取其速比系数K=1.4,则极位夹角θ为

K10.4

18018030

K12.4

取曲柄34的长为l1=l/2=100mm,由最大压力角正弦满足

l1e

sinmax

l2

由最大压力角max30,取max30 又由几何关系可知

2

(l2l1)2l22l2

cos

2l2(l1l2)

解得连杆35的长度l2=288.29mm,故偏距e44.14544mm。

6.设计课题运动方案分析

(1) 运动方案执行构件的运动时序分析

① 确定各执行构件的起始位置。

T=0时,执行构件1的摇杆20处于左侧极限位置,执行构件2中的平底从动件29处于s=200mm位置;执行构件3中滑块36处于最左端,即行程为零位置。

② 机械系统的机构运动循环图

(2) 凸轮机构运动情况分析

平底从动件盘形凸轮位移、速度、加速度分析线图如图28所示

图30 平底从动件盘形凸轮位移、速度、加速度分析线图

产品包装生产线(方案3)

1.设计课题概述

如下图所示,输送线1上为小包装产品,其尺寸为长宽高

600200200,采取步进式输送方式,送第一包产品至托盘A上(托盘A上

平面与输送线1的上平面同高)后,托盘A下降200mm,第二包产品送到后,托盘A上升200mm,然后,把产品推入输送线2。原动机转速为2400rpm,产品输送数量分三档可调,每分钟向输送线2分别输送 8 ,16 , 24 件小包装产品。

图1功能简图

2.设计课题工艺分析

由题目和功能简图可以看出,推动产品在输送线1上运动的是执行机构1,在A处使产品上升,下降的是执行构件2,在A处把产品推到下一个工位的是执行构件3,三个执行构件的运动协调关系如图所示。

图2 运动循环图

图1中T1为执行构件1的工作周期,T2是执行构件2的工作周期,T3是执行构件3的工作周期。由图2可以看出,执行构件1是作连续往复移动的,而执

行构件2则有一个间歇往复运动,执行构件3作一个间歇往复运动。三个执行构件的工作周期关系为:2T1= T2。执行构件3的动作周期为其工作周期的1/4。

3.设计课题运动功能分析及运动功能系统图

根据前面的分析可知,驱动执行构件1工作的执行机构应该具有运动功能如图3所示。该运动功能把一个连续的单向转动转换为连续的往复移动,主动件每转动一周,从动件(执行构件1)往复运动两次,主动件的转速分别为4、8、12 rpm。

图3 执行机构1的运动功能

由于电动机转速为2400rpm,为了在执行机构1的主动件上分别得到4、8、

12 rpm的转速,则由电动机到执行机构之间的传动比iz有3种分别为:

n2400iz1600

n14

iz2iz3

n2400300 n28n2400200n312

总传动比由定传动比ic与变传动比iv组成,满足以下关系式:

iz1 = iciv1 iz2=iciv2 iz3=iciv3

三种传动比中iz1最大,iz3最小。由于定传动比ic是常数,因此3种变传动比中

iv1最大,iv3最小。若采用滑移齿轮变速,其最大传动比最好不要大于4,即:

iv14

令:

iv1=4

则有:

ic

iz1600150 iv14

故变传动比的其他值为:

iv2iv3

iz2300

2ic150iz32004ic1503

于是,有级变速单元如图4:

图4 有级变速运动功能单元

为保证系统过载时不至于损坏,在电动机和传动系统之间加一个过载保护环节。过载保护运动功能单元可采用带传动实现,这样,该运动功能单元不仅具有过载保护能力,还具有减速功能,如图5所示。

图5 过载保护运动功能单元

整个传动系统仅靠过载保护功能单元的减速功能不能实现全部定传动比,因此,在传动系统中还要另加减速运动功能单元,减速比为

i150ic60 2.52.5

减速运动功能单元如图6所示。

图6 执行机构1的运动功能

根据上述运动功能分析,可以得到实现执行构件1运动的功能系统图,如图7

所示。

2400rpm i = 2.5 i = 4, 2 ,1.33 i =60

图7 实现执行构件1运动的运动功能系统图

为了使用同一原动机驱动执行构件2,应该在图7所示的运动功能系统图加上1个运动分支功能单元,使其能够驱动分支执行构件2,该运动分支功能单元如图8所示。

图8 运动分支功能单元

执行构件2的执行运动是间歇往复移动。执行构件3的执行运动为间歇往复移动,其运动方向与执行构件1的运动方向垂直。为了使执行构件2和执行构件3的运动和执行构件1的运动保持正确的空间关系,可以加一个运动传动方向转换功能单元,如图9所示。

图9 运动传动方向转换的运动功能单元

经过运动传递方向转换功能单元输出的运动需要分成两个运动分支分别驱动执行构件2的一个运动和执行构件3的一个运动。因此,需要加一个运动分支功能分支单元,如图10所示。

图10 运动分支功能单元

执行构件2的一个运动是间歇往复移动,考虑采用两个运动单元,将连续转动转换成间歇单向转动,再转换成间歇往复移动。如图11所示。

图11

连续转动转换为间歇往复移动的运动功能单元

根据上述分析可以得出实现执行构件1和执行构件2运动功能的运动功能系统图,如图12所示。

图12 执行构件1、2的运动功能系统图

执行构件3需要进行间歇往复移动,为此,需要将连续转动转换为间歇转动。考虑采用一个运动系数为的间歇运动单元,如图13所示。

图13间歇运动功能单元

尽管执行构件3在一个工作周期内,其间歇时间很长,运动时间很短,但是当其运动时,运动则是连续的、周期的。因此,需要把图13中的运动功能单元的输出运动转换为整周运动,于是在其后加一个运动放大功能单元,如图14所示。

i =1/4

图14 运动放大功能单元

然后,再把该运动功能单元输出的运动转换为往复移动,其运动功能单元如图15所示。

图15 把连续转动转换为往复移动的运动功能单元

根据上述分析,可以画出整个系统的运动功能系统图,如图

16所示。 1 2 3 4

图16 产品包装生产线(方案3)的运动功能系统图

4.设计课题运动方案拟定

根据图16所示的运动功能系统图,选择适当的机构替代运动功能系统图中的各个运动功能单元,便可拟定出机械系统运动方案。

图16中的运动功能单元1是原动机。根据产品包装生产线的工作要求,可以选择电动机作为原动机。如图17所示。

2400rpm

图17 电动机替代运动功能单元1

图16中的运动功能单元2是过载保护单元兼具减速功能,可以选择带传动实现,如图18所示。

2

图18 带传动替代过载保护功能单元2

图16中的运动功能单元3是有级变速功能单元,可以选择滑移齿轮变速传动替代,如图19所示。

i4,2,1.33

图19 滑移齿轮变速替代运动功能单元3

图16中的运动功能单元4是减速功能,可以选择2级齿轮传动代替,如图20所示。 i=60

图20 2级齿轮传动替代运动功能单元4

图16中运动功能单元5是运动分支功能单元,可以用运动功能单元7锥齿

轮传动的主动轮、运动功能单元6导杆滑块结构的曲柄与运动功能单元4的运动输出齿轮固连替代,如图21所示。

5

图21 2个运动功能单元的主动件固联替代运动功能单元5

图16中的运动功能单元6将连续传动转换为间歇往复移动,可以选择导杆滑块机构替代,如图22所示。

图22 导杆滑块机构替代运动功能单元6

图16中的运动功能单元7是运动传递方向转换功能单元,可以用圆锥齿轮传动替代,如图23所示。

图23圆锥齿轮传动替代运动功能单元7

运动单元8的类型与运动单元5相同。

图16中的运动功能单元9是将连续转动转换为间歇往复移动,可以用凸轮机构固联来实现,如图24所示。

图24凸轮机构固联替代功能单元9

图16中运动功能单元10是把连续转动转换为间歇转动的运动功能单元,可以用槽轮机构替代。如图25所示。

该槽轮机构如下图所示。

图25 用槽轮传动替代运动功能单元10

10

图16中的运动功能单元11是运动放大功能单元,把运动功能单元10中槽轮在一个工作周期中输出的1/4周的转动转换为一周的运动,用圆柱齿轮机构替代,其传动比为i=1/4。

图16中运动功能单元12是把连续转动转换为连续往复移动的运动功能单元,可以用曲柄滑块机构替代,如图26所示。

12

图 26用曲柄滑块机构替代运动功能单元12

根据上述分析,按照图16各个运动单元连接顺序把个运动功能单元的替代机构一次连接便形成了产品包装生产线(方案3)的运动方案简图,如图27所示。

图27-(a)

27-(b)

图27-(c)

图27 产品包装生产线(方案3)的运动方案简图

5. 设计课题运动方案设计

1) 滑移齿轮传动设计

A. 确定齿轮齿数

如图19中齿轮5,6,7,8,9,10组成了滑移齿轮有级变速单元,其齿数分别为z5, z6 ,z7 ,z8 ,z9 ,z10。由前面分析可知:

iv14iv22iv3

4

1.333

按最小不根切齿数取z9=17,则z10= iv1 * z9=4×17= 68

为了改善传动性能应使相互啮合的齿轮齿数互为质数,取z10= 69。其齿数和为z9+ z10=17+69=86,为满足传动比和中心距要求,三对齿轮均取角度变位齿

轮,其齿数:z530,z656,z726,z860,z917,z1069。

B. 计算齿轮几何尺寸

表2 滑移齿轮7、8参数

表3 滑移齿轮9、10参数

2) 定轴齿轮传动设计

A. 圆柱齿轮传动设计

由图可知,齿轮11、12、13、14实现运动功能单元4的减速功能,它所实现的传动比为60。由于齿轮11、12、13、14是2级齿轮传动,这2级齿轮传动的传动比可如此确定

z11z1317,

于是

z12z143.249z1155

z1117z1317

z1255z1455

由图27 -(c)可知,齿轮32、33实现运动功能单元15的放大功能,它所

实现的传动比为1/4,齿轮33可按最小不根切齿数确定,即

z3317 则齿轮32的齿数为:17468 为使传动比更接近于要求,取

z3317

z3269

取模数m=2 mm,计算各个齿轮参数。

表4 定轴圆柱齿轮11、12参数(齿轮13、14与11、12对应相同)

B. 圆锥齿轮传动设计

由图27-(a)可知,圆锥齿轮17、18,23、24均起改变运动方向的作用,两圆锥齿轮的轴交角为90o,齿数取最小不根切当量齿数17即可,取模数m=2mm,尺寸按标准齿轮计算。

表6圆锥齿轮17、18参数

C. 执行机构1的设计

该执行机构是曲柄滑块机构,由曲柄19,滑块,导杆20,连杆21和滑枕22组成。其中大滑块的行程h=480mm,现对机构进行参数计算。 该机构具有急回特性,在导杆20与曲柄19的轨迹圆相切时候,从动件处于两个极限位置,此时导杆的末端分别位于C1和C2位置。取定C1C2的长度,使其满足:

C1C2h

利用平行四边形的特点,由下图可知滑块移动的距离E1E2= C1C2=h,这样就利用了机构急回运动特性,使滑块移动了指定的位移。 设极位夹角为θ,显然导杆20的摆角就是θ,取机构的行程速比系数K=1.5,由此可得极位夹角和导杆20的长度。

K10.5

18036K12.5h2240l776.656mm

sin18sin2

180

设计的曲柄滑块机构如图28所示

图28 曲柄滑块机构设计

先随意选定一点为D,以D为圆心,l为半径做圆。再过D作竖直线,以之为基础线,左右各作射线,与之夹角18°,交圆与C1和C2点。则弧C1C2即为导杆顶部转过的弧线,当导轨从C1D摆到C2D的时候,摆角为36°。接着取最高点为C,在C和C1之间做平行于C1C2的直线m,该线为滑枕22的导路,距离D点的距离为

llcossl

2

在C1点有机构最大压力角,设导杆21的长度为l1,最大压力角的正弦等于

llcos

sinmax

要求最大压力角小于100,所以有

2l1

776.6561cos18109.452mm

2sinmax2sin10

l1越大,压力角越小,取l1=200~400mm。

曲柄19的回转中心在过D点的竖直线上,曲柄越长,曲柄受力越小,可选

l1

llsin

AD

12l~l23

取AD=500mm,据此可以得到曲柄19的长度

l2ADsin500sin18154.51mm

2

D. 不完全齿轮16、17的设计

曲柄由不完全齿轮控制其转动周期和动停时间比,由运动周期得到主动轮与

oo

从动轮运动周期之比为1:4,主动轮16从0转到180,从动轮17转两周,主动轮从180o转到360o期间,从动轮停止,故确定主动轮为不完全齿轮,一半有齿,另一半无齿,从动轮为标准完全齿轮,确定模数为3mm,主动轮假想齿数和从动轮齿数分别为101和25,则中心距a=136.5mm。

E. 执行机构2的设计

如图27(b)所示,执行机构2有一个运动是将连续传动转换为间歇往复移动,选用直动平底从动件盘形凸轮机构(27、29)来实现。凸轮基圆半径100mm,无偏距,升程为200mm。推程为正弦加速,回程为余弦加速。

图29 直动平底从动件盘形凸轮轮廓

F. 执行构件3的设计

(1)槽轮机构的设计

① 确定槽轮槽数

根据图27(c)可知,在拨盘圆销数k=1时,槽轮槽数z=4。 ② 槽轮槽间角

360

90 z

③ 槽轮每次转位时拨盘的转角2α=180o-2β=90° ④ 中心距

槽轮机构的中心距应该根据具体结构确定,在结构尚不确定的情况下暂定为a=150mm ⑤ 拨盘圆销的回转半径

r

0.707 1 sina

r=λa=0.7071*150=106.065 mm

⑥ 槽轮半径

R

cos0.707 1

a

R=ξa=0.7071*150=106.065 mm

⑦ 锁止弧张角

γ=360°-2α=270°

⑧ 圆销半径

r106.065rA17.6675mm

66

圆整后得: rA18 mm ⑨ 槽轮槽深

h>(λ+ξ-1)*a+=80.13 mm

⑩ 锁止弧半径

rs

取 88mm。

(2)曲柄滑块机构设计

由题目可知,滑块的行程为h=200mm,考虑到曲柄滑块的急回特性,使滑块导轨与曲柄轴心之间增加适当的偏距,取其速比系数K=1.4,则极位夹角θ为

K10.4

18018030

K12.4

取曲柄34的长为l1=l/2=100mm,由最大压力角正弦满足

l1e

sinmax

l2

由最大压力角max30,取max30 又由几何关系可知

2

(l2l1)2l22l2

cos

2l2(l1l2)

解得连杆35的长度l2=288.29mm,故偏距e44.14544mm。

6.设计课题运动方案分析

(1) 运动方案执行构件的运动时序分析

① 确定各执行构件的起始位置。

T=0时,执行构件1的摇杆20处于左侧极限位置,执行构件2中的平底从动件29处于s=200mm位置;执行构件3中滑块36处于最左端,即行程为零位置。

② 机械系统的机构运动循环图

(2) 凸轮机构运动情况分析

平底从动件盘形凸轮位移、速度、加速度分析线图如图28所示

图30 平底从动件盘形凸轮位移、速度、加速度分析线图


相关文章

  • 2015微课方案
  • 运城师范高等专科学校 2015年教师微课教学比赛方案 为贯彻落实教育部<关于2015年全国高校(高职高专)微课教学比赛通知>精神,推进我校教师专业发展和教学能力的提升,促进信息技术与学科教学融合,提高教学效果和教学质量,根据我校 ...查看


  • 艺术教育与民族文化的传承创新
  • [摘 要]艺术院校过去几十年的培养模式全部是向外看的专业教学方式,曾经的苏联模式.欧美模式和现今的日韩模式充斥着艺术设计领域,外来的优秀理念和设计是非常好的,应该认真学习,但是长时间以来,我们却忽略了自己优秀民族文化元素的魅力,我们很少认真 ...查看


  • 关于开展MM百万青年创业计划通知
  • 关于转发<关于开展"MM(Mobile Market)百万 青年创业计划"和"第五届中国原创手机动漫游戏大 赛"联合进校园活动的通知>的通知 各团市委,各高校团委: 现将团中央学校部< ...查看


  • 动漫展会实施方案
  • 第一届邯郸影视动漫文化节 暨邯郸法制动漫宣传平台启动仪式 各项活动简介 第一届邯郸影视动漫文化节拟定于2014年8月2至8月3日于邯郸国际会展中心开展. 为促进邯郸文化产业兴起与法制邯郸的建设,特于文化节开展期间同期举办邯郸法制多媒体 网络 ...查看


  • 商业模拟挑战赛规则
  • 商业模拟挑战赛规则 目 录 第 1章 概述................................................................................................... ...查看


  • 上海市文化创意产业发展
  • 上海市文化创意产业发展"十二五"规划 分享到 2013-04-25 16:52:09 责任编辑:QZ080 来源:前瞻网 新浪微博腾讯微博QQ空间百度搜索前瞻网摘要:到2015年,上海文化创意产业增加值增幅快于服务业平均 ...查看


  • HR人员必备的招聘技巧-人力资源-世界经理人论坛
  • HR人员必备的招聘技巧 - 人力资源-世界经理人论坛行业导航 管理频道 企业战略 领导力 人力资源 事业规划 销售与营销 IT科技 运作管理 金融财务 经理人论坛 管理博客 互动专区 管理实践 经理人•圈 新书试读 杂志文章 中小企业 生活 ...查看


  • 创新创意大赛实施方案
  • 阜阳科技工程学校 第一届创新创意大赛实施方案 一.活动背景 创新是一个民族发展的不竭动力,更是国家强盛的关键所在.作为新时代的中职生,更应该刻苦钻研,积极创新,创造无愧于时代的新业绩.本大赛以激发全体师生创新思维.提高其对科技创新的兴趣.营 ...查看


  • 交叉学科的体系化
  • 摘要:文章对交叉学科的发展和体系化,对艺术设计类学科的实际应用和教学的影响,以及教学中如何更好贯彻体系化交叉学科的方式目的和意义,进行了阐述与探索. 关键词:艺术设计; 体系化; 交叉学科; 教学意识; 人才培养; 复合型人才 在现代社会日 ...查看


热门内容