用计算机软件处理牛顿环等厚干涉实验数据

用计算机软件处理牛顿环等厚干涉实验数据

摘要

研究结果表明:通过计算机软件处理了实验数据得到了预期的结果。

本文主要研究了牛顿环实验的等厚干涉,其目的是:用牛顿环观察和分析等厚干涉现象;学会使用读数显微镜测距;学习用计算机软件处理实验数据得到透镜的曲率半径。

计算机软件处理实验数据是应用Microsoft Visual C++ 6.0软件根据牛顿环的等厚干涉的数学计算公式编辑c++程序代码来展现人的思维模式,并建立这一公式来实现对实验数据的处理,从而得到玻璃凸透镜曲率半径。

研究结果表明:本文根据等厚干涉理论,运用Microsoft Visual C++ 6.0软件编辑的程序的运算功能实现了对牛顿环实验数据的处理及展现了实验数据的处理过程,从而达到了预期目标。

本文的特色在于:在实现了牛顿环干涉实验数据处理的基础上,只需用户直接输入实验数据即可得到实验结果。

目录

1)引言----------------------------------------------------------------------------------------2 2)实验目的----------------------------------------------------------------------------------3 3)实验仪器----------------------------------------------------------------------------------3 4)实验原理----------------------------------------------------------------------------------3 5)实验内容----------------------------------------------------------------------------------3 6)数据记录与处理-------------------------------------------------------------------------4 7)程序代码----------------------------------------------------------------------------------4 8)运算结果及数据处理-------------------------------------------------------------------9 9)误差分析----------------------------------------------------------------------------------10 参考文献----------------------------------------------------------------------------------------11

(((((((((

引 言

“牛顿环”是牛顿在1675年制作天文望远镜时,偶然讲一个望远镜的物镜放在平板玻璃上发现的。牛顿环属于用分振幅法产生干涉现象,亦是典型的等厚干涉条纹。它为光的波动提供了重要的实验证据。光的干涉现象广泛地应用于科学研究、工业生产和检验技术中,如利用光的干涉法进行薄膜等厚、微小角度、曲面的曲率半径等几何量的精密测量,也普遍应用检测加工工件表面的光洁度和平整度及机械零件的内力分布等。

本设计在牛顿环基本理论的基础上,运用Microsoft Visual C++ 6.0编写程序,实现了牛顿环实验数据处理。我们从牛顿环等厚干涉理论出发,运用Microsoft Visual C++ 6.0功能编写程序为了实现牛顿环干涉数据处理。同时此软件的计算机环境下运行,实现了在计算机环境中计算数据并显示实验处理过程及环半径的运算结果。最后显示在用户界面上,实现了实验数据运用计算机处理的方法。

选择适当的数据处理方法求出实验误差,在对实验误差的分析及由于哪些方面才导致产生了实验误差。

【实验目的】 (1)用牛顿环观察和分析等厚干涉现象; (2)学会使用读数显微镜测距;

(3)用计算机软件处理实验数据得到透镜的曲率半径。 【实验仪器】

JCD3型读数显微镜,牛顿环,钠光灯,凸透镜(包括三爪式透镜夹和固定滑座) 。 【实验原理】

在一块平面玻璃上安放上一焦距很大的平凸透镜,使其凸面与平面相接触,在接触点附近

就形成一层空气膜。当用一平行的准单色光垂直照射时,在空气膜上表面反射的光束和下表面反射的光束在膜上表面相遇相干,形成以接触点为圆心的明暗相间的环状干涉图样,称为牛顿环,其光路示意图如图。

如果已知入射光波长,并测得第k 级暗环的半径r k ,则可求得透镜的曲率半径R 。但实际测量时,由于透镜和平面玻璃接触时,接触点有压力产生形变或有微尘产生附加光程差,使得干涉条纹的圆心和环级确定困难。用直径D m 、D n ,有

R =

D m -D n

2

2

4(m -n ) λ

此为计算R 用的公式,它与附加厚光程差、圆心位置、绝对级次无关,克服了由这些因素带来的系统误差,

并且D m 、D n 可以是弦的直径。

【实验内容】 1、调整测量装置

按光学实验常用仪器的读数显微镜使用说明进行调整。调整时注意:

(1)调节450玻片,使显微镜视场中亮度最大,这时,基本上满足入射光垂直于透镜的要求(下部反光镜不要让反射光到上面去) 。

(2)因反射光干涉条纹产生在空气薄膜的上表面,显微镜应对上表面调焦才能找到清晰的干涉图像。

(3)调焦时,显微镜筒应自下而上缓慢地上升,直到看清楚干涉条纹时为止,往下移动显微镜筒时,眼睛一定要离开目镜侧视,防止镜筒压坏牛顿环。

(4)牛顿环三个压紧螺丝不能压得很紧,两个表面要用擦镜纸擦拭干净。

2、观察牛顿环的干涉图样

(1)调整牛顿环仪的三个调节螺丝,在自然光照射下能观察到牛顿环的干涉图样,并将干涉条纹的中心移到牛顿环仪的中心附近。调节螺丝不能太紧,以免中心暗斑太大,甚至损坏牛顿环仪。

(2)把牛顿环仪置于显微镜的正下方,使单色光源与读数显微镜上45︒角的反射透明玻璃片等高,旋转反射透明玻璃 ,直至从目镜中能看到明亮均匀的光照。

(3)调节读数显微镜的目镜,使十字叉丝清晰;自下而上调节物镜直至观察到清晰的干涉图样。移动牛顿环仪,使中心暗斑(或亮斑)位于视域中心,调节目镜系统,使叉丝横丝与读数显微镜的标尺平行,消除视差。平移读数显微镜,观察待测的各环左右是否都在读数显微镜的读数范围之内。 【数据记录与处理】

【程序代码】 #include void main() {

cout

double A,B,L,R,D[6],c=5.893/10000;

for(m=30,n=20;m=26,n=16;m--,n--) {

cout

s=m-n;

if(s=10)

{ {

if(m=30)

{

cout>L>>R; A=L-R;

cout

if(m=30,n=20)

牛顿环等厚干涉左右读数)"

cout

读数之差"

if(A

cout>L>>R;

if(n=20)

牛顿环等厚干涉左右读数)"

cout

if(B

D[1]=A*A-B*B;

cout

}

if(D[1]

径读数之差平方之差"

cout

{

if(m=29,n=19)

cout

if(m=29)

{

cout

代表牛顿环等厚干涉左右读数)"

cin>>L>>R;

cout

A=L-R;

if(A

if(n=19)

{

cout

cin>>L>>R;

cout

B=L-R;

if(B

}

D[2]=A*A-B*B;

if(D[2]

cout

}

cout

{

cout

if(m=28) {

cout

cin>>L>>R; cout

if(A

}

(L,R分别

(L,R分

if(n=18)

{

cout

代表牛顿环等厚干涉左右读数)"

cin>>L>>R;

cout

}

D[3]=A*A-B*B;

if(D[3]

cout

}

cout

{ cout

if(m=27) {

cout

cin>>L>>R;

cout

A=L-R; if(A

}

if(n=17) {

cout

cin>>L>>R;

cout

B=L-R;

if(B

(L,R分别

(L,R分别

}

D[4]=A*A-B*B; if(D[4]

cout

cout

if(m=26,n=16)

{ cout

if(m=26) {

cout

cin>>L>>R;

cout

if(n=16) {

cout

cin>>L>>R;

cout

if(B

}

D[5]=A*A-B*B; if(D[5]

cout

}

}

}

D[0]=(D[1]+D[2]+D[3]+D[4]+D[5])/5;

(L,R分别代表(L,R分别代表

cout

cout

径"

}

【运算结果及数据处理】

2

曲率半径的最佳值 R =

D m -D 2

n 4(m-n)λ

=888.67mm

又 D 22

m -D n =D[0]=20.9477mm

5

∑(D

[i ]

-D [0])

2

有 S i =1

D =5-1

(D 2

+(D 2

2

2

2

=

[1]-D [0]) [2]-D [0]) +(D [3]-D [0]) +(D [4]-D [0]) +(D [5]-D [0])

5-1

=0.238mm 又因为 R

∝M

所以有 S R ∝S M

S S D R =R ⋅D =888.67*0.238/20.9477= 10.097 ∆仪=0.005m m

[0]

∆22

R =S R +∆仪=. 0972+0. 0052=10.1

(3

±10.1) mm

相对误差:E R -R 标R =

⨯100%=|

888. 7-855. 1

855. 1

|⋅100%=3. 9%

R

【误差分析】

10

1、观察牛顿环时将会发现,牛顿环中心不是一点,而是一个不甚清晰的暗或亮的圆斑。其原因是透镜和平玻璃板接触时,由于接触压力引起形变,使接触处为一圆面;又镜面上可能有微小灰尘等存在,从而引起附加的程差,这都会给测量带来较大的系统误差。另外要用肉眼去观察暗条纹,误差会较大。

2、平凸透镜的不稳定性也会影响实验结果。

3、仪器不准或精度不够,制作粗糙(干涉环) 所造成的系统误差。 4、显微镜叉丝与显微镜移动方向不平行产生的误差。

5、十字叉线纵轴没有垂直环,测量直径时没有将十字叉线纵轴与环相切。6、自己数错环的偶然误差,在操作时回转仪器时造成操作错误等。

【参考文献】

[1] 姚启钧. 光学教程. 高等教育处报社,2009. [2] 吕风翥.C++语言基础教程. 清华大学出版社.2003. [3] 谭浩强.C++程序设计. 北京:清华大学出版社.2004. [4] 谭浩强.C++程序设计实践指导. 清华大学出版社.2005. [5] 王宏亮. 大学物理实验. 机械工业出版社,2010.

[6] 李振飞,童明薇. 大学物理实验. 重庆:重庆出版社,1992. [7] 贾玉明. 普通物理学. 西安:陕西师范大学出版社,1989. [8] 贾玉润. 大学物理实验. 上海:复旦大学出版社,1987.

[9] 张岳新.Visual C++程序设计基础. 苏州:苏州大学出版社,2000. [10] 张素琴.C++程序设计语言. 北京:清华大学出版社,1995.

11

用计算机软件处理牛顿环等厚干涉实验数据

摘要

研究结果表明:通过计算机软件处理了实验数据得到了预期的结果。

本文主要研究了牛顿环实验的等厚干涉,其目的是:用牛顿环观察和分析等厚干涉现象;学会使用读数显微镜测距;学习用计算机软件处理实验数据得到透镜的曲率半径。

计算机软件处理实验数据是应用Microsoft Visual C++ 6.0软件根据牛顿环的等厚干涉的数学计算公式编辑c++程序代码来展现人的思维模式,并建立这一公式来实现对实验数据的处理,从而得到玻璃凸透镜曲率半径。

研究结果表明:本文根据等厚干涉理论,运用Microsoft Visual C++ 6.0软件编辑的程序的运算功能实现了对牛顿环实验数据的处理及展现了实验数据的处理过程,从而达到了预期目标。

本文的特色在于:在实现了牛顿环干涉实验数据处理的基础上,只需用户直接输入实验数据即可得到实验结果。

目录

1)引言----------------------------------------------------------------------------------------2 2)实验目的----------------------------------------------------------------------------------3 3)实验仪器----------------------------------------------------------------------------------3 4)实验原理----------------------------------------------------------------------------------3 5)实验内容----------------------------------------------------------------------------------3 6)数据记录与处理-------------------------------------------------------------------------4 7)程序代码----------------------------------------------------------------------------------4 8)运算结果及数据处理-------------------------------------------------------------------9 9)误差分析----------------------------------------------------------------------------------10 参考文献----------------------------------------------------------------------------------------11

(((((((((

引 言

“牛顿环”是牛顿在1675年制作天文望远镜时,偶然讲一个望远镜的物镜放在平板玻璃上发现的。牛顿环属于用分振幅法产生干涉现象,亦是典型的等厚干涉条纹。它为光的波动提供了重要的实验证据。光的干涉现象广泛地应用于科学研究、工业生产和检验技术中,如利用光的干涉法进行薄膜等厚、微小角度、曲面的曲率半径等几何量的精密测量,也普遍应用检测加工工件表面的光洁度和平整度及机械零件的内力分布等。

本设计在牛顿环基本理论的基础上,运用Microsoft Visual C++ 6.0编写程序,实现了牛顿环实验数据处理。我们从牛顿环等厚干涉理论出发,运用Microsoft Visual C++ 6.0功能编写程序为了实现牛顿环干涉数据处理。同时此软件的计算机环境下运行,实现了在计算机环境中计算数据并显示实验处理过程及环半径的运算结果。最后显示在用户界面上,实现了实验数据运用计算机处理的方法。

选择适当的数据处理方法求出实验误差,在对实验误差的分析及由于哪些方面才导致产生了实验误差。

【实验目的】 (1)用牛顿环观察和分析等厚干涉现象; (2)学会使用读数显微镜测距;

(3)用计算机软件处理实验数据得到透镜的曲率半径。 【实验仪器】

JCD3型读数显微镜,牛顿环,钠光灯,凸透镜(包括三爪式透镜夹和固定滑座) 。 【实验原理】

在一块平面玻璃上安放上一焦距很大的平凸透镜,使其凸面与平面相接触,在接触点附近

就形成一层空气膜。当用一平行的准单色光垂直照射时,在空气膜上表面反射的光束和下表面反射的光束在膜上表面相遇相干,形成以接触点为圆心的明暗相间的环状干涉图样,称为牛顿环,其光路示意图如图。

如果已知入射光波长,并测得第k 级暗环的半径r k ,则可求得透镜的曲率半径R 。但实际测量时,由于透镜和平面玻璃接触时,接触点有压力产生形变或有微尘产生附加光程差,使得干涉条纹的圆心和环级确定困难。用直径D m 、D n ,有

R =

D m -D n

2

2

4(m -n ) λ

此为计算R 用的公式,它与附加厚光程差、圆心位置、绝对级次无关,克服了由这些因素带来的系统误差,

并且D m 、D n 可以是弦的直径。

【实验内容】 1、调整测量装置

按光学实验常用仪器的读数显微镜使用说明进行调整。调整时注意:

(1)调节450玻片,使显微镜视场中亮度最大,这时,基本上满足入射光垂直于透镜的要求(下部反光镜不要让反射光到上面去) 。

(2)因反射光干涉条纹产生在空气薄膜的上表面,显微镜应对上表面调焦才能找到清晰的干涉图像。

(3)调焦时,显微镜筒应自下而上缓慢地上升,直到看清楚干涉条纹时为止,往下移动显微镜筒时,眼睛一定要离开目镜侧视,防止镜筒压坏牛顿环。

(4)牛顿环三个压紧螺丝不能压得很紧,两个表面要用擦镜纸擦拭干净。

2、观察牛顿环的干涉图样

(1)调整牛顿环仪的三个调节螺丝,在自然光照射下能观察到牛顿环的干涉图样,并将干涉条纹的中心移到牛顿环仪的中心附近。调节螺丝不能太紧,以免中心暗斑太大,甚至损坏牛顿环仪。

(2)把牛顿环仪置于显微镜的正下方,使单色光源与读数显微镜上45︒角的反射透明玻璃片等高,旋转反射透明玻璃 ,直至从目镜中能看到明亮均匀的光照。

(3)调节读数显微镜的目镜,使十字叉丝清晰;自下而上调节物镜直至观察到清晰的干涉图样。移动牛顿环仪,使中心暗斑(或亮斑)位于视域中心,调节目镜系统,使叉丝横丝与读数显微镜的标尺平行,消除视差。平移读数显微镜,观察待测的各环左右是否都在读数显微镜的读数范围之内。 【数据记录与处理】

【程序代码】 #include void main() {

cout

double A,B,L,R,D[6],c=5.893/10000;

for(m=30,n=20;m=26,n=16;m--,n--) {

cout

s=m-n;

if(s=10)

{ {

if(m=30)

{

cout>L>>R; A=L-R;

cout

if(m=30,n=20)

牛顿环等厚干涉左右读数)"

cout

读数之差"

if(A

cout>L>>R;

if(n=20)

牛顿环等厚干涉左右读数)"

cout

if(B

D[1]=A*A-B*B;

cout

}

if(D[1]

径读数之差平方之差"

cout

{

if(m=29,n=19)

cout

if(m=29)

{

cout

代表牛顿环等厚干涉左右读数)"

cin>>L>>R;

cout

A=L-R;

if(A

if(n=19)

{

cout

cin>>L>>R;

cout

B=L-R;

if(B

}

D[2]=A*A-B*B;

if(D[2]

cout

}

cout

{

cout

if(m=28) {

cout

cin>>L>>R; cout

if(A

}

(L,R分别

(L,R分

if(n=18)

{

cout

代表牛顿环等厚干涉左右读数)"

cin>>L>>R;

cout

}

D[3]=A*A-B*B;

if(D[3]

cout

}

cout

{ cout

if(m=27) {

cout

cin>>L>>R;

cout

A=L-R; if(A

}

if(n=17) {

cout

cin>>L>>R;

cout

B=L-R;

if(B

(L,R分别

(L,R分别

}

D[4]=A*A-B*B; if(D[4]

cout

cout

if(m=26,n=16)

{ cout

if(m=26) {

cout

cin>>L>>R;

cout

if(n=16) {

cout

cin>>L>>R;

cout

if(B

}

D[5]=A*A-B*B; if(D[5]

cout

}

}

}

D[0]=(D[1]+D[2]+D[3]+D[4]+D[5])/5;

(L,R分别代表(L,R分别代表

cout

cout

径"

}

【运算结果及数据处理】

2

曲率半径的最佳值 R =

D m -D 2

n 4(m-n)λ

=888.67mm

又 D 22

m -D n =D[0]=20.9477mm

5

∑(D

[i ]

-D [0])

2

有 S i =1

D =5-1

(D 2

+(D 2

2

2

2

=

[1]-D [0]) [2]-D [0]) +(D [3]-D [0]) +(D [4]-D [0]) +(D [5]-D [0])

5-1

=0.238mm 又因为 R

∝M

所以有 S R ∝S M

S S D R =R ⋅D =888.67*0.238/20.9477= 10.097 ∆仪=0.005m m

[0]

∆22

R =S R +∆仪=. 0972+0. 0052=10.1

(3

±10.1) mm

相对误差:E R -R 标R =

⨯100%=|

888. 7-855. 1

855. 1

|⋅100%=3. 9%

R

【误差分析】

10

1、观察牛顿环时将会发现,牛顿环中心不是一点,而是一个不甚清晰的暗或亮的圆斑。其原因是透镜和平玻璃板接触时,由于接触压力引起形变,使接触处为一圆面;又镜面上可能有微小灰尘等存在,从而引起附加的程差,这都会给测量带来较大的系统误差。另外要用肉眼去观察暗条纹,误差会较大。

2、平凸透镜的不稳定性也会影响实验结果。

3、仪器不准或精度不够,制作粗糙(干涉环) 所造成的系统误差。 4、显微镜叉丝与显微镜移动方向不平行产生的误差。

5、十字叉线纵轴没有垂直环,测量直径时没有将十字叉线纵轴与环相切。6、自己数错环的偶然误差,在操作时回转仪器时造成操作错误等。

【参考文献】

[1] 姚启钧. 光学教程. 高等教育处报社,2009. [2] 吕风翥.C++语言基础教程. 清华大学出版社.2003. [3] 谭浩强.C++程序设计. 北京:清华大学出版社.2004. [4] 谭浩强.C++程序设计实践指导. 清华大学出版社.2005. [5] 王宏亮. 大学物理实验. 机械工业出版社,2010.

[6] 李振飞,童明薇. 大学物理实验. 重庆:重庆出版社,1992. [7] 贾玉明. 普通物理学. 西安:陕西师范大学出版社,1989. [8] 贾玉润. 大学物理实验. 上海:复旦大学出版社,1987.

[9] 张岳新.Visual C++程序设计基础. 苏州:苏州大学出版社,2000. [10] 张素琴.C++程序设计语言. 北京:清华大学出版社,1995.

11


相关文章

  • 塞曼效应实验数据分析与处理方法改进
  • 第30卷 2010年5月 第5期 物理实验 V01.30No.5 PHYSICSEXPERlMENTATION May,2010 塞曼效应实验数据分析与处理方法改进 杨 冰,丁 蔻,李丽华,董瑞新,闫循领 (聊城大学物理科学与信息工程学院, ...查看


  • 电子散斑干涉仪在复合材料热稳定性测试中的应用
  • 电子散斑干涉仪在复合材料热稳定性测试中的应用 Application of Electronic Speckle Interferometer in Thermal Stability Tests of Composites 摘要:电子散斑 ...查看


  • pasco演示干涉光强分布
  • 毕业设计(论文)文献综述 物理学是一门实验科学, 传统的物理实验在物理教学中有着不可替代的作用.但是, 物理教学快速发展的今天, 传统的物理实验也突现出它不足的一面, 如实验过程比较繁琐.实验数据处理复杂, 一些可见度小和暂态过程很难被显示 ...查看


  • 全息照相和全息干涉法的应用
  • 全息照相和全息干涉法的 应用 第一作者: 第二作者: 目录 目录 ....................................................................................... ...查看


  • 声速测量 实验报告 1
  • 声速测量 实验报告 一.实验目的 1. 学习超声波产生和接收的原理: 2. 学习用不同的方式测量声波在空气中的传播速度: 3. 分析比较三种测量方式的优劣: 4. 用反射法测量挡板的距离并做误差分析. 二.实验原理及实验步骤 见预习报告 三 ...查看


  • 测量玻璃热膨胀和折射率
  • 第29卷第4期2010年4月 实验室研究与探索 RESEARCH AND EXPLORATION IN LABORATORY Vol. 29No. 4Apr. 2010 测量玻璃热膨胀系数和折射率温度系数实验 肖晓芳,陈丽梅,程敏熙 (华南 ...查看


  • 基础光学实验实验报告 1
  • 基础光学实验 一.实验仪器 从基础光学轨道系统,红光激光器及光圈支架,光传感器与转动传感器,科学工作室500或750接口,DataStudio软件系统 二.实验简介 利用传感器扫描激光衍射斑点,可标度各个衍射单缝之间光强与距离变化的具体规律 ...查看


  • 仪器科学与技术
  • 仪器科学与技术 080400 (一级学科:仪器科学与技术) 仪器科学与技术学科下设测试计量技术及仪器和精密仪器及机械两个二级学科,本学科是1983年获博士学位授予权的光学仪器学科的主要部分,本学科1986年获得硕士学位授予权,2000年获得 ...查看


  • 激光实验报告
  • 激光实验报告 He-Ne 激光器模式分析 一.实验目的与要求 目的:使学生了解激光器模式的形成及特点,加深对其物理概念的理解:通过测 试分析,掌握模式分析的基本方法.对本实验使用的重要分光仪器--共焦球面扫描干涉仪,了解其原理,性能,学会正 ...查看


热门内容