函数图象的教学反思

《函数图象》的教学反思

广厚中心学校 石立军

本节内容的知识目标是探索具体问题中的数量关系和变化规律,运用函数的图象的知识进行描述和解决;能力目标是能选择、处理数学信息,并做出合理的推断或大胆的猜测,能结合具体情境发现并提出数学问题;尝试从不同角度寻求解决问题的方法,并能有效解决问题;能初步具有数形结合、分段函数的数学思想;学会与人合作,并能与他人交流思维的过程和结果。情感目标是乐于接受生活中的数学信息,积极参与对数学问题的讨论,敢于发表自己的观点,能从交流中获益。

本节的教学重点是通过创设探索情境,体现数学与现实生活的联系,进一步培养学生从函数的角度解决问题。考虑到函数教学较难进行之处在于学生第一次接触函数相关内容,其抽象性不易理解与掌握,所以采取的教学策略是从学生感兴趣的欣赏图片引出探讨对象,容易引起学生兴趣,从而进入探索过程。课堂组织形式采用引导探究模式,充分调动学生积极性,

引导学生作出其图像。但是分段函数毕竟对学生提出了较高层次的要求,学生做函数图像比较困难, 函数关系式的得出相对来说困难不大,因为在本章的开头已经多次遇到过类似的问题情景,函数图像可由教师直接给出:作出图象如下: 分析图象:1、横纵轴分别

代表的含义; 2、起点; 3、交点:;4、转折点; 5、图象上各点坐标的实际意义。

作为对分段函数的初步认识,对图象中的各个“点”分析透彻有助于对图形的理解。在函数解析式及图像得出的情况下,展开如下讨论:

1、“两车相遇”在图象上如何表示? 2、如何在图象上看出函数值的大小?

通过对问题一较为仔细和深入的探讨,学生对函数的解析式及图像有了更深层次的理解。这个问题一的设置与教学,基本上适合学生的认知情况,但难度较大,其探讨比较适合层次比较高的学生,或者教学可设置为课前学生预习,尝试作图象,这样在课堂教学时可降低难度几学生思考的时间。

解题点拨:,我们并不知道x 和 y是什么函数关系。将这些数值所对应的点在坐标系中作出,我们发现,这些点大致位于一条直线上,可知 x 和 y 近似地符合一次函数关系。我们可以用一条直线去尽可能地与这些点相贴近,求出近似的函数关系式。解答:利用几何画板过其中两点作直线。可以看到,其他点也在这条直线上。求出这条直线所表达的解析式,则我们得到了反映x 和y 的函数关系式。

在解决本题的最后,引导学生做了一个反思:在实践中得到一些变量的对应值,有时很难精确地判断它们是什么函数,需要我们根据经验分析,作图进行观察和计算,从而确定接近的函数关系式来研究这些

实际问题。在解这种与函数有关的题后,有一点很重要就是及时进行回顾与反思,这样将有助于学生函数思想的升华。

函数另一重要之处在于对函数图像的理解与应用,所以在问题二之后安排了阅读图像回答问题的问题三。【变式二】阅读函数图象,并根据你获得的信息回答问题:(1) 折线OAB 表示某个实际问题的函数图象,请你编写一道符合该图象意义的应用题;(2) 根据你给出的应用题分别指出x 轴、y 轴所表示的意义,并写出A 、B 两点的坐标;

对于函数图像的理解与应用,是本章内容的重点与难点。从图像获取信息也是学习函数之后学生应该具有的能力与技巧。探究思路:

1、从图象获取直观认识,由折线特征结合生活实际构造应用背景;2、注意折线特点,OA 、OB 段“坡度”的差异;3、起点、终点的含义,在应用背景中的体现;4、转折点对应用背景的影响;5、注意所编应用题的合理性。此题为开放题型,引导学生根据以往学习经验进行创造性学习,教会学生如何识图,用图,将图象反应于文字。

最后对本堂课内容作一个课堂小结:1、函数可以用来解决很多生活的实际问题;2、如何理解分段函数及其图象;3、观察图象,从图象获取信息;4、创造性自编题如何体现函数思想。

函数教学历来是初中数学教学的一个重点和难点,如何突破,本节课作了一个尝试。所选用的三个问题均是精心挑选和设计的学生较易接受的题目背景,这样在教学中学生容易产生亲切感,有利于教学

活动的开展。但是对于比较难的题型或知识,应该事先布置给学生作预习,这样将有助于课堂教学和学生更深层次的理解。

《函数图象》的教学反思

广厚中心学校 石立军

本节内容的知识目标是探索具体问题中的数量关系和变化规律,运用函数的图象的知识进行描述和解决;能力目标是能选择、处理数学信息,并做出合理的推断或大胆的猜测,能结合具体情境发现并提出数学问题;尝试从不同角度寻求解决问题的方法,并能有效解决问题;能初步具有数形结合、分段函数的数学思想;学会与人合作,并能与他人交流思维的过程和结果。情感目标是乐于接受生活中的数学信息,积极参与对数学问题的讨论,敢于发表自己的观点,能从交流中获益。

本节的教学重点是通过创设探索情境,体现数学与现实生活的联系,进一步培养学生从函数的角度解决问题。考虑到函数教学较难进行之处在于学生第一次接触函数相关内容,其抽象性不易理解与掌握,所以采取的教学策略是从学生感兴趣的欣赏图片引出探讨对象,容易引起学生兴趣,从而进入探索过程。课堂组织形式采用引导探究模式,充分调动学生积极性,

引导学生作出其图像。但是分段函数毕竟对学生提出了较高层次的要求,学生做函数图像比较困难, 函数关系式的得出相对来说困难不大,因为在本章的开头已经多次遇到过类似的问题情景,函数图像可由教师直接给出:作出图象如下: 分析图象:1、横纵轴分别

代表的含义; 2、起点; 3、交点:;4、转折点; 5、图象上各点坐标的实际意义。

作为对分段函数的初步认识,对图象中的各个“点”分析透彻有助于对图形的理解。在函数解析式及图像得出的情况下,展开如下讨论:

1、“两车相遇”在图象上如何表示? 2、如何在图象上看出函数值的大小?

通过对问题一较为仔细和深入的探讨,学生对函数的解析式及图像有了更深层次的理解。这个问题一的设置与教学,基本上适合学生的认知情况,但难度较大,其探讨比较适合层次比较高的学生,或者教学可设置为课前学生预习,尝试作图象,这样在课堂教学时可降低难度几学生思考的时间。

解题点拨:,我们并不知道x 和 y是什么函数关系。将这些数值所对应的点在坐标系中作出,我们发现,这些点大致位于一条直线上,可知 x 和 y 近似地符合一次函数关系。我们可以用一条直线去尽可能地与这些点相贴近,求出近似的函数关系式。解答:利用几何画板过其中两点作直线。可以看到,其他点也在这条直线上。求出这条直线所表达的解析式,则我们得到了反映x 和y 的函数关系式。

在解决本题的最后,引导学生做了一个反思:在实践中得到一些变量的对应值,有时很难精确地判断它们是什么函数,需要我们根据经验分析,作图进行观察和计算,从而确定接近的函数关系式来研究这些

实际问题。在解这种与函数有关的题后,有一点很重要就是及时进行回顾与反思,这样将有助于学生函数思想的升华。

函数另一重要之处在于对函数图像的理解与应用,所以在问题二之后安排了阅读图像回答问题的问题三。【变式二】阅读函数图象,并根据你获得的信息回答问题:(1) 折线OAB 表示某个实际问题的函数图象,请你编写一道符合该图象意义的应用题;(2) 根据你给出的应用题分别指出x 轴、y 轴所表示的意义,并写出A 、B 两点的坐标;

对于函数图像的理解与应用,是本章内容的重点与难点。从图像获取信息也是学习函数之后学生应该具有的能力与技巧。探究思路:

1、从图象获取直观认识,由折线特征结合生活实际构造应用背景;2、注意折线特点,OA 、OB 段“坡度”的差异;3、起点、终点的含义,在应用背景中的体现;4、转折点对应用背景的影响;5、注意所编应用题的合理性。此题为开放题型,引导学生根据以往学习经验进行创造性学习,教会学生如何识图,用图,将图象反应于文字。

最后对本堂课内容作一个课堂小结:1、函数可以用来解决很多生活的实际问题;2、如何理解分段函数及其图象;3、观察图象,从图象获取信息;4、创造性自编题如何体现函数思想。

函数教学历来是初中数学教学的一个重点和难点,如何突破,本节课作了一个尝试。所选用的三个问题均是精心挑选和设计的学生较易接受的题目背景,这样在教学中学生容易产生亲切感,有利于教学

活动的开展。但是对于比较难的题型或知识,应该事先布置给学生作预习,这样将有助于课堂教学和学生更深层次的理解。


相关文章

  • 反比例函数图象与性质教学设计与反思
  • 反比例函数图象与性质教学设计 姓名 齐福德 学科 数学 年级 八年级 一.教学目标 1.通过对实际问题的研究,发现反比例函数与现实世界的联系,能根据问题条件,确定反比例函数的概念,掌握反比例函数的解析式. 2.通过小组分工合作,在画具体函数 ...查看


  • 函数的单调性教学反思
  • <函数的单调性>教学反思 在研究函数的性质时,函数的单调性是一个重要的内容,实际上,在初中学习函数时,已经重点研究了一些函数的性质,只是当初时研究较为粗略,未明确给出有关增减性的定义.对于函数增减性的判断也主要根据观察图象得出, ...查看


  • "方程的根与函数的零点"教学反思
  • "方程的根与函数的零点"教学反思 方程的根与函数的零点是高中课程标准新增的内容,表面上看,这一内容的教学并不困难,但要让学生能够真正理解,教学还需要妥善处理其中的一些问题. (一)教材设置函数的零点这一内容的目的,就是为 ...查看


  • 幂函数教学反思
  • 数学必修1第二章<基本初等函数>之 <3.3幂函数> 教学反思 幂函数作为一类重要的函数模型,是学生在系统学习了指数函数.对数函数之后研究的又一类基本初等函数.学生已经有了学习指数函数和对数函数的图象和性质的学习经历 ...查看


  • 指数函数的图象及其性质
  • 指数函数的图象及其性质 教学内容分析 本节课是<普通高中课程标准实验教科书·数学(1)>(人教A 版)第二章第一节第二课(2.1.2)<指数函数及其性质>.根据我所任教的学生的实际情况,我将<指数函数及其性质& ...查看


  • 幂函数的教学设计
  • 幂函数的教学设计 刘 飚 (江苏省张家港市暨阳高级中学 215600) 新课标指出高中数学课程应该返璞归真, 努力揭示数学概念.法则.结论的发展过程和本质. 通过典型例子的分析和学生自主探索活动, 使学生理解数学概念.结论逐步形成的过程, ...查看


  • 翻转课堂--一次微课教学的实践和反思
  • 翻转课堂 --一次微课教学的实践和反思 安慧娇 浙江杭州市塘栖中学 311106 中 £ 摘要:"本文通过对微课的了解,阐述了微课教学的优势.以<函数概念>为载 体,讲述了这节微课的制作, 并对微课的制作进行了反思:设 ...查看


  • 2.2.2对数函数及其性质(1)教学反思
  • <2.2.2对数函数及其性质(1)>教学反思 这节课讲的课题是"对数函数及其性质(1)"."对数函数及其性质"是人教版A 版数学必修一的内容,有人说"课堂教学是学术研究的实践活动 ...查看


  • 初中数学教学案例与反思
  • 初中数学教学案例与反思 一.教学目标: 1.知道一次函数与正比例函数的定义. 2.理解掌握一次函数的图象的特征和相关的性质:体会数形结合思想. 3.弄清一次函数与正比例函数的区别与联系. 4.掌握直线的平移法则简单应用. 5.能应用本章的基 ...查看


热门内容