有限元课程设计

有限元分析课程设计

题目:

如图所示简支梁,高3米,长15米,承受图示载荷P=2000KN,Q=600KN,E=83Gpa,μ=0.167,厚度t=1米,ρ=1567kg/m3,按平面应力问题分析。用有限元方法计算该梁的变形及应力分布情况。要求用矩形单元。

二、分析过程

一 划分单元

划分单元,标出单元号,和节点号选取坐标,见图。

二 输入参数 1. 基本参数

(1) 单元数 NE=45; (2) 节点数 NJ=64; (3) 支承数 NZ=3;

(4) 节点载荷数 NPJ=4; (5) 半带宽 DD=12;

(6) 节点位移数 NJ2=128; 2. 其他参数

(1) 问题类型码LXM,平面应力问题LXM=0;

(2) 弹性常数E,μ,弹性模量E=83GP 泊松比μ=0.167; (3) 容重ρ,LOU=1567; (4) 板厚t,TE=1m; (5) 节点坐标组AJZ

(1)节点坐标数组:AJZ

AJZ[NJ+1][3]={{0,0,0},{0,0,0},{0,0,1},{0,0,2},{0,0,3},

{0,1,0},{0,1,1},{0,1,2},{0,1,3}, {0,2,0},{0,2,1},{0,2,2},{0,2,3}, {0,3,0},{0,3,1},{0,3,2},{0,3,3}, {0,4,0},{0,4,1},{0,4,2},{0,4,3},

{0,5,0},{0,5,1},{0,5,2},{0,5,3}, {0,6,0},{0,6,1},{0,6,2},{0,6,3}, {0,7,0},{0,7,1},{0,7,2},{0,7,3}, {0,8,0},{0,8,1},{0,8,2},{0,8,3}, {0,9,0},{0,9,1},{0,9,2},{0,9,3}, {0,10,0},{0,10,1},{0,10,2},{0,10,3}, {0,11,0},{0,11,1},{0,11,2},{0,11,3}, {0,12,0},{0,12,1},{0,12,2},{0,12,3}, {0,13,0},{0,13,1},{0,13,2},{0,13,3}, {0,14,0},{0,14,1},{0,14,2},{0,14,3}, {0,15,0},{0,15,1},{0,15,2},{0,15,3}};(2)节点码数组:JM

JM[NE+1][5]={{0,0,0,0,0},{0,1,5,6,2},{0,5,9,10,6},{0,9,13,14,10},{0,13,17,18,14},{0,17,21,22,18}, {0,21,25,26,22},{0,25,29,30,26},{0,29,33,34,30},{0,33,37,38,34},{0,37,41,42,38},

{0,41,45,46,42},{0,45,49,50,46},{0,49,53,54,50},{0,53,57,58,54},{0,57,61,62,58},

{0,2,6,7,3},{0,6,10,11,7},{0,10,14,15,11},{0,14,18,19,15},{0,18,22,23,19},

{0,22,26,27,23},{0,26,30,31,27},{0,30,34,35,31},{0,34,38,39,35},{0,38,42,43,39},

{0,42,46,47,43},{0,46,50,51,47},{0,50,54,55,51},{0,54,58,59,55},{0,58,62,63,59},

{0,3,7,8,4},{0,7,11,12,8},{0,11,15,16,12},{0,15,19,20,16},{0,19,23,24,20},

{0,23,27,28,24},{0,27,31,32,28},{0,31,35,36,32},{0,35,39,40,36},{0,39,43,44,40},

{0,43,47,48,44},{0,47,51,52,48},{0,51,55,56,52},{0,55,59,60,56},{0,59,63,64,60}}; 支撑数组:NZC

NZC[NZ+1]={0,1,2,122}

节点载荷数组PJ

(6) PJ[NPJ+1][2+1]={{0,0,0},{0,-600000,32},{0,-100000,64},{0,-100000,72},{0,-600000,104}}; 等效载荷图:

由上图可知:受外载荷力的节点有16、32、36、52号节点所受力的大小分别为-600000N,-100000N,-100000N和-6000N.,由节点号可知位移数依次为,16,32,36,52可得:

(7) PJ[NPJ+1][2+1]={{0,0,0},{0,-600000,32},{0,-100000,64},{0,-100000,72},{0,-600000,104}};

PJ(NPJ,2)中的元素列排列原则为:一个节点载荷存一行,同一行中第一列世界点

在和值,第二列是载荷对应的位移。 程序框图及程序

三、程序设计

#include #include

#define NE 45 #define NJ 64 #define NZ 3 #define NPJ 4 #define NJ2 128 #define DD 12

int LXM=0; double E0=[1**********]; double MU=0.167; double LOU=1567; double TE=1;

double AJZ[NJ+1][3]={{0,0,0},{0,0,0},{0,0,1},{0,0,2},{0,0,3},

{0,1,0},{0,1,1},{0,1,2},{0,1,3}, {0,2,0},{0,2,1},{0,2,2},{0,2,3}, {0,3,0},{0,3,1},{0,3,2},{0,3,3}, {0,4,0},{0,4,1},{0,4,2},{0,4,3}, {0,5,0},{0,5,1},{0,5,2},{0,5,3}, {0,6,0},{0,6,1},{0,6,2},{0,6,3}, {0,7,0},{0,7,1},{0,7,2},{0,7,3},

{0,8,0},{0,8,1},{0,8,2},{0,8,3}, {0,9,0},{0,9,1},{0,9,2},{0,9,3}, {0,10,0},{0,10,1},{0,10,2},{0,10,3}, {0,11,0},{0,11,1},{0,11,2},{0,11,3}, {0,12,0},{0,12,1},{0,12,2},{0,12,3}, {0,13,0},{0,13,1},{0,13,2},{0,13,3}, {0,14,0},{0,14,1},{0,14,2},{0,14,3}, {0,15,0},{0,15,1},{0,15,2},{0,15,3}}; int

JM[NE+1][5]={{0,0,0,0,0},{0,1,5,6,2},{0,5,9,10,6},{0,9,13,14,10},{0,13,17,18,14},{0,17,21,22,18},

{0,21,25,26,22},{0,25,29,30,26},{0,29,33,34,30},{0,33,37,38,34},{0,37,41,42,38},

{0,41,45,46,42},{0,45,49,50,46},{0,49,53,54,50},{0,53,57,58,54},{0,57,61,62,58},

{0,2,6,7,3},{0,6,10,11,7},{0,10,14,15,11},{0,14,18,19,15},{0,18,22,23,19},

{0,22,26,27,23},{0,26,30,31,27},{0,30,34,35,31},{0,34,38,39,35},{0,38,42,43,39},

{0,42,46,47,43},{0,46,50,51,47},{0,50,54,55,51},{0,54,58,59,55},{0,58,62,63,59},

{0,3,7,8,4},{0,7,11,12,8},{0,11,15,16,12},{0,15,19,20,16},{0,19,23,24,20},

{0,23,27,28,24},{0,27,31,32,28},{0,31,35,36,32},{0,35,39,40,36},{0,39,43,44,40},

{0,43,47,48,44},{0,47,51,52,48},{0,51,55,56,52},{0,55,59,60,56},{0,59,63,64,60}}; int NZC[NZ+1]={0,1,2,122}; double

PJ[NPJ+1][2+1]={{0,0,0},{0,-600000,32},{0,-100000,64},{0,-100000,72},{0,-600000,104}};

double

AE,KZ[NJ2+1][DD+1],P[NJ2+1],S[3+1][8+1],KE[8+1][8+1],SA[7+1][3+1][8+1],a=0.5,b=0.25,jhyl[NJ][3+1]; int v=4;

double xrr[4+1]={0,-1,1,1,-1},yrr[4+1]={0,-1,-1,1,1};

void DUGD(int,int);

void main() {

int NJ1,k,IN,IM,jn,m,n,i,j,z,J0,ii,jj,h,dh,E,l,zl,dl;

double WY[6+1],YL[3+1]; if(LXM!=0) { E0=E0/(1.0-MU*MU); MU=MU/(1.0-MU); }

for(i=0;i

for(E=1;E0) { KZ[dh][dl]=KZ[dh][dl]+KE[h][l]; } } } } } }

//**********************生成p*************************** for(i=1;i0) {

{ j=(int)PJ[i][2]; P[j]=PJ[i][1]; } }

if(LOU>0) { for(E=1;E

//**********************边界条件*************************** for(i=1;iDD) J0=DD; else J0=z; for(j=2;j

//************************高斯消元******************************* NJ1=NJ2-1; for(k=1;kk+DD-1)

IM=k+DD-1; else IM=NJ2; IN=k+1; for(i=IN;i

}

//*************************带回矩********************************** P[NJ2]=P[NJ2]/KZ[NJ2][1]; for(i=NJ1;i>=1;i--) { if(DD>NJ2-i+1) J0=NJ2-i+1; else J0=DD; for(j=2;j

printf("\n");

printf("JD U V\n"); for(i=1;i

// printf("%d\n",n); for(E=1;E

应力

{ DUGD(E,2); for(i=1;i

for(n=1;n

for(n=1;n

ls=(AJZ[JM[E][1]][1]+AJZ[JM[E][2]][1]+AJZ[JM[E][3]][1]+AJZ[JM[E][4]][1])/4+xrr[n]*a;

lss=(AJZ[JM[E][1]][2]+AJZ[JM[E][2]][2]+AJZ[JM[E][3]][2]+AJZ[JM[E][4]][2])/4+yrr[n]*b; for(i=1;i

jhyl[i][3]=jhyl[i][3]+SIG[E][3][n]; } } } }

for(i=1;i

void DUGD(int E,int ASK) {

double B[3+1][8+1],D[3+1][3+1],AEC; int i,j,k,m,p,q;

double xr[5]={0,-1,1,1,-1},yr[5]={0,-1,-1,1,1};

AE=4*a*b;

if(ASK>1) { for (m=1;m

sy=%-9.6f s2=%-9.6f

{ p=i/2+1; B[1][i]=b*xr[p]*(1+yr[p]*yrr[m])/AE; }

for(i=2;i

B[3][1]=B[2][2]; B[3][2]=B[1][1]; B[3][3]=B[2][4]; B[3][4]=B[1][3]; B[3][5]=B[2][6]; B[3][6]=B[1][5]; B[3][7]=B[2][8]; B[3][8]=B[1][7];

D[1][1]=E0/(1-MU*MU);

D[1][2]=E0*MU/(1-MU*MU); D[1][3]=0;

D[2][1]=D[1][2]; D[2][2]=D[1][1]; D[2][3]=0; D[3][1]=0; D[3][2]=0;

D[3][3]=E0/(2*(1+MU));

for(i=1;i

if(ASK>2) { for(i=1;i

for(j=1;j

KE[i][j]=(b*b*xr[p]*xr[q]*(1.0+(yr[p]*yr[q])/3)+((1-MU)/2)*a*a*yr[p]*yr[q]*(1+(xr[p]*xr[q])/3))*AEC; } } for(i=1;i

KE[i][j]=a*b*(MU*xr[p]*yr[q]+(1-MU)/2*yr[p]*xr[q])*AEC; } } for(i=2;i

KE[i][j]=a*b*(MU*yr[p]*xr[q]+(1-MU)/2*xr[p]*yr[q])*AEC; } } for(i=2;i

KE[i][j]=(a*a*yr[p]*yr[q]*(1+(xr[p]*xr[q])/3)+(1-MU)/2*b*b*xr[p]*xr[q]*(1+(y

r[p]*yr[q])/3))*AEC; } } } } }

四、程序结果:

JD U V 1 0.000000 0.000000 2 0.000119 -0.000028 3 0.000215 -0.000039 4 0.000312 -0.000041 5 0.000010 -0.000141 6 0.000119 -0.000140 7 0.000214 -0.000141 8 0.000311 -0.000142 9 0.000026 -0.000245 10 0.000120 -0.000247 11 0.000209 -0.000247 12 0.000302 -0.000244 13 0.000045 -0.000337 14 0.000126 -0.000340 15 0.000203 -0.000341 16 0.000284 -0.000346 17 0.000069 -0.000413 18 0.000134 -0.000416 19 0.000197 -0.000417 20 0.000260 -0.000413 21 0.000095 -0.000471 22 0.000142 -0.000474 23 0.000188 -0.000473 24 0.000235 -0.000471 25 0.000122 -0.000510 26 0.000151 -0.000513 27 0.000179 -0.000513 28 0.000208 -0.000510 29 0.000151 -0.000530 30 0.000160 -0.000533

31 0.000170 -0.000534 32 0.000180 -0.000532 33 0.000179 -0.000530 34 0.000170 -0.000533 35 0.000160 -0.000534 36 0.000150 -0.000532 37 0.000208 -0.000510 38 0.000179 -0.000513 39 0.000151 -0.000513 40 0.000122 -0.000510 41 0.000235 -0.000471 42 0.000188 -0.000474 43 0.000142 -0.000473 44 0.000095 -0.000471 45 0.000261 -0.000413 46 0.000196 -0.000416 47 0.000133 -0.000417 48 0.000070 -0.000413 49 0.000285 -0.000337 50 0.000204 -0.000340 51 0.000127 -0.000341 52 0.000046 -0.000346 53 0.000304 -0.000245 54 0.000210 -0.000247 55 0.000121 -0.000247 56 0.000028 -0.000244 57 0.000320 -0.000141 58 0.000211 -0.000140 59 0.000116 -0.000141 60 0.000019 -0.000142 61 0.000330 0.000000 62 0.000211 -0.000028 63 0.000115 -0.000039 64 0.000018 -0.000041 NJ=1

sx=448579.683456 sy=-2228452.829692 tou=-796595.793624 s1=667686.817671 s2=-2447559.963907 theta=164.620855 NJ=2

sx=-471105.115634 sy=-3323385.659933 tou=-332788.181540 s1=-432791.889164 s2=-3361698.886403 theta=173.432568 NJ=3

sx=-380008.521484 sy=-1171980.561176 tou=-389915.418341 s1=-220261.726594 s2=-1331727.356065 theta=157.721283 NJ=4

sx=-174817.042307 sy=-196368.115360 tou=-113186.429863 s1=-71894.381431 s2=-299290.776236 theta=137.719132 NJ=5

sx=2250254.946492 sy=608991.337238 tou=-940398.915924 s1=2677736.389866 s2=181509.893863 theta=155.554663 NJ=6

sx=252798.799483 sy=25086.773687 tou=-1112048.633437 s1=1256804.743538 s2=-978919.170367 theta=137.922902 NJ=7

sx=-1092918.137680 sy=-517937.687407 tou=-1162821.119077 s1=392404.957485 s2=-2003260.782572 theta=128.056475 NJ=8

sx=-853332.938708 sy=-227597.572178 tou=-337658.474657 s1=-80139.900135 s2=-1000790.610751 theta=113.591210 NJ=9

sx=2978343.620407 sy=191835.446746 tou=-246028.998973 s1=2999899.492124 s2=170279.575029 theta=174.992808

NJ=10

sx=1092941.786794 sy=-50630.492118 tou=-1205166.021063 s1=1855083.879140 s2=-812772.584463 theta=147.690906

NJ=11

sx=-1701535.284748 sy=158394.548145 tou=-1282690.328703 s1=812768.366051 s2=-2355909.102654 theta=117.028733

NJ=12

sx=-2211315.124569 sy=865.147546 tou=-584568.256203 s1=145836.734683 s2=-2356286.711706 theta=103.928218

NJ=13

sx=3579786.645542 sy=169460.350932 tou=-223054.573477 s1=3594313.790609 s2=154933.205866 theta=176.273692

NJ=14

sx=2139336.650683 sy=-395244.610328 tou=-760570.381856 s1=2350049.013383 s2=-605956.973028 theta=164.514865

NJ=15

sx=-2207968.432309 sy=-1408646.941484 tou=-842287.184148 s1=-876011.375629 s2=-2740603.998164 theta=122.307956

NJ=16

sx=-3764178.598901 sy=-1344384.227186 tou=-270068.717065 s1=-1314608.749684 s2=-3793954.076404 theta=96.291535

NJ=17

sx=4112813.455675 sy=192429.224322 tou=-138499.091119 s1=4117700.251544 s2=187542.428453 theta=177.979217

NJ=18

sx=2632386.856938 sy=-195827.868942 tou=-424335.791550 s1=2694680.692152 s2=-258121.704157 theta=171.648453

NJ=19

sx=-2542544.945691 sy=-58043.406734 tou=-406342.838121 s1=6725.898753 s2=-2607314.251178 theta=99.056515

NJ=20

sx=-4100340.167973 sy=-177169.357579 tou=45199.810486 s1=-176648.668614 s2=-4100860.856939 theta=89.339998

NJ=21

sx=4470869.900781 sy=257652.480755 tou=-86026.318615 s1=4472625.671733 s2=255896.709802 theta=178.830774

NJ=22

sx=2866138.245397 sy=23606.783978 tou=-285626.789429 s1=2894554.873043 s2=-4809.843669 theta=174.318416

NJ=23

sx=-2984293.349300 sy=12029.540853 tou=-267868.482925 s1=35788.343246 s2=-3008052.151693 theta=95.068630

NJ=24

sx=-4338251.882825 sy=-248026.023918 tou=-96570.380451 s1=-245747.263294 s2=-4340530.643449 theta=91.351751

NJ=25

sx=4691023.222574 sy=270674.389954 tou=-59406.755348 s1=4691821.468486 s2=269876.144042 theta=179.230166

NJ=26

sx=3018074.086028 sy=-18592.447447 tou=-203143.353180 s1=3031603.453741 s2=-32121.815160 theta=176.189723

NJ=27

sx=-3056553.768618 sy=4600.569223 tou=-224889.255166 s1=21033.952015 s2=-3072987.151410 theta=94.179359

NJ=28

sx=-4629326.528832 sy=-248168.150134 tou=-95492.245568 s1=-246087.777724 s2=-4631406.901242 theta=91.248035

NJ=29

sx=4808948.735861 sy=255563.234763 tou=-21764.002393 s1=4809052.759774 s2=255459.210849 theta=179.726150

NJ=30

sx=3125009.644278 sy=-112493.460083 tou=-81921.250706 s1=3127081.240687 s2=-114565.056492 theta=178.551434

NJ=31

sx=-3094676.805306 sy=-256359.995174 tou=-88188.956336 s1=-253622.528282 s2=-3097414.272197 theta=91.777943

NJ=32

sx=-4864139.635507 sy=-465021.421266 tou=-57056.914380 s1=-464281.512981 s2=-4864879.543793 theta=90.742964

NJ=33

sx=4808948.735861 sy=255563.234763 tou=21764.002393 s1=4809052.759774 s2=255459.210849 theta=0.273850

NJ=34

sx=3125009.644278 sy=-112493.460083 tou=81921.250706 s1=3127081.240687 s2=-114565.056492 theta=1.448566

NJ=35

sx=-3094676.805306 sy=-256359.995174 tou=88188.956336 s1=-253622.528282 s2=-3097414.272197 theta=88.222057

NJ=36

sx=-4864139.635507 sy=-465021.421266 tou=57056.914380 s1=-464281.512981 s2=-4864879.543793 theta=89.257036

NJ=37

sx=4691023.222574 sy=270674.389954 tou=59406.755348 s1=4691821.468486 s2=269876.144042 theta=0.769834

NJ=38

sx=3018074.086028 sy=-18592.447447 tou=203143.353180 s1=3031603.453741 s2=-32121.815160 theta=3.810277

NJ=39

sx=-3056553.768618 sy=4600.569223 tou=224889.255166 s1=21033.952015 s2=-3072987.151410 theta=85.820641

NJ=40

sx=-4629326.528832 sy=-248168.150134 tou=95492.245568 s1=-246087.777724 s2=-4631406.901242 theta=88.751965 Press any key to continuePress any key to continue

32.521.510.50-0.5

第一主应力等值图

051015

第二主应力等值图

5

1015

有限元分析课程设计

题目:

如图所示简支梁,高3米,长15米,承受图示载荷P=2000KN,Q=600KN,E=83Gpa,μ=0.167,厚度t=1米,ρ=1567kg/m3,按平面应力问题分析。用有限元方法计算该梁的变形及应力分布情况。要求用矩形单元。

二、分析过程

一 划分单元

划分单元,标出单元号,和节点号选取坐标,见图。

二 输入参数 1. 基本参数

(1) 单元数 NE=45; (2) 节点数 NJ=64; (3) 支承数 NZ=3;

(4) 节点载荷数 NPJ=4; (5) 半带宽 DD=12;

(6) 节点位移数 NJ2=128; 2. 其他参数

(1) 问题类型码LXM,平面应力问题LXM=0;

(2) 弹性常数E,μ,弹性模量E=83GP 泊松比μ=0.167; (3) 容重ρ,LOU=1567; (4) 板厚t,TE=1m; (5) 节点坐标组AJZ

(1)节点坐标数组:AJZ

AJZ[NJ+1][3]={{0,0,0},{0,0,0},{0,0,1},{0,0,2},{0,0,3},

{0,1,0},{0,1,1},{0,1,2},{0,1,3}, {0,2,0},{0,2,1},{0,2,2},{0,2,3}, {0,3,0},{0,3,1},{0,3,2},{0,3,3}, {0,4,0},{0,4,1},{0,4,2},{0,4,3},

{0,5,0},{0,5,1},{0,5,2},{0,5,3}, {0,6,0},{0,6,1},{0,6,2},{0,6,3}, {0,7,0},{0,7,1},{0,7,2},{0,7,3}, {0,8,0},{0,8,1},{0,8,2},{0,8,3}, {0,9,0},{0,9,1},{0,9,2},{0,9,3}, {0,10,0},{0,10,1},{0,10,2},{0,10,3}, {0,11,0},{0,11,1},{0,11,2},{0,11,3}, {0,12,0},{0,12,1},{0,12,2},{0,12,3}, {0,13,0},{0,13,1},{0,13,2},{0,13,3}, {0,14,0},{0,14,1},{0,14,2},{0,14,3}, {0,15,0},{0,15,1},{0,15,2},{0,15,3}};(2)节点码数组:JM

JM[NE+1][5]={{0,0,0,0,0},{0,1,5,6,2},{0,5,9,10,6},{0,9,13,14,10},{0,13,17,18,14},{0,17,21,22,18}, {0,21,25,26,22},{0,25,29,30,26},{0,29,33,34,30},{0,33,37,38,34},{0,37,41,42,38},

{0,41,45,46,42},{0,45,49,50,46},{0,49,53,54,50},{0,53,57,58,54},{0,57,61,62,58},

{0,2,6,7,3},{0,6,10,11,7},{0,10,14,15,11},{0,14,18,19,15},{0,18,22,23,19},

{0,22,26,27,23},{0,26,30,31,27},{0,30,34,35,31},{0,34,38,39,35},{0,38,42,43,39},

{0,42,46,47,43},{0,46,50,51,47},{0,50,54,55,51},{0,54,58,59,55},{0,58,62,63,59},

{0,3,7,8,4},{0,7,11,12,8},{0,11,15,16,12},{0,15,19,20,16},{0,19,23,24,20},

{0,23,27,28,24},{0,27,31,32,28},{0,31,35,36,32},{0,35,39,40,36},{0,39,43,44,40},

{0,43,47,48,44},{0,47,51,52,48},{0,51,55,56,52},{0,55,59,60,56},{0,59,63,64,60}}; 支撑数组:NZC

NZC[NZ+1]={0,1,2,122}

节点载荷数组PJ

(6) PJ[NPJ+1][2+1]={{0,0,0},{0,-600000,32},{0,-100000,64},{0,-100000,72},{0,-600000,104}}; 等效载荷图:

由上图可知:受外载荷力的节点有16、32、36、52号节点所受力的大小分别为-600000N,-100000N,-100000N和-6000N.,由节点号可知位移数依次为,16,32,36,52可得:

(7) PJ[NPJ+1][2+1]={{0,0,0},{0,-600000,32},{0,-100000,64},{0,-100000,72},{0,-600000,104}};

PJ(NPJ,2)中的元素列排列原则为:一个节点载荷存一行,同一行中第一列世界点

在和值,第二列是载荷对应的位移。 程序框图及程序

三、程序设计

#include #include

#define NE 45 #define NJ 64 #define NZ 3 #define NPJ 4 #define NJ2 128 #define DD 12

int LXM=0; double E0=[1**********]; double MU=0.167; double LOU=1567; double TE=1;

double AJZ[NJ+1][3]={{0,0,0},{0,0,0},{0,0,1},{0,0,2},{0,0,3},

{0,1,0},{0,1,1},{0,1,2},{0,1,3}, {0,2,0},{0,2,1},{0,2,2},{0,2,3}, {0,3,0},{0,3,1},{0,3,2},{0,3,3}, {0,4,0},{0,4,1},{0,4,2},{0,4,3}, {0,5,0},{0,5,1},{0,5,2},{0,5,3}, {0,6,0},{0,6,1},{0,6,2},{0,6,3}, {0,7,0},{0,7,1},{0,7,2},{0,7,3},

{0,8,0},{0,8,1},{0,8,2},{0,8,3}, {0,9,0},{0,9,1},{0,9,2},{0,9,3}, {0,10,0},{0,10,1},{0,10,2},{0,10,3}, {0,11,0},{0,11,1},{0,11,2},{0,11,3}, {0,12,0},{0,12,1},{0,12,2},{0,12,3}, {0,13,0},{0,13,1},{0,13,2},{0,13,3}, {0,14,0},{0,14,1},{0,14,2},{0,14,3}, {0,15,0},{0,15,1},{0,15,2},{0,15,3}}; int

JM[NE+1][5]={{0,0,0,0,0},{0,1,5,6,2},{0,5,9,10,6},{0,9,13,14,10},{0,13,17,18,14},{0,17,21,22,18},

{0,21,25,26,22},{0,25,29,30,26},{0,29,33,34,30},{0,33,37,38,34},{0,37,41,42,38},

{0,41,45,46,42},{0,45,49,50,46},{0,49,53,54,50},{0,53,57,58,54},{0,57,61,62,58},

{0,2,6,7,3},{0,6,10,11,7},{0,10,14,15,11},{0,14,18,19,15},{0,18,22,23,19},

{0,22,26,27,23},{0,26,30,31,27},{0,30,34,35,31},{0,34,38,39,35},{0,38,42,43,39},

{0,42,46,47,43},{0,46,50,51,47},{0,50,54,55,51},{0,54,58,59,55},{0,58,62,63,59},

{0,3,7,8,4},{0,7,11,12,8},{0,11,15,16,12},{0,15,19,20,16},{0,19,23,24,20},

{0,23,27,28,24},{0,27,31,32,28},{0,31,35,36,32},{0,35,39,40,36},{0,39,43,44,40},

{0,43,47,48,44},{0,47,51,52,48},{0,51,55,56,52},{0,55,59,60,56},{0,59,63,64,60}}; int NZC[NZ+1]={0,1,2,122}; double

PJ[NPJ+1][2+1]={{0,0,0},{0,-600000,32},{0,-100000,64},{0,-100000,72},{0,-600000,104}};

double

AE,KZ[NJ2+1][DD+1],P[NJ2+1],S[3+1][8+1],KE[8+1][8+1],SA[7+1][3+1][8+1],a=0.5,b=0.25,jhyl[NJ][3+1]; int v=4;

double xrr[4+1]={0,-1,1,1,-1},yrr[4+1]={0,-1,-1,1,1};

void DUGD(int,int);

void main() {

int NJ1,k,IN,IM,jn,m,n,i,j,z,J0,ii,jj,h,dh,E,l,zl,dl;

double WY[6+1],YL[3+1]; if(LXM!=0) { E0=E0/(1.0-MU*MU); MU=MU/(1.0-MU); }

for(i=0;i

for(E=1;E0) { KZ[dh][dl]=KZ[dh][dl]+KE[h][l]; } } } } } }

//**********************生成p*************************** for(i=1;i0) {

{ j=(int)PJ[i][2]; P[j]=PJ[i][1]; } }

if(LOU>0) { for(E=1;E

//**********************边界条件*************************** for(i=1;iDD) J0=DD; else J0=z; for(j=2;j

//************************高斯消元******************************* NJ1=NJ2-1; for(k=1;kk+DD-1)

IM=k+DD-1; else IM=NJ2; IN=k+1; for(i=IN;i

}

//*************************带回矩********************************** P[NJ2]=P[NJ2]/KZ[NJ2][1]; for(i=NJ1;i>=1;i--) { if(DD>NJ2-i+1) J0=NJ2-i+1; else J0=DD; for(j=2;j

printf("\n");

printf("JD U V\n"); for(i=1;i

// printf("%d\n",n); for(E=1;E

应力

{ DUGD(E,2); for(i=1;i

for(n=1;n

for(n=1;n

ls=(AJZ[JM[E][1]][1]+AJZ[JM[E][2]][1]+AJZ[JM[E][3]][1]+AJZ[JM[E][4]][1])/4+xrr[n]*a;

lss=(AJZ[JM[E][1]][2]+AJZ[JM[E][2]][2]+AJZ[JM[E][3]][2]+AJZ[JM[E][4]][2])/4+yrr[n]*b; for(i=1;i

jhyl[i][3]=jhyl[i][3]+SIG[E][3][n]; } } } }

for(i=1;i

void DUGD(int E,int ASK) {

double B[3+1][8+1],D[3+1][3+1],AEC; int i,j,k,m,p,q;

double xr[5]={0,-1,1,1,-1},yr[5]={0,-1,-1,1,1};

AE=4*a*b;

if(ASK>1) { for (m=1;m

sy=%-9.6f s2=%-9.6f

{ p=i/2+1; B[1][i]=b*xr[p]*(1+yr[p]*yrr[m])/AE; }

for(i=2;i

B[3][1]=B[2][2]; B[3][2]=B[1][1]; B[3][3]=B[2][4]; B[3][4]=B[1][3]; B[3][5]=B[2][6]; B[3][6]=B[1][5]; B[3][7]=B[2][8]; B[3][8]=B[1][7];

D[1][1]=E0/(1-MU*MU);

D[1][2]=E0*MU/(1-MU*MU); D[1][3]=0;

D[2][1]=D[1][2]; D[2][2]=D[1][1]; D[2][3]=0; D[3][1]=0; D[3][2]=0;

D[3][3]=E0/(2*(1+MU));

for(i=1;i

if(ASK>2) { for(i=1;i

for(j=1;j

KE[i][j]=(b*b*xr[p]*xr[q]*(1.0+(yr[p]*yr[q])/3)+((1-MU)/2)*a*a*yr[p]*yr[q]*(1+(xr[p]*xr[q])/3))*AEC; } } for(i=1;i

KE[i][j]=a*b*(MU*xr[p]*yr[q]+(1-MU)/2*yr[p]*xr[q])*AEC; } } for(i=2;i

KE[i][j]=a*b*(MU*yr[p]*xr[q]+(1-MU)/2*xr[p]*yr[q])*AEC; } } for(i=2;i

KE[i][j]=(a*a*yr[p]*yr[q]*(1+(xr[p]*xr[q])/3)+(1-MU)/2*b*b*xr[p]*xr[q]*(1+(y

r[p]*yr[q])/3))*AEC; } } } } }

四、程序结果:

JD U V 1 0.000000 0.000000 2 0.000119 -0.000028 3 0.000215 -0.000039 4 0.000312 -0.000041 5 0.000010 -0.000141 6 0.000119 -0.000140 7 0.000214 -0.000141 8 0.000311 -0.000142 9 0.000026 -0.000245 10 0.000120 -0.000247 11 0.000209 -0.000247 12 0.000302 -0.000244 13 0.000045 -0.000337 14 0.000126 -0.000340 15 0.000203 -0.000341 16 0.000284 -0.000346 17 0.000069 -0.000413 18 0.000134 -0.000416 19 0.000197 -0.000417 20 0.000260 -0.000413 21 0.000095 -0.000471 22 0.000142 -0.000474 23 0.000188 -0.000473 24 0.000235 -0.000471 25 0.000122 -0.000510 26 0.000151 -0.000513 27 0.000179 -0.000513 28 0.000208 -0.000510 29 0.000151 -0.000530 30 0.000160 -0.000533

31 0.000170 -0.000534 32 0.000180 -0.000532 33 0.000179 -0.000530 34 0.000170 -0.000533 35 0.000160 -0.000534 36 0.000150 -0.000532 37 0.000208 -0.000510 38 0.000179 -0.000513 39 0.000151 -0.000513 40 0.000122 -0.000510 41 0.000235 -0.000471 42 0.000188 -0.000474 43 0.000142 -0.000473 44 0.000095 -0.000471 45 0.000261 -0.000413 46 0.000196 -0.000416 47 0.000133 -0.000417 48 0.000070 -0.000413 49 0.000285 -0.000337 50 0.000204 -0.000340 51 0.000127 -0.000341 52 0.000046 -0.000346 53 0.000304 -0.000245 54 0.000210 -0.000247 55 0.000121 -0.000247 56 0.000028 -0.000244 57 0.000320 -0.000141 58 0.000211 -0.000140 59 0.000116 -0.000141 60 0.000019 -0.000142 61 0.000330 0.000000 62 0.000211 -0.000028 63 0.000115 -0.000039 64 0.000018 -0.000041 NJ=1

sx=448579.683456 sy=-2228452.829692 tou=-796595.793624 s1=667686.817671 s2=-2447559.963907 theta=164.620855 NJ=2

sx=-471105.115634 sy=-3323385.659933 tou=-332788.181540 s1=-432791.889164 s2=-3361698.886403 theta=173.432568 NJ=3

sx=-380008.521484 sy=-1171980.561176 tou=-389915.418341 s1=-220261.726594 s2=-1331727.356065 theta=157.721283 NJ=4

sx=-174817.042307 sy=-196368.115360 tou=-113186.429863 s1=-71894.381431 s2=-299290.776236 theta=137.719132 NJ=5

sx=2250254.946492 sy=608991.337238 tou=-940398.915924 s1=2677736.389866 s2=181509.893863 theta=155.554663 NJ=6

sx=252798.799483 sy=25086.773687 tou=-1112048.633437 s1=1256804.743538 s2=-978919.170367 theta=137.922902 NJ=7

sx=-1092918.137680 sy=-517937.687407 tou=-1162821.119077 s1=392404.957485 s2=-2003260.782572 theta=128.056475 NJ=8

sx=-853332.938708 sy=-227597.572178 tou=-337658.474657 s1=-80139.900135 s2=-1000790.610751 theta=113.591210 NJ=9

sx=2978343.620407 sy=191835.446746 tou=-246028.998973 s1=2999899.492124 s2=170279.575029 theta=174.992808

NJ=10

sx=1092941.786794 sy=-50630.492118 tou=-1205166.021063 s1=1855083.879140 s2=-812772.584463 theta=147.690906

NJ=11

sx=-1701535.284748 sy=158394.548145 tou=-1282690.328703 s1=812768.366051 s2=-2355909.102654 theta=117.028733

NJ=12

sx=-2211315.124569 sy=865.147546 tou=-584568.256203 s1=145836.734683 s2=-2356286.711706 theta=103.928218

NJ=13

sx=3579786.645542 sy=169460.350932 tou=-223054.573477 s1=3594313.790609 s2=154933.205866 theta=176.273692

NJ=14

sx=2139336.650683 sy=-395244.610328 tou=-760570.381856 s1=2350049.013383 s2=-605956.973028 theta=164.514865

NJ=15

sx=-2207968.432309 sy=-1408646.941484 tou=-842287.184148 s1=-876011.375629 s2=-2740603.998164 theta=122.307956

NJ=16

sx=-3764178.598901 sy=-1344384.227186 tou=-270068.717065 s1=-1314608.749684 s2=-3793954.076404 theta=96.291535

NJ=17

sx=4112813.455675 sy=192429.224322 tou=-138499.091119 s1=4117700.251544 s2=187542.428453 theta=177.979217

NJ=18

sx=2632386.856938 sy=-195827.868942 tou=-424335.791550 s1=2694680.692152 s2=-258121.704157 theta=171.648453

NJ=19

sx=-2542544.945691 sy=-58043.406734 tou=-406342.838121 s1=6725.898753 s2=-2607314.251178 theta=99.056515

NJ=20

sx=-4100340.167973 sy=-177169.357579 tou=45199.810486 s1=-176648.668614 s2=-4100860.856939 theta=89.339998

NJ=21

sx=4470869.900781 sy=257652.480755 tou=-86026.318615 s1=4472625.671733 s2=255896.709802 theta=178.830774

NJ=22

sx=2866138.245397 sy=23606.783978 tou=-285626.789429 s1=2894554.873043 s2=-4809.843669 theta=174.318416

NJ=23

sx=-2984293.349300 sy=12029.540853 tou=-267868.482925 s1=35788.343246 s2=-3008052.151693 theta=95.068630

NJ=24

sx=-4338251.882825 sy=-248026.023918 tou=-96570.380451 s1=-245747.263294 s2=-4340530.643449 theta=91.351751

NJ=25

sx=4691023.222574 sy=270674.389954 tou=-59406.755348 s1=4691821.468486 s2=269876.144042 theta=179.230166

NJ=26

sx=3018074.086028 sy=-18592.447447 tou=-203143.353180 s1=3031603.453741 s2=-32121.815160 theta=176.189723

NJ=27

sx=-3056553.768618 sy=4600.569223 tou=-224889.255166 s1=21033.952015 s2=-3072987.151410 theta=94.179359

NJ=28

sx=-4629326.528832 sy=-248168.150134 tou=-95492.245568 s1=-246087.777724 s2=-4631406.901242 theta=91.248035

NJ=29

sx=4808948.735861 sy=255563.234763 tou=-21764.002393 s1=4809052.759774 s2=255459.210849 theta=179.726150

NJ=30

sx=3125009.644278 sy=-112493.460083 tou=-81921.250706 s1=3127081.240687 s2=-114565.056492 theta=178.551434

NJ=31

sx=-3094676.805306 sy=-256359.995174 tou=-88188.956336 s1=-253622.528282 s2=-3097414.272197 theta=91.777943

NJ=32

sx=-4864139.635507 sy=-465021.421266 tou=-57056.914380 s1=-464281.512981 s2=-4864879.543793 theta=90.742964

NJ=33

sx=4808948.735861 sy=255563.234763 tou=21764.002393 s1=4809052.759774 s2=255459.210849 theta=0.273850

NJ=34

sx=3125009.644278 sy=-112493.460083 tou=81921.250706 s1=3127081.240687 s2=-114565.056492 theta=1.448566

NJ=35

sx=-3094676.805306 sy=-256359.995174 tou=88188.956336 s1=-253622.528282 s2=-3097414.272197 theta=88.222057

NJ=36

sx=-4864139.635507 sy=-465021.421266 tou=57056.914380 s1=-464281.512981 s2=-4864879.543793 theta=89.257036

NJ=37

sx=4691023.222574 sy=270674.389954 tou=59406.755348 s1=4691821.468486 s2=269876.144042 theta=0.769834

NJ=38

sx=3018074.086028 sy=-18592.447447 tou=203143.353180 s1=3031603.453741 s2=-32121.815160 theta=3.810277

NJ=39

sx=-3056553.768618 sy=4600.569223 tou=224889.255166 s1=21033.952015 s2=-3072987.151410 theta=85.820641

NJ=40

sx=-4629326.528832 sy=-248168.150134 tou=95492.245568 s1=-246087.777724 s2=-4631406.901242 theta=88.751965 Press any key to continuePress any key to continue

32.521.510.50-0.5

第一主应力等值图

051015

第二主应力等值图

5

1015


相关文章

  • 内燃机设计课程设计-
  • <内燃机设计课程设计- 发动机运动学与动力学仿真分析>教学大纲 课程编号:048130 时间安排:3周 适用专业:热能与动力(本科) 一.课程设计的目的及要求 课程设计是使学生全面.系统掌握和深化内燃机设计课程的基本步骤和方法的 ...查看


  • 有限元分析技术课程论文
  • 深圳大学研究生课程论文 题目 利用有限元分析软件进行结构设计强度验证 成绩 专业 机械工程 课程名称.代码 有限元分析技术 年级 2013 姓名 曹曾伟 学号 [1**********] 时间 2013 年 12 月 利用有限元分析软件进行 ...查看


  • 专业介绍园艺与园林系
  • 专业介绍 园艺与园林系 苏州农业职业技术学院园艺与园林系前身是江苏省苏州农业学校园艺学科,开设园艺专业始于1912年,是我国开设该专业最早的学校之一,曾为国家培养了数以千计的园艺专业人才和以一代宗师章守玉为代表的几代园艺学家,为园艺教学.科 ...查看


  • 会计电算化课程设计
  • 课程设计说明书 题目: 东莞精智美玩具有限公司工资管理系统设计 学生姓名: 学 号: 院 (系): 专 业: 指导教师: 2012年6月30号 目 录 一 序言........................................ ...查看


  • 国际货运代理实务课程建设总结
  • 2010年苏州经贸职业技术学院立项建设精品课程 国际货运代理实务 课程建设总结报告 课程主持人: 杨浩军 课程建设团队:丁红英 杨思东 丁国剑 姚 乐 课程建设合作企业:苏州通达锦航国际货运代理有限公司 苏州新港国际物流有限公司 苏州锦达国 ...查看


  • 工程结构仿真课程设计
  • 课程设计说明书 工程结构仿真课程设计 学院(部): 专业班级: 学生姓名: 指导教师: 2014年 01月 03 日 安 徽 理 工 大 学 课程设计指导教师评语 1.专业班级: 2.姓名: 3.完成日期: 4.设计题目: 5.指导教师评语 ...查看


  • 软件技术专业专业建设方案
  • 软件技术专业建设方案 一.建设背景....................................................................................................... ...查看


  • 火工品设计
  • 课程设计指导书 课程名称: 火工品设计 专 业: 特种能源技术与工程 班 级: 116021 指导教师姓名: 能源与水利学院 目 录 前 言 ................................................. ...查看


  • 企业大学建设
  • 2015-2020年中国企业大学建设开发前景及投资规划研究报告 Report Description报告描述 本研究报告由华经视点公司领衔撰写.报告以行业为研究对象,基于行业的现状,行业运行数据,行业供需,行业竞争格局,重点企业经营分析,行 ...查看


  • 机械制造工程学课程内容选择研究
  • 摘要 从机械类学生培养目标及该课程在培养计划中的地位出发,结合从事该课程教学20余年的工作经验,系统分析该课程的内容特点,对该课程的传统内容进行大量删减,同时增加部分内容,最后提出关于该课程的一个教学计划. 关键词 机械制造:工程学:教学计 ...查看


热门内容