电锅炉水蓄热技术的应用实例

暖通空调HV&AC2008年第赘卷第6期工程实仞

・87・

电锅炉水蓄热技术的应用实例

现代建筑设计集团上海建筑设计研究院有限公司张伟程☆

摘要介绍了电锅炉水蓄热技术的特点,着重介绍了实例工程的电锅炉水蓄热系统的概况、流程以及各种运行模式下的控制方法。

关键词

电锅炉水蓄热运行模式控制

ApPlicationexample

ofwater

By

them帕l

storagebyelectricalboiler

Zhang

Welcheng★

AbstractPresentsthecharacteristicsofwater

thermalstoragebytheelectricalboiler,andemphatically

control

fDelkqlreS

presentsthegeneralsituation.flow

principlesandthermal

foreachoperationmodeofitin

all

exampleproject.

Keywords

electrical

boiler,water

storage,operation

mode,control

★sha啪i

Institute

dArchitecturalDesign&Research

Co.,Ltd.,Shar咖i,China

电锅炉水蓄热系统是指在电力低谷期间,以承

张戆

主要设计业绩

卜I:海光激丁=程卜无锡市医疗巾心

>瑞金拨院fJ诊跃技援'}.海嘲际汽车城犬厦’陆家嘴开发大厦

为介质将电锅炉产生的热量储存在蓄热装置中,适

时供应给用热设备的系统[1]。这样在用电高峰时段就可以不开或者少开电锅炉,从而减少高峰时段

用电量,起到移峰填谷的作用。电锅炉水蓄热系统从构成上来说只是在常规电热锅炉系统的基础上

增加了一套水蓄热装置,其他各部分在结构上与常

规热源系统并无不同,它在使用范围方面也与常规

电锅炉水蓄热技术介绍

集中空调的冬季供暖部分,根据热源的类型,

供热系统基本一致。通常水蓄热装置有常温(常

压、温度低于100℃)和高温(高压、温度高于100

可以分为空气(或水)源热泵、燃油,燃煤气(或天然

气)、燃煤、用电等几大类。

从用户的角度看,使用电作为热源不需要排废

℃)两种,蓄热量有全量和分量两种模式,蓄热系统

有串联和并联两种流程。

电锅炉水蓄热系统具有以下几个显著优点:

水、废气、废渣,也无明火,不需设置堆煤或储油场地,为最清洁能源,不存在消防、环保等特殊要求,且用电设备可以做到完全自动控制,减少人为操作

带来的浪费及管理难度。

1)适合在无集中供热与燃气源,而电力充足,供电政策支持和电价优惠的地区使用。

2)采用电能,不存在排放废水、废气、废渣之忧,无燃烧过程,安全、可靠性高。

3)由于水蓄热系统是按白天全量负荷在夜间蓄热时段的平均值来确定电锅炉装机容量的,而电

对于以电能作为空调供暖热源的系统,在《公共建筑节能设计标准》(GB50189--2005)中有明

确的规定:“除非夜问可利用低谷电进行蓄热、且蓄热式电锅炉不在日问用电高峰和平时段时间启用

的建筑,不得采用电热锅炉、电热水器作为直接采

暖和空气调节系统的热源。”故在实际应用时,不得采用电锅炉直供的形式,一般采用电锅炉水蓄热系统,且以全量蓄热为好。

☆张伟程,男,1969年12月生,大学,ⅢT学学十,丰任工程师

200041上海市石fI--路258号上海建筑设计研究院有限公

(021)52524567—51825

E-mail:zhangwc@siadr.corn.cn收稿日期:2008—04—01

修回口期:2008-05-05

・88・

工程实例暖通空调HV&AC2008年第鲳卷第6期

锅炉直供系统则是按白天的峰值负荷来确定的。所以相对于电锅炉直供系统,水蓄热系统减少了电锅炉装机容量,其附属运转设备和电力设施的装机容量也相应减少,从而减少了初投资费用。

4)可根据空调负荷的变化更及时、灵活、精确

地供应储存的热量。

5)利用峰谷电价差,可以明显减少运行费用。

有利于平衡用电负荷,缓解供电矛盾[2]。

6)当停电时,用小功率应急发电机带动循环水泵即可继续提供热量,提高了供暖系统的可靠

性。

2工程概况

陆家嘴时代金融广场(B3—5地块)冬季空调

供暖设计计算热负荷峰值为5

044

kw:1~6层(裙房)973kW,8~20层(低区)1

331

kW,22--..34

层(中区)1

331

kW,36一--46层(高区)1

409

kW。

考虑到当时的市政能源条件(无集中供热与燃气源,电力充足,供电政策支持和电价优惠)和初投资与运行费用的效益比以及机房安全条件,该工程采用常压型电热水锅炉生产的蓄热水作为空调供暖热源,采用常温全量(不考虑不可预见系数)蓄热模式、并联流程,并根据楼层分布情况分设4套系统,机房分别布置于7层、21层、35层、屋顶设备层。每套系统均设有2台675kW的电锅炉、1个有效容积为200m3的蓄热水箱,其设计蓄热水温为45~90℃,蓄热量为10

465

kWh;考虑10%的裕

量,联合供热(板式换热器)的总供热能力为1

600

kW;板式换热器一次侧的设计进、出水温度为55

℃/45℃、二次侧(空调末端设备)的设计供、回水温度为50℃/40℃。该水蓄热系统夏季可兼作蓄

冷用,其蓄热水箱转变为蓄冷水箱,主要用于新风空调箱的供冷。

系统有冬季电锅炉单蓄热、电锅炉单供热、蓄热水箱单供热、电锅炉与蓄热水箱联合供热(蓄热

水箱优先)、电锅炉边蓄热边供热以及夏季制冷机蓄冷、蓄冷水箱放冷共7种运行模式,其原理见图1。3运行控制

3.1系统运行模式控制

对于系统不同的运行模式应有不同的运行策略和控制方式,详见表1。3.2系统运行模式转换

图1系统运行原理图

晚上低谷电时段,采用何种模式运行需视大楼的负荷情况而定。一般情况下夜间大楼没有负荷,采用电锅炉单蓄热模式;如夜间出现了负荷(临时

有单位加班或其他事情,可以向物业公司申请空调供暖),则采用电锅炉边蓄热边供热模式。当然,对

夜间负荷应有所控制,否则过量的夜间负荷会影响系统蓄热量,可能造成第二天电锅炉的过量运行而增加运行费用,增加的费用应由夜间负荷用户承担。

白天空调供暖时,为了保证采用蓄热水箱优先的联合供热模式,采用蓄热水箱等速放热方式,保

证蓄热水箱均匀放出热量,同时确保在工作时间段

将水箱热量用尽。在计算水箱的等速放热量时,需考虑电锅炉的避峰电时段运行,此时段蓄热水箱应全量供热(即蓄热水箱单供热模式),从而尽量减少电锅炉的运行费用。在联合供热的时候,根据水箱进出口温度和流量计算出水箱的放热量Q。(水箱等速放热的热量),同时根据板式换热器一次侧的进、出口温度和流量计算出空调末端需要的供热量Q2,当Q2接近Q。,两者差值持续(约2min,具体持续时间调试时可根据实际情况调整设定)小于设定值时,则系统切换到蓄热水箱单供热模式。在蓄热水箱以单供热模式运行时,当板式换热器二次侧的出水温度(50℃)受水箱循环泵变频控制而持续(约2min,具体持续时问调试时可根据实际情况调整设定)下降,则系统重新切换到电锅炉和蓄热水箱联合供热模式。当水箱出口温度低于55℃(此时理论上水箱的进口温度低于45℃)时,表

暖通空调HV&AC2008年第镐卷第6期工程实例

・89・

明水箱热量已用尽,放热结束,系统转化到电锅炉3.3蓄热水箱预热模式

单供热模式。

在系统投入上班时段运行前需启动蓄热水箱

一般情况下白天空调供暖采用蓄热水箱单供单供热模式对整个大楼进行预热,以抵消大楼内前热或联合供热模式,但当水箱前一天晚上因其他原一夜的蓄冷量,从而保证上班前室内温度达到所需

因没有蓄热或蓄热水箱热量用尽时,系统采用电锅温度。在预热时应关闭空调新、排风系统以避免热炉单供热模式。

量的损耗,在上班时段再启用空调新、排风系统。

・90・

工程实例暖通空调HV&AC2008年第38卷第6期

对于电锅炉与蓄热水箱联合供热(蓄热水箱优热温水混合、死水空间和储存效率等问题,该工程

先)模式,在依据总蓄热量计算水箱的等速放热量

采用了并联流程,其箱体内水量按多次混水流、小时应扣除预热所需的耗热量。温差计算。虽然这种做法增加了水泵和板式换热4结语

器的容量,控制也相对复杂,但结合该工程蓄热水4.1该工程4个空调供暖分区的设计计算热负荷箱安放空间和高度特别受限的情况,也不失为一种峰值是不同的,但考虑到设备材料采购和施工、维安全、可靠的做法。

护的方便,将其电锅炉水蓄热系统设计为单一容量4.5对于水蓄热系统,通过适当改进可使其在夏规格。如按峰值负荷平均运行8h考虑,则每个区

季兼作蓄冷用。由于常规空调供冷时的供水温度域的热负荷总容量分别为:l~6层(裙房)7784

较低,一般为5一-.7℃,此种工况的显热温差几乎是kWh,8~20层(低区)10648

kWh,22~34层(中

无法满足使用要求的。故必须将该系统的蓄冷工区)10

648

kwh,36一--46层(高区)11

272

kwh。蓄

况单独用于新风空调箱,使其在高于20℃的供水热水箱的设计蓄热量为10

465

kWh,分别达到了

温度时也能保持一定的供冷能力,从而充分利用其需求的134%,98%,98%,93%,基本达到了全量

显热温差。

蓄热的要求。

4.6由于常压蓄热水箱内水体的有效高度较小,4.2就水蓄热装置而言,采用常压形式可使得控而高温热水又相对容易汽化,故在做管道设计时,制和保护系统要求较低、蓄热装置加工要求一般,需对水泵吸入段管道的阻力损失进行精确计算,如但蓄热和供热温差有限、单位体积蓄热量较小[1]。

有必要可通过增大该段管道的管径来降低阻力损

结合该工程的实际情况,由于蓄热水箱所在设备层失,并且确保避免出现管道存气现象,从而防止水

的上下层均为人员密集的办公场所,从安全防护角

泵汽蚀。度考虑不得采用有压高温蓄热水箱,故最终确定采参考文献:

用常压蓄热水箱,其设计蓄热温度为90℃。E13

中国建筑标准设计研究院.全国民用建筑工程设计4.3受设备层空间高度的限制,该工程中蓄热水技术措施节能专篇暖通空调・动力分册EM3.北箱的箱体高度只能做到3m,故采用了管道垂直分京:中国计划出版社,2007

隔槽式水箱。

[2]陆耀庆.实用供热空凋设计手册EM3.北京:中国建

4.4通常水蓄热系统是按电锅炉下游的串联流程

筑工业出版社,1996

设计的,其箱体内水量则按一次流、大温差计算。

E33吴喜平.蓄冷技术和蓄热电锅炉在空调中的应用

但由于蓄热水箱内水体的有效高度较小,考虑到其EM3.上海:同济大学出版社,2000

(上接第144页)

VAVBoX,将VAVBOX作为室内负荷的变化和

空调箱变频之间的一个连接桥梁,但在设计中需要注意的是,地板静压箱的净高一般只有400mm,每格架空地板的撑脚之间的间距为600mm×600

mm,因此在这样一个空间内放入的VAVBOX的

尺寸是有限的,相应地,每个BOX的风量也是有限的,有可能一个房间需要放置多个BOX。

对于自带风机的末端,每个末端也许有流量探

测功能,相当于多个风机动力型的VAVBOX末

端,控制同VAV系统。对于不能自测流量的自带

直接数字控制嚣

风机末端,需要有辅助措施,将末端变化与空调箱

田4带自动变风量调节阀的地板旋流散流器

风机电动机的变频联系起来,如前文所述,有些采和空调箱的运行及变风量控制模式

用阀位反馈的方法,有些则采用测量回风温度或者对于不带风机的末端,一般在送风支管上设置

主管的静压等。

暖通空调HV&AC2008年第赘卷第6期工程实仞

・87・

电锅炉水蓄热技术的应用实例

现代建筑设计集团上海建筑设计研究院有限公司张伟程☆

摘要介绍了电锅炉水蓄热技术的特点,着重介绍了实例工程的电锅炉水蓄热系统的概况、流程以及各种运行模式下的控制方法。

关键词

电锅炉水蓄热运行模式控制

ApPlicationexample

ofwater

By

them帕l

storagebyelectricalboiler

Zhang

Welcheng★

AbstractPresentsthecharacteristicsofwater

thermalstoragebytheelectricalboiler,andemphatically

control

fDelkqlreS

presentsthegeneralsituation.flow

principlesandthermal

foreachoperationmodeofitin

all

exampleproject.

Keywords

electrical

boiler,water

storage,operation

mode,control

★sha啪i

Institute

dArchitecturalDesign&Research

Co.,Ltd.,Shar咖i,China

电锅炉水蓄热系统是指在电力低谷期间,以承

张戆

主要设计业绩

卜I:海光激丁=程卜无锡市医疗巾心

>瑞金拨院fJ诊跃技援'}.海嘲际汽车城犬厦’陆家嘴开发大厦

为介质将电锅炉产生的热量储存在蓄热装置中,适

时供应给用热设备的系统[1]。这样在用电高峰时段就可以不开或者少开电锅炉,从而减少高峰时段

用电量,起到移峰填谷的作用。电锅炉水蓄热系统从构成上来说只是在常规电热锅炉系统的基础上

增加了一套水蓄热装置,其他各部分在结构上与常

规热源系统并无不同,它在使用范围方面也与常规

电锅炉水蓄热技术介绍

集中空调的冬季供暖部分,根据热源的类型,

供热系统基本一致。通常水蓄热装置有常温(常

压、温度低于100℃)和高温(高压、温度高于100

可以分为空气(或水)源热泵、燃油,燃煤气(或天然

气)、燃煤、用电等几大类。

从用户的角度看,使用电作为热源不需要排废

℃)两种,蓄热量有全量和分量两种模式,蓄热系统

有串联和并联两种流程。

电锅炉水蓄热系统具有以下几个显著优点:

水、废气、废渣,也无明火,不需设置堆煤或储油场地,为最清洁能源,不存在消防、环保等特殊要求,且用电设备可以做到完全自动控制,减少人为操作

带来的浪费及管理难度。

1)适合在无集中供热与燃气源,而电力充足,供电政策支持和电价优惠的地区使用。

2)采用电能,不存在排放废水、废气、废渣之忧,无燃烧过程,安全、可靠性高。

3)由于水蓄热系统是按白天全量负荷在夜间蓄热时段的平均值来确定电锅炉装机容量的,而电

对于以电能作为空调供暖热源的系统,在《公共建筑节能设计标准》(GB50189--2005)中有明

确的规定:“除非夜问可利用低谷电进行蓄热、且蓄热式电锅炉不在日问用电高峰和平时段时间启用

的建筑,不得采用电热锅炉、电热水器作为直接采

暖和空气调节系统的热源。”故在实际应用时,不得采用电锅炉直供的形式,一般采用电锅炉水蓄热系统,且以全量蓄热为好。

☆张伟程,男,1969年12月生,大学,ⅢT学学十,丰任工程师

200041上海市石fI--路258号上海建筑设计研究院有限公

(021)52524567—51825

E-mail:zhangwc@siadr.corn.cn收稿日期:2008—04—01

修回口期:2008-05-05

・88・

工程实例暖通空调HV&AC2008年第鲳卷第6期

锅炉直供系统则是按白天的峰值负荷来确定的。所以相对于电锅炉直供系统,水蓄热系统减少了电锅炉装机容量,其附属运转设备和电力设施的装机容量也相应减少,从而减少了初投资费用。

4)可根据空调负荷的变化更及时、灵活、精确

地供应储存的热量。

5)利用峰谷电价差,可以明显减少运行费用。

有利于平衡用电负荷,缓解供电矛盾[2]。

6)当停电时,用小功率应急发电机带动循环水泵即可继续提供热量,提高了供暖系统的可靠

性。

2工程概况

陆家嘴时代金融广场(B3—5地块)冬季空调

供暖设计计算热负荷峰值为5

044

kw:1~6层(裙房)973kW,8~20层(低区)1

331

kW,22--..34

层(中区)1

331

kW,36一--46层(高区)1

409

kW。

考虑到当时的市政能源条件(无集中供热与燃气源,电力充足,供电政策支持和电价优惠)和初投资与运行费用的效益比以及机房安全条件,该工程采用常压型电热水锅炉生产的蓄热水作为空调供暖热源,采用常温全量(不考虑不可预见系数)蓄热模式、并联流程,并根据楼层分布情况分设4套系统,机房分别布置于7层、21层、35层、屋顶设备层。每套系统均设有2台675kW的电锅炉、1个有效容积为200m3的蓄热水箱,其设计蓄热水温为45~90℃,蓄热量为10

465

kWh;考虑10%的裕

量,联合供热(板式换热器)的总供热能力为1

600

kW;板式换热器一次侧的设计进、出水温度为55

℃/45℃、二次侧(空调末端设备)的设计供、回水温度为50℃/40℃。该水蓄热系统夏季可兼作蓄

冷用,其蓄热水箱转变为蓄冷水箱,主要用于新风空调箱的供冷。

系统有冬季电锅炉单蓄热、电锅炉单供热、蓄热水箱单供热、电锅炉与蓄热水箱联合供热(蓄热

水箱优先)、电锅炉边蓄热边供热以及夏季制冷机蓄冷、蓄冷水箱放冷共7种运行模式,其原理见图1。3运行控制

3.1系统运行模式控制

对于系统不同的运行模式应有不同的运行策略和控制方式,详见表1。3.2系统运行模式转换

图1系统运行原理图

晚上低谷电时段,采用何种模式运行需视大楼的负荷情况而定。一般情况下夜间大楼没有负荷,采用电锅炉单蓄热模式;如夜间出现了负荷(临时

有单位加班或其他事情,可以向物业公司申请空调供暖),则采用电锅炉边蓄热边供热模式。当然,对

夜间负荷应有所控制,否则过量的夜间负荷会影响系统蓄热量,可能造成第二天电锅炉的过量运行而增加运行费用,增加的费用应由夜间负荷用户承担。

白天空调供暖时,为了保证采用蓄热水箱优先的联合供热模式,采用蓄热水箱等速放热方式,保

证蓄热水箱均匀放出热量,同时确保在工作时间段

将水箱热量用尽。在计算水箱的等速放热量时,需考虑电锅炉的避峰电时段运行,此时段蓄热水箱应全量供热(即蓄热水箱单供热模式),从而尽量减少电锅炉的运行费用。在联合供热的时候,根据水箱进出口温度和流量计算出水箱的放热量Q。(水箱等速放热的热量),同时根据板式换热器一次侧的进、出口温度和流量计算出空调末端需要的供热量Q2,当Q2接近Q。,两者差值持续(约2min,具体持续时间调试时可根据实际情况调整设定)小于设定值时,则系统切换到蓄热水箱单供热模式。在蓄热水箱以单供热模式运行时,当板式换热器二次侧的出水温度(50℃)受水箱循环泵变频控制而持续(约2min,具体持续时问调试时可根据实际情况调整设定)下降,则系统重新切换到电锅炉和蓄热水箱联合供热模式。当水箱出口温度低于55℃(此时理论上水箱的进口温度低于45℃)时,表

暖通空调HV&AC2008年第镐卷第6期工程实例

・89・

明水箱热量已用尽,放热结束,系统转化到电锅炉3.3蓄热水箱预热模式

单供热模式。

在系统投入上班时段运行前需启动蓄热水箱

一般情况下白天空调供暖采用蓄热水箱单供单供热模式对整个大楼进行预热,以抵消大楼内前热或联合供热模式,但当水箱前一天晚上因其他原一夜的蓄冷量,从而保证上班前室内温度达到所需

因没有蓄热或蓄热水箱热量用尽时,系统采用电锅温度。在预热时应关闭空调新、排风系统以避免热炉单供热模式。

量的损耗,在上班时段再启用空调新、排风系统。

・90・

工程实例暖通空调HV&AC2008年第38卷第6期

对于电锅炉与蓄热水箱联合供热(蓄热水箱优热温水混合、死水空间和储存效率等问题,该工程

先)模式,在依据总蓄热量计算水箱的等速放热量

采用了并联流程,其箱体内水量按多次混水流、小时应扣除预热所需的耗热量。温差计算。虽然这种做法增加了水泵和板式换热4结语

器的容量,控制也相对复杂,但结合该工程蓄热水4.1该工程4个空调供暖分区的设计计算热负荷箱安放空间和高度特别受限的情况,也不失为一种峰值是不同的,但考虑到设备材料采购和施工、维安全、可靠的做法。

护的方便,将其电锅炉水蓄热系统设计为单一容量4.5对于水蓄热系统,通过适当改进可使其在夏规格。如按峰值负荷平均运行8h考虑,则每个区

季兼作蓄冷用。由于常规空调供冷时的供水温度域的热负荷总容量分别为:l~6层(裙房)7784

较低,一般为5一-.7℃,此种工况的显热温差几乎是kWh,8~20层(低区)10648

kWh,22~34层(中

无法满足使用要求的。故必须将该系统的蓄冷工区)10

648

kwh,36一--46层(高区)11

272

kwh。蓄

况单独用于新风空调箱,使其在高于20℃的供水热水箱的设计蓄热量为10

465

kWh,分别达到了

温度时也能保持一定的供冷能力,从而充分利用其需求的134%,98%,98%,93%,基本达到了全量

显热温差。

蓄热的要求。

4.6由于常压蓄热水箱内水体的有效高度较小,4.2就水蓄热装置而言,采用常压形式可使得控而高温热水又相对容易汽化,故在做管道设计时,制和保护系统要求较低、蓄热装置加工要求一般,需对水泵吸入段管道的阻力损失进行精确计算,如但蓄热和供热温差有限、单位体积蓄热量较小[1]。

有必要可通过增大该段管道的管径来降低阻力损

结合该工程的实际情况,由于蓄热水箱所在设备层失,并且确保避免出现管道存气现象,从而防止水

的上下层均为人员密集的办公场所,从安全防护角

泵汽蚀。度考虑不得采用有压高温蓄热水箱,故最终确定采参考文献:

用常压蓄热水箱,其设计蓄热温度为90℃。E13

中国建筑标准设计研究院.全国民用建筑工程设计4.3受设备层空间高度的限制,该工程中蓄热水技术措施节能专篇暖通空调・动力分册EM3.北箱的箱体高度只能做到3m,故采用了管道垂直分京:中国计划出版社,2007

隔槽式水箱。

[2]陆耀庆.实用供热空凋设计手册EM3.北京:中国建

4.4通常水蓄热系统是按电锅炉下游的串联流程

筑工业出版社,1996

设计的,其箱体内水量则按一次流、大温差计算。

E33吴喜平.蓄冷技术和蓄热电锅炉在空调中的应用

但由于蓄热水箱内水体的有效高度较小,考虑到其EM3.上海:同济大学出版社,2000

(上接第144页)

VAVBoX,将VAVBOX作为室内负荷的变化和

空调箱变频之间的一个连接桥梁,但在设计中需要注意的是,地板静压箱的净高一般只有400mm,每格架空地板的撑脚之间的间距为600mm×600

mm,因此在这样一个空间内放入的VAVBOX的

尺寸是有限的,相应地,每个BOX的风量也是有限的,有可能一个房间需要放置多个BOX。

对于自带风机的末端,每个末端也许有流量探

测功能,相当于多个风机动力型的VAVBOX末

端,控制同VAV系统。对于不能自测流量的自带

直接数字控制嚣

风机末端,需要有辅助措施,将末端变化与空调箱

田4带自动变风量调节阀的地板旋流散流器

风机电动机的变频联系起来,如前文所述,有些采和空调箱的运行及变风量控制模式

用阀位反馈的方法,有些则采用测量回风温度或者对于不带风机的末端,一般在送风支管上设置

主管的静压等。


相关文章

  • 电锅炉蓄热技术在北方地区的应用分析
  • 电锅炉蓄热技术在北方地区的应用分析 摘 要:介绍了电锅炉固体蓄热技术应用的现状.设计原理.蓄热载体的选择.高温蓄热系统以及自控系统等,并以北京住宅为例分析了蓄热技术应用和运行费用的可行性. 关键词:低谷电价:固体蓄热技术:电锅炉:运行费 1 ...查看


  • 火电灵活性提升可行方案的研究_张继权
  • 电力科技 2016年第31期 科技创新与应用 火电灵活性提升可行方案的研究 张继权 1 张艳波 2 苏琳 3 吉林长春130000(1.国网吉林省电力有限公司,2.国网吉林省电力有限公司辽源城郊供电公司,吉林辽源136200 3.国网吉林省 ...查看


  • 电锅炉及其蓄热系统
  • 电锅炉及其蓄热系统 --两个电锅炉房的设计介绍 胡瑜想 (中南建筑设计院) 20世纪50-60年代,电锅炉在国外先进国家已得到普遍应用,这是因为这些国家的发电能力大幅度提高,对耗电大户有了供应保证,更重要的是,电热锅炉占地面积小,热效率高, ...查看


  • 热电(冷)联产系统
  • 第三章 热电(冷)联产系统 一.什么是热电(冷)联产系统  如图1所示,通过能源的梯级利用,燃料通过热电联产装置发电后,变为低品味的热能用于采暖.生活供热等用途的供热,这一热量也可驱动吸收式制冷机,用于夏季的空调,从而形成热电冷三联供系统 ...查看


  • 电锅炉房的电气设计
  • 电锅炉房的电气设计 摘要:电锅炉是一种高效.节能.安全可靠.减少环境污染的新型电加热设备.利用电锅炉可以将电网夜间低谷电力用于加热水并保温储存,供白天使用或供热.对于充分利用电网低谷电力,增加电力有效供给,提高电网的负荷率是一种非常有效的手 ...查看


  • 变频式固体蓄热电暖器技术系统的应用及研发
  • 变频式固体蓄热电散热器技术 系 统 研 发 及 应 用 北 京 圣 福 来 科 技 有 (高新技术企业) 公 司 限 中央主要领导同志对节能减排与资源综合利用 工作的部分重要论述(摘要) 胡锦涛同志在中共中央召开党外人士座谈的讲话 (200 ...查看


  • 居住建筑供暖方式分析
  • [摘 要]随着时代的发展和社会经济的进步,我国人们的生活水平越来越高,人们开始对居住环境进行改善,选择合适的供暖方式可以有效的满足人们的需要.因此,大家就需要对此产生足够程度的重视.本文简单介绍了一些居住建筑工程集中供暖方式,希望可以提供一 ...查看


  • 储热技术的研究与应用(可研基础)
  • 储热技术的研究与应用 余热利用分析报告 第一章工业热能现状及利用率 1.1余热能源现状 当前,我国能源利用仍然存在着利用效率低.经济效益差,生态环境压力大的主要问题.节能减排.降低能耗.提高能源综合利用率作为能源发展战略规划的重要内容,是解 ...查看


  • 生活垃圾焚烧发电厂工程实例
  • 生活垃圾焚烧发电厂工程实例 韦立新 黄文清 (广西华蓝设计(集团)有限公司,广西,南宁 530011) 摘要:介绍加煤助燃循环流化床焚烧炉在来宾市垃圾焚烧发电厂工程应用实例 关键词:循环流化床焚烧炉 垃圾 发电 一 前言 六十年代以前,由于 ...查看


热门内容