拉曼散射与声子的发射和吸收

拉曼散射与声子的发射和吸收 拉曼散射也称拉曼效应,是一种光子的非弹性散射现象,指光波在被散射后频率发生变化的现象,1928年由印度物理学家钱德拉塞卡拉·拉曼发现。当光线从一个原子或分子散射出来时,绝大多数的光子,都是弹性散射的,这称为瑞利散射。在瑞利散射下,散射出来的光子,它的能量、频率与波长跟射入时的光子是相同的。然而,有一小部份散射的光子,散射后的频率会产生变化,通常是低于射入时的光子频率,原因是入射光子和介质分子之间发生能量交换。这即是拉曼散射。利用拉曼效应产生的激光,称为拉曼激光。

在晶体中,原子间有相互作用,原子并非是静止的,它们总是围绕着其平衡位置在作不断的振动。另一方面,这些原子又通过其间的相互作用力而连系在一起,即它们各自的振动不是彼此独立的。原子之间的相互作用力一般可以很好地近似为弹性力。形象地讲,若把原子比作小球的话,整个晶体犹如由许多规则排列的小球构成,而小球之间又彼此由弹簧连接起来一般,从而每个原子的振动都要牵动周围的原子,使振动以弹性波的形式在晶体中传播。当原子振动的振幅与原子间距的比值很小时(这在一般情况下总是固体中在定量上高度正确的原子运动图象),如果我们在原子振动的势能展开式中只取到平方项的话(这即所谓的简谐近似),那么,这些组成晶体中弹性波的各个基本的简正振动就是彼此独立的。换句话说,每一种简正振动模式实际上就是一种具有特定的频率ν、波长λ和一定传播方向的弹性波,整个系统也就相当于由一系列相互独立的谐振子构成。在经典理论中,这些谐振子的能量将是连续的,但按照量子力学,它们的能量则必须是量子化的,只能取w的整数倍,即En=(n+1/2)hν(其中1/2hν为零点能)。这样,相应的能态En就可以认为是由n个能量为hν的“激发量子”相加而成。而这种量子化了的弹性波的最小单位就叫声子。声子是一种元激发,并具有能量。

当晶体中的载流子运动时,即会遭受到热振动原子的散射,它们交换能量将以ħωq为单元进行,若电子从晶格振动获得ħωq能量,就称为吸收一个声子;若电子交给晶格ħωq能量,就称为发射一个声子。这种作用可采用载流子与声子的散射来描述,即称为声子散射。

系统中声子的数目与温度有关:因为温度越高,晶格振动就越剧烈,其能量量子数目就越多,即声子数也就越多。因此随着温度的上升,声子散射载流子的作用也就越显著。

拉曼散射与声子的发射和吸收 拉曼散射也称拉曼效应,是一种光子的非弹性散射现象,指光波在被散射后频率发生变化的现象,1928年由印度物理学家钱德拉塞卡拉·拉曼发现。当光线从一个原子或分子散射出来时,绝大多数的光子,都是弹性散射的,这称为瑞利散射。在瑞利散射下,散射出来的光子,它的能量、频率与波长跟射入时的光子是相同的。然而,有一小部份散射的光子,散射后的频率会产生变化,通常是低于射入时的光子频率,原因是入射光子和介质分子之间发生能量交换。这即是拉曼散射。利用拉曼效应产生的激光,称为拉曼激光。

在晶体中,原子间有相互作用,原子并非是静止的,它们总是围绕着其平衡位置在作不断的振动。另一方面,这些原子又通过其间的相互作用力而连系在一起,即它们各自的振动不是彼此独立的。原子之间的相互作用力一般可以很好地近似为弹性力。形象地讲,若把原子比作小球的话,整个晶体犹如由许多规则排列的小球构成,而小球之间又彼此由弹簧连接起来一般,从而每个原子的振动都要牵动周围的原子,使振动以弹性波的形式在晶体中传播。当原子振动的振幅与原子间距的比值很小时(这在一般情况下总是固体中在定量上高度正确的原子运动图象),如果我们在原子振动的势能展开式中只取到平方项的话(这即所谓的简谐近似),那么,这些组成晶体中弹性波的各个基本的简正振动就是彼此独立的。换句话说,每一种简正振动模式实际上就是一种具有特定的频率ν、波长λ和一定传播方向的弹性波,整个系统也就相当于由一系列相互独立的谐振子构成。在经典理论中,这些谐振子的能量将是连续的,但按照量子力学,它们的能量则必须是量子化的,只能取w的整数倍,即En=(n+1/2)hν(其中1/2hν为零点能)。这样,相应的能态En就可以认为是由n个能量为hν的“激发量子”相加而成。而这种量子化了的弹性波的最小单位就叫声子。声子是一种元激发,并具有能量。

当晶体中的载流子运动时,即会遭受到热振动原子的散射,它们交换能量将以ħωq为单元进行,若电子从晶格振动获得ħωq能量,就称为吸收一个声子;若电子交给晶格ħωq能量,就称为发射一个声子。这种作用可采用载流子与声子的散射来描述,即称为声子散射。

系统中声子的数目与温度有关:因为温度越高,晶格振动就越剧烈,其能量量子数目就越多,即声子数也就越多。因此随着温度的上升,声子散射载流子的作用也就越显著。


相关文章

  • 受激拉曼散射-非线性
  • 受激拉曼散射 §6.1 引言 1962年Woodbury和Ng在研究硝基苯克尔盒作调Q开关的红宝石激光器时,意外地发现在激光输出中除694.9nm波长的激光外还伴有767.0nm的红外辐射.后来,Eckhard等人认识到,此红外辐射相对于激 ...查看


  • 如何学好现代仪器分析方法
  • 如何学好现代仪器分析方法 仪器分析是通过比较复杂和特殊的仪器设备,通过测量物质的某些物理或者物理化学性质的参数及其变化来确定物质的化学组成.成分分离及化学结构,并且各自形成相对独立的方法原理基础的一种分析方法.随着新学科的不断融合和分析仪器 ...查看


  • 光学分析复习
  • 发光分析复习 一. 发光的分类: 1. 电致发光(ZnS 基材料) 2. 光致发光(硅酸盐基,钨酸盐基,荧光粉) 3. 场致发光(硫化物基和胆酸盐基材料) 4. 热释发光(碱土金属硫化物基材料) 5. 应力发光(铝酸盐基材料) 6. 声致发 ...查看


  • 激光制冷液体?还是先去吃根冰棍吧
  • 激光可以冷却原子和分子.制备玻色-爱因斯坦凝聚态.制作光钟乃至进行量子模拟--这已经是一些实验室里的家常便饭了.激光制冷不仅实现了宇宙中前所未有的低温,而且显著地推动了精密测量技术的发展,真是了不起的技术.关于这种技术的科普文章有很多,连我 ...查看


  • 单层与多层石墨烯的拉曼光谱
  • 凝聚态物理学 李龙飞 10212027 专业英语翻译 单层与多层石墨烯的拉曼光谱 石墨烯是二维的材料,是组成其他维度的碳的各种同素异形体的积木.本文介绍拉曼光谱可以捕捉石墨烯的电子结构,并清楚显示出随着石墨烯层数变化拉曼光谱的变化.随着层数 ...查看


  • 光谱分析法
  • 光谱分析法 定义:当光照射到物体上时,光矢量能使分子或原子发生能级上的跃迁而进行分析的方法. 分类:吸收光谱(红外.紫外): 发射光谱(荧光光谱): 散射光谱(拉曼光谱):能级跃迁的同时,散射光频率发生变化. 分子中存在3种运动形式:电子绕 ...查看


  • 激光原理及应用课程论文
  • 激光原理及应用课程论文 通过一个学期对<激光原理及应用>的学习,使我对激光这一物理分支学科有了更加深入的了解,从光的本性到激光的工作原理,再到激光的输出特性及基本技术,理论结合应用.激光在日常的生产生活中的作用日益增加. 根据课 ...查看


  • 现代材料分析方法期末考试要点总结
  • 1.X射线与物质的相互作用?光电效应?莫塞莱定律? 作用:(1)宏观效应----X射线强度衰减 (2)微观机制----X射线被散射,吸收.1散射---相干散射,康谱顿散射2吸收---产生光电子,二次荧光,俄歇电子 光电效应:原子中的电子处在 ...查看


  • 红外.拉曼分析
  • 红外光谱与拉曼光谱分析 分析测试中心 彭同江 主要内容 分子振动光谱的基本原理 红外光谱分析 拉曼光谱分析 1. 分子振动光谱的基本原理 分子振动光谱是指物质因受光的作用,引起分子或原子基团的振动,从而产生对光的吸收. 如果将透过物质的光辐 ...查看


热门内容