高频变压器的设计与制作

8电气开关》《(2005. . 1

) N o

文章编号:1004-289(2005) 01-0008-04X

高频变压器的设计与制作

胡君臣

辽宁科技学院自动控制系, 辽宁(

关键词:变压器; 绕组; 开关; 脉冲; 饱和; 中图分类号:33T M 4

文献标识码:B

本溪

117022)

要:通过实例详细阐述了脉冲变压器设计与制作过程, 并结合实际讨论了在设计中应注意的事项。

D e s i g na n dMa k i n go f a P u l s e T r a n s f o r m e r

-c HU J u n h e n

) C h i n a

. i nt h e d e s i g na r e d i s c u s s e db yc o m b i n i n ga c t u a l s i t u a t i o n ; ; ; ; :t r a n s f o r m e r w i n d i n g s w i t c h p u l s e s a t u r a t i o n K e yw o r d s

影响。

绕组线路比较复杂, 多半都有中心抽头。这不(3)

仅增大了初级绕组的尺寸, 增大了变压器的体积和重量, 而且使绕组在铁芯窗口中的分布关系发生变化。

(. , , 117022, D e p o f A u t o m a t i c C o n t r o l L i a o n i n gI n s t i t u t e o f S c i e n c e a n dT e c h n o l o g y B e n x i

. :T h e d e s i g na n d m a k i n g o f t h e p u l s e t r a n s f o r m e r a r e e x p a t i a t e d i nt h e p a p e r T h e p o i n t s f o r a t t e n t i o n A b s t r a c t

1引言

脉冲变压器也可称作开关变压器, 或简单地称作高频变压器。在传统的高频变压器设计中, 由于磁芯材料的限制, 其工作频率较低, 一般在2左右。随着0k H z

电源技术的不断发展, 电源系统的小型化、高频化和大功率化已成为一个永恒的研究方向和发展趋势。因此, 研究使用频率更高的电源变压器是降低电源系统体积、提高电源输出功率比的关键因素。

随着应用技术领域的不断扩展, 开关电源的应用愈来愈广泛, 但制作开关电源的主要技术和耗费主要精力就是制作开关变压器的部件。

开关变压器与普通变压器的区别大致有以下几点:

电源电压不是正弦波, 而是交流方波, 初级绕(1)

组中电流都是非正弦波。

变压器的工作频率比较高, 通常都在几十赫(2)

兹, 甚至高达几十万赫兹。在确定铁芯材料及损耗时必须考虑能满足高频工作的需要及铁芯中有高次谐波的

图1开关电源原理图

本文介绍了一款如图1所示的D -D C C 变换器,

输入电压为直流2输出电压分别为542V , V 及1V 的多路直流输出。要求各路输出电流都在1核心A 以上, 器件是美国U n i t r o d e 公司生产的一种高性能单端输

电气开关》《(

2005. . 1) N o 9

出式电流控制型脉宽调制器芯片U C 最高工作3842, 频率可达2根据锌锰铁氧体合金的优异电磁性00。k H z 能, 通过具体示例介绍工作频率为1的高频开00k H z 关电源变压器的设计及注意事项。

反激变换器在小功率开关电源设计中应用非常广泛,

且多路输出较方便。单端反激电源的工作模式有两种:副边二极管存在没有反向恢复的问题, 但MO S 管的峰值电流相对较大; 后者MO S 管的峰值电流相对较小, 但存在副边二极管的反向恢复问题, 需要给二极管本文采用了后者。

设计变压器时大多需要考虑下面问题:变换器频电流连续模式和电流断续模式。前者适用于较小功率,

2变压器磁芯的选择与工作点的确定

2. 1磁芯材料的选择

从变压器的性能指标要求可知, 传统的薄带硅钢已很难满足变压器在频率、使用环境方面的设计要求。加吸收电路。这两种工作模式可根据实际需求来选择,

磁芯的材料只有从坡莫合金、铁氧体材料、钴基非晶态合金和超微晶合金几种材料中来考虑。坡莫合金、钴基非晶态价格高, 约为铁氧体材料的数倍, 而饱和磁感应强度B s

也不是很高, 且加工工艺复杂。考虑到我们所要求的电源输出功率并不高, 大约为30W , 因此, 综合几种材料的性能比较, 我们还是选择了饱和磁感应强度B s 较高,

温度稳定性好, 价格低廉, 加工方便的性价比较低的锌锰铁氧体材料, 并选以此材料作为框架的E I 28来绕制本例中的脉冲变压器。2. 2工作点的确定

根据相关资料, E C 35输出功率为50W , 饱和磁感应强度大约在2000G s 左右。买来的磁芯, 由于厂家提供的磁感应强度B m 值并不准确, 可用图2所提供的方式粗略测试一下。将调压器接至原线圈, 用示波器观察副线圈输出电压波形。将原线圈的输入电压由小到大慢慢升高, 直到示波器显示的波形发生奇变。此时, 磁芯已饱和, 根据公式:

U =4. 44f N 1Φm 可推知在工频时的Φm 值。要求不高时, 可根据测算出的Φm , 粗略估算出原线圈的匝数, N 1=

4. 44f Φm

图2工作点测试示意图

3变压器主要参数的计算

本例中的变换器采用单端反激式工作方式, 单端

率f (H z ) ; 初级电压U 1(V ) ; 次级电压U 2(V ) ; 次级电流i 2(A ) ; 绕组线路参数n 1、n 2

; 温升τ(℃); 绕组相对电压降u ; 环境温度τH J (℃); 绝缘材料密度γz

(g /c m 3

) 1)

根据变压器的输出功率选取铁芯, 所选取的铁芯的P c 值应等于或大于给定值。

2)

绕组每伏匝数W c

=4f B S T k T

(1)

S T 是铁芯的截面积; k T 是窗口的填充系数;

3)

初级绕组电势E 1

=U 1(1-2

) (2) 4)

初级绕组匝数W 1=W 0E 1

(3)

5)

次级绕组电势E 2i =U 2i (1+2

) (4) 6)

次级绕组匝数W 2i =W 0E 2i

(5)

7) 初级绕组电流I 1

(6)

8)

次级绕组电流I 2i

(7)

其中, n 1、n 2i

分别是初级绕组和次级绕组的每层匝数。

9)

初级绕组线径d 1=1. 13(8)

10)

次级绕组线径d 2i =1. 13(9)

其中, j

是电流密度。详细的变压器设计方法与计算相当复杂, 本文参照经验公式, 依据下面的步骤设计了本例转换器中的

10高频变压器。

3. 1确定变压器的变比

根据输出电压U 0的关系式

U 0=

D O N

) n T -t O N

得变比为

(10)

电气开关》《(2005. . 1) N o

反馈绕组匝数的确定, 要求既能保证开关元件的饱和导通又不至于造成过大损耗。根据U C 3842的要

反馈绕组的输出电压应在1求, 3V 左右。因此, 31匝

=≈6U 24D m a x

3. 6导线线径的选取

根据输入输出的估算, 初线线圈的平均电流值应

N 3=D O N

n

=U 0T -t O N

) (11) 式中U D 为整流器输出的直流电压。本例中U D =24V , f 为100k H z , t O N 取0. 5; n =2。3. 2计算初级线圈中的电流

已知输出直流电压U 0=±12V 、5V ,

负载电流均为I 0

=1A , 则输出功率P o =P 1+P 2+P 3=29W 开关电源的效率η一般在60~90%之间,

本例取η

=0. 65, 则输入功率为P =o

1

η=0. 65≈45W 初级的平均电流为

I 1=1

U x

=P o /ηU D m a x

D m a =0. 65×24=1. 86A 假定初级线圈的初始电流为零, 那么, 在开关管的导通期t O N 里, 初级线圈中的电流i L 1

便从零开始线性增长到峰值I 1P I 1P =1

t O N

=5=7. 44A 3. 3计算初级绕组圈数N 1

初级绕组的最小电感L 1为

-6

L =D m a x O N

1

I 1P

=7. 44=16. 13µH 根据输出功率P o 的大小,

选用适当的磁芯, 其形状用环形、E I 形或罐形均可, 本例采用E I 28, 该类型的铁芯在f =50k H z 时, 功率可达到60W , 在f =100k H z 时, 输出功率可达到90W 。

N 11P

6-66

1=

S B m

=85×0. 2≈7匝实际应用时, 初级线圈绕10匝。

式中I 1P

-初级线圈峰值电流, A ; L 1

-初级电感, H ; S -磁芯截面积, m m 2

; B m -磁芯最大磁通密度, T 。3. 4计算次级绕组圈数N 2N 2=

n =2

=5匝即±12V 分别绕5匝, 5V 绕3匝。

反馈绕组的估算

该允许达到2A 。1)

初级绕组初级绕组的线径可选d =0. 80m m ,

其截面积为0. 5027m m 2

的圆铜线。

2)

次级绕组次级绕组的线径可根据各组输出电流的大小, 利用原级相同线径采用多股并绕的办法解决。为了方便线圈绕制, 也可选用线径较粗的导线。由于工作频率较高, 应考虑集肤效应的影响。

3. 7线圈绕制与绝缘

绕制开关变压器最重要的问题是想办法使初、次级线圈紧密地耦合在一起, 这样可以减小变压器漏感。

因为漏感过大, 将会造成较大的尖峰脉冲, 从而击穿开关管。因此, 在绕制高频变压器线圈时, 应尽量使初、次级线圈之间的距离近些。

具体可采用以下方法:

(1)

双线并绕法将初、次级线圈的漆包线合起来并绕, 即所谓双线并绕。这样初、次级线间距离最小, 可使漏感减小到最小值。但这种绕法不好绕制, 同时两线间的耐压值较低。

(2)

逐层间绕法为克服并绕法耐压低、

绕制困难的缺点, 用初、次级分层间绕法, 即1、3、5行奇数层绕初级绕组, 2、4、6

等偶数层绕次级绕组。这种绕法仍可保持初、次级间的耦合, 又可在初、次级间垫绝缘纸, 以提高绝缘程度。

(3)

夹层式绕法把次级绕组绕在初级绕组的中间, 初级分两次绕。这种绕法只在初级绕组中多一个接头, 工艺简单, 便于批量生产。

本例中, 为减小分布参数的影响, 初级采用双线并绕连接的结构, 次级采用分段绕制, 串联相接的方式,

即所谓堆叠绕法。降低绕组间的电压差, 提高变压器的可靠性。在变压器的绝缘方面, 线圈绝缘应尽量选用抗电强度高、介质损耗低的复合纤维绝缘纸, 提高初、次

(下转第13页)

电气开关》《(2005. . 1) N o 13

用技巧[湖南工程学院学报. ]. 2004(1) J

收稿日期:2004-08-27作者简介

欧阳三泰男(湖南邵东人, 高级工程师, 现湖南工程学院从事教1947-) 学和科研, 主要研究方向为智能电器、智能控制。

=========================上接第1(0页)

级之间的绝缘强度和抗电晕能力, 本例中, 因为不涉及

图4软起、停特性曲线

图5六拍时序脉冲梯形图

用继电器方式输出模块, 其响应速度太慢, 控制会失常, 故应选用晶体管方式输出模块。但由于晶体管方式输出模块的负载能力只有0. 5~2A ,

而一般步进电动机的励磁电流需要几安到几十安, 因此需要加功率放大器进行功率放大和电流放大。P L C 控制步进电动机自动升降速的显著优点是, 当需要改动升降速的速率或运行速度时, 不需要改动硬件设备, 只要输入新的设置参数即可, 这样, 当生产工艺变动需要改变运行速度, 或现场调试需要选择最佳升降速率时, 是极为方便、简单的。一般步进电动机转速在100~1000步/秒, 采用软升降速控制后, 步进电动机转速可提高到2~8倍而不会失步。参考文献

[1]F X 系列可编程序控制器编写手册[Z ]. 三菱电机公司1997[2]F X O P E R A T I O N MA N U A L [Z ]. Mi t s u b i s h i e l e c t r i c c o r p o r a t i o n 1

992. [3]欧阳三泰, 欧阳琳. 步进式伺服系统的可编程序控制设计[J ]. 组合机床与自动化加工技术, 2003(1) [4]欧阳三泰, 欧阳希. F X P L C 脉冲输出功能的应

高压, 绝缘问题不必特殊考虑。

4结束语

绕制脉冲变压器是制作开关电源的重要工作, 也是设计与制作过程中消耗大量时间和主要精力的工作。变压器做得好, 整个设计与制作工作就完成了70%以上。做得不好, 可能就会出现停振、啸叫或输出电压不稳、负载能力不高等现象。在变压器的温升

35℃,绕制良好的脉冲变压器的工作效率可达到90%以上, 且波形质量优异, 电性能参数稳定。在100k H z 的使用条件下, 脉冲变压器的体积可以大大减小。绕制

变压器时, 要尽最大的努力保证以下几点:

(1) 即使输入电压最大, 主开关器件导通时间最长, 也不至于使变压器的磁芯饱和;

(2) 初级线圈与次级线圈的耦合要好, 漏电感要小;

(3) 高频开关变压器会因集肤效应导致电线的电阻值增大, 因而要减小电流密度。通常, 工作时的最大磁通密度取决于次级线圈。

N 2=2m a x O N m a x

S ×Bm

(12)

(4) 一般来说, 采用铁氧体磁芯E I 28时, 要把B m

控制在3k G s

以下。参考文献

[1]曲学基,

王增福, 曲敬铠编著. 稳定电源实用手册[Z

]. 电子工业出版社. 1994. 12[2]王瑞华等编著. 《电子变压器设计手册》[Z ]. 科学出版社, 1993

收稿日期:2005-01-06

作者简介:胡君臣(1963-) , 现任辽宁科技学院自控系教师, 讲师, 硕士, 主要从事电机与电工基础等方面教学与研究工作。

8电气开关》《(2005. . 1

) N o

文章编号:1004-289(2005) 01-0008-04X

高频变压器的设计与制作

胡君臣

辽宁科技学院自动控制系, 辽宁(

关键词:变压器; 绕组; 开关; 脉冲; 饱和; 中图分类号:33T M 4

文献标识码:B

本溪

117022)

要:通过实例详细阐述了脉冲变压器设计与制作过程, 并结合实际讨论了在设计中应注意的事项。

D e s i g na n dMa k i n go f a P u l s e T r a n s f o r m e r

-c HU J u n h e n

) C h i n a

. i nt h e d e s i g na r e d i s c u s s e db yc o m b i n i n ga c t u a l s i t u a t i o n ; ; ; ; :t r a n s f o r m e r w i n d i n g s w i t c h p u l s e s a t u r a t i o n K e yw o r d s

影响。

绕组线路比较复杂, 多半都有中心抽头。这不(3)

仅增大了初级绕组的尺寸, 增大了变压器的体积和重量, 而且使绕组在铁芯窗口中的分布关系发生变化。

(. , , 117022, D e p o f A u t o m a t i c C o n t r o l L i a o n i n gI n s t i t u t e o f S c i e n c e a n dT e c h n o l o g y B e n x i

. :T h e d e s i g na n d m a k i n g o f t h e p u l s e t r a n s f o r m e r a r e e x p a t i a t e d i nt h e p a p e r T h e p o i n t s f o r a t t e n t i o n A b s t r a c t

1引言

脉冲变压器也可称作开关变压器, 或简单地称作高频变压器。在传统的高频变压器设计中, 由于磁芯材料的限制, 其工作频率较低, 一般在2左右。随着0k H z

电源技术的不断发展, 电源系统的小型化、高频化和大功率化已成为一个永恒的研究方向和发展趋势。因此, 研究使用频率更高的电源变压器是降低电源系统体积、提高电源输出功率比的关键因素。

随着应用技术领域的不断扩展, 开关电源的应用愈来愈广泛, 但制作开关电源的主要技术和耗费主要精力就是制作开关变压器的部件。

开关变压器与普通变压器的区别大致有以下几点:

电源电压不是正弦波, 而是交流方波, 初级绕(1)

组中电流都是非正弦波。

变压器的工作频率比较高, 通常都在几十赫(2)

兹, 甚至高达几十万赫兹。在确定铁芯材料及损耗时必须考虑能满足高频工作的需要及铁芯中有高次谐波的

图1开关电源原理图

本文介绍了一款如图1所示的D -D C C 变换器,

输入电压为直流2输出电压分别为542V , V 及1V 的多路直流输出。要求各路输出电流都在1核心A 以上, 器件是美国U n i t r o d e 公司生产的一种高性能单端输

电气开关》《(

2005. . 1) N o 9

出式电流控制型脉宽调制器芯片U C 最高工作3842, 频率可达2根据锌锰铁氧体合金的优异电磁性00。k H z 能, 通过具体示例介绍工作频率为1的高频开00k H z 关电源变压器的设计及注意事项。

反激变换器在小功率开关电源设计中应用非常广泛,

且多路输出较方便。单端反激电源的工作模式有两种:副边二极管存在没有反向恢复的问题, 但MO S 管的峰值电流相对较大; 后者MO S 管的峰值电流相对较小, 但存在副边二极管的反向恢复问题, 需要给二极管本文采用了后者。

设计变压器时大多需要考虑下面问题:变换器频电流连续模式和电流断续模式。前者适用于较小功率,

2变压器磁芯的选择与工作点的确定

2. 1磁芯材料的选择

从变压器的性能指标要求可知, 传统的薄带硅钢已很难满足变压器在频率、使用环境方面的设计要求。加吸收电路。这两种工作模式可根据实际需求来选择,

磁芯的材料只有从坡莫合金、铁氧体材料、钴基非晶态合金和超微晶合金几种材料中来考虑。坡莫合金、钴基非晶态价格高, 约为铁氧体材料的数倍, 而饱和磁感应强度B s

也不是很高, 且加工工艺复杂。考虑到我们所要求的电源输出功率并不高, 大约为30W , 因此, 综合几种材料的性能比较, 我们还是选择了饱和磁感应强度B s 较高,

温度稳定性好, 价格低廉, 加工方便的性价比较低的锌锰铁氧体材料, 并选以此材料作为框架的E I 28来绕制本例中的脉冲变压器。2. 2工作点的确定

根据相关资料, E C 35输出功率为50W , 饱和磁感应强度大约在2000G s 左右。买来的磁芯, 由于厂家提供的磁感应强度B m 值并不准确, 可用图2所提供的方式粗略测试一下。将调压器接至原线圈, 用示波器观察副线圈输出电压波形。将原线圈的输入电压由小到大慢慢升高, 直到示波器显示的波形发生奇变。此时, 磁芯已饱和, 根据公式:

U =4. 44f N 1Φm 可推知在工频时的Φm 值。要求不高时, 可根据测算出的Φm , 粗略估算出原线圈的匝数, N 1=

4. 44f Φm

图2工作点测试示意图

3变压器主要参数的计算

本例中的变换器采用单端反激式工作方式, 单端

率f (H z ) ; 初级电压U 1(V ) ; 次级电压U 2(V ) ; 次级电流i 2(A ) ; 绕组线路参数n 1、n 2

; 温升τ(℃); 绕组相对电压降u ; 环境温度τH J (℃); 绝缘材料密度γz

(g /c m 3

) 1)

根据变压器的输出功率选取铁芯, 所选取的铁芯的P c 值应等于或大于给定值。

2)

绕组每伏匝数W c

=4f B S T k T

(1)

S T 是铁芯的截面积; k T 是窗口的填充系数;

3)

初级绕组电势E 1

=U 1(1-2

) (2) 4)

初级绕组匝数W 1=W 0E 1

(3)

5)

次级绕组电势E 2i =U 2i (1+2

) (4) 6)

次级绕组匝数W 2i =W 0E 2i

(5)

7) 初级绕组电流I 1

(6)

8)

次级绕组电流I 2i

(7)

其中, n 1、n 2i

分别是初级绕组和次级绕组的每层匝数。

9)

初级绕组线径d 1=1. 13(8)

10)

次级绕组线径d 2i =1. 13(9)

其中, j

是电流密度。详细的变压器设计方法与计算相当复杂, 本文参照经验公式, 依据下面的步骤设计了本例转换器中的

10高频变压器。

3. 1确定变压器的变比

根据输出电压U 0的关系式

U 0=

D O N

) n T -t O N

得变比为

(10)

电气开关》《(2005. . 1) N o

反馈绕组匝数的确定, 要求既能保证开关元件的饱和导通又不至于造成过大损耗。根据U C 3842的要

反馈绕组的输出电压应在1求, 3V 左右。因此, 31匝

=≈6U 24D m a x

3. 6导线线径的选取

根据输入输出的估算, 初线线圈的平均电流值应

N 3=D O N

n

=U 0T -t O N

) (11) 式中U D 为整流器输出的直流电压。本例中U D =24V , f 为100k H z , t O N 取0. 5; n =2。3. 2计算初级线圈中的电流

已知输出直流电压U 0=±12V 、5V ,

负载电流均为I 0

=1A , 则输出功率P o =P 1+P 2+P 3=29W 开关电源的效率η一般在60~90%之间,

本例取η

=0. 65, 则输入功率为P =o

1

η=0. 65≈45W 初级的平均电流为

I 1=1

U x

=P o /ηU D m a x

D m a =0. 65×24=1. 86A 假定初级线圈的初始电流为零, 那么, 在开关管的导通期t O N 里, 初级线圈中的电流i L 1

便从零开始线性增长到峰值I 1P I 1P =1

t O N

=5=7. 44A 3. 3计算初级绕组圈数N 1

初级绕组的最小电感L 1为

-6

L =D m a x O N

1

I 1P

=7. 44=16. 13µH 根据输出功率P o 的大小,

选用适当的磁芯, 其形状用环形、E I 形或罐形均可, 本例采用E I 28, 该类型的铁芯在f =50k H z 时, 功率可达到60W , 在f =100k H z 时, 输出功率可达到90W 。

N 11P

6-66

1=

S B m

=85×0. 2≈7匝实际应用时, 初级线圈绕10匝。

式中I 1P

-初级线圈峰值电流, A ; L 1

-初级电感, H ; S -磁芯截面积, m m 2

; B m -磁芯最大磁通密度, T 。3. 4计算次级绕组圈数N 2N 2=

n =2

=5匝即±12V 分别绕5匝, 5V 绕3匝。

反馈绕组的估算

该允许达到2A 。1)

初级绕组初级绕组的线径可选d =0. 80m m ,

其截面积为0. 5027m m 2

的圆铜线。

2)

次级绕组次级绕组的线径可根据各组输出电流的大小, 利用原级相同线径采用多股并绕的办法解决。为了方便线圈绕制, 也可选用线径较粗的导线。由于工作频率较高, 应考虑集肤效应的影响。

3. 7线圈绕制与绝缘

绕制开关变压器最重要的问题是想办法使初、次级线圈紧密地耦合在一起, 这样可以减小变压器漏感。

因为漏感过大, 将会造成较大的尖峰脉冲, 从而击穿开关管。因此, 在绕制高频变压器线圈时, 应尽量使初、次级线圈之间的距离近些。

具体可采用以下方法:

(1)

双线并绕法将初、次级线圈的漆包线合起来并绕, 即所谓双线并绕。这样初、次级线间距离最小, 可使漏感减小到最小值。但这种绕法不好绕制, 同时两线间的耐压值较低。

(2)

逐层间绕法为克服并绕法耐压低、

绕制困难的缺点, 用初、次级分层间绕法, 即1、3、5行奇数层绕初级绕组, 2、4、6

等偶数层绕次级绕组。这种绕法仍可保持初、次级间的耦合, 又可在初、次级间垫绝缘纸, 以提高绝缘程度。

(3)

夹层式绕法把次级绕组绕在初级绕组的中间, 初级分两次绕。这种绕法只在初级绕组中多一个接头, 工艺简单, 便于批量生产。

本例中, 为减小分布参数的影响, 初级采用双线并绕连接的结构, 次级采用分段绕制, 串联相接的方式,

即所谓堆叠绕法。降低绕组间的电压差, 提高变压器的可靠性。在变压器的绝缘方面, 线圈绝缘应尽量选用抗电强度高、介质损耗低的复合纤维绝缘纸, 提高初、次

(下转第13页)

电气开关》《(2005. . 1) N o 13

用技巧[湖南工程学院学报. ]. 2004(1) J

收稿日期:2004-08-27作者简介

欧阳三泰男(湖南邵东人, 高级工程师, 现湖南工程学院从事教1947-) 学和科研, 主要研究方向为智能电器、智能控制。

=========================上接第1(0页)

级之间的绝缘强度和抗电晕能力, 本例中, 因为不涉及

图4软起、停特性曲线

图5六拍时序脉冲梯形图

用继电器方式输出模块, 其响应速度太慢, 控制会失常, 故应选用晶体管方式输出模块。但由于晶体管方式输出模块的负载能力只有0. 5~2A ,

而一般步进电动机的励磁电流需要几安到几十安, 因此需要加功率放大器进行功率放大和电流放大。P L C 控制步进电动机自动升降速的显著优点是, 当需要改动升降速的速率或运行速度时, 不需要改动硬件设备, 只要输入新的设置参数即可, 这样, 当生产工艺变动需要改变运行速度, 或现场调试需要选择最佳升降速率时, 是极为方便、简单的。一般步进电动机转速在100~1000步/秒, 采用软升降速控制后, 步进电动机转速可提高到2~8倍而不会失步。参考文献

[1]F X 系列可编程序控制器编写手册[Z ]. 三菱电机公司1997[2]F X O P E R A T I O N MA N U A L [Z ]. Mi t s u b i s h i e l e c t r i c c o r p o r a t i o n 1

992. [3]欧阳三泰, 欧阳琳. 步进式伺服系统的可编程序控制设计[J ]. 组合机床与自动化加工技术, 2003(1) [4]欧阳三泰, 欧阳希. F X P L C 脉冲输出功能的应

高压, 绝缘问题不必特殊考虑。

4结束语

绕制脉冲变压器是制作开关电源的重要工作, 也是设计与制作过程中消耗大量时间和主要精力的工作。变压器做得好, 整个设计与制作工作就完成了70%以上。做得不好, 可能就会出现停振、啸叫或输出电压不稳、负载能力不高等现象。在变压器的温升

35℃,绕制良好的脉冲变压器的工作效率可达到90%以上, 且波形质量优异, 电性能参数稳定。在100k H z 的使用条件下, 脉冲变压器的体积可以大大减小。绕制

变压器时, 要尽最大的努力保证以下几点:

(1) 即使输入电压最大, 主开关器件导通时间最长, 也不至于使变压器的磁芯饱和;

(2) 初级线圈与次级线圈的耦合要好, 漏电感要小;

(3) 高频开关变压器会因集肤效应导致电线的电阻值增大, 因而要减小电流密度。通常, 工作时的最大磁通密度取决于次级线圈。

N 2=2m a x O N m a x

S ×Bm

(12)

(4) 一般来说, 采用铁氧体磁芯E I 28时, 要把B m

控制在3k G s

以下。参考文献

[1]曲学基,

王增福, 曲敬铠编著. 稳定电源实用手册[Z

]. 电子工业出版社. 1994. 12[2]王瑞华等编著. 《电子变压器设计手册》[Z ]. 科学出版社, 1993

收稿日期:2005-01-06

作者简介:胡君臣(1963-) , 现任辽宁科技学院自控系教师, 讲师, 硕士, 主要从事电机与电工基础等方面教学与研究工作。


相关文章

  • 大功率开关电源的新型模块式设计
  • 大功率开关电源的新型模块式设计 --模块PF1000A-360 和IPM-4M的应用 本文介绍PF1000A-360型AC/DC功率变换模块和IPM-4M型全桥式DC/AC高频大功率变换模块组合设计出新型模块式高频(22-25KHZ)高压( ...查看


  • 高频小信号功率放大器
  • 摘 要 在无线通信中,发射与接收的信号应当适合于空间传输.所以,被通信设备处理和传输的信号是经过调制处理过的高频信号.高频小信号放大器是通信设备中常用的功能电路,它所放大的信号频率在数百千赫至数百兆赫.高频小信号放大器的功能是实现对微弱的高 ...查看


  • 射频宽带放大器
  • 射频宽带放大器 (D题) 摘要 射频宽带放大器是目前功率放大器的主要发展趋势,实现方案多种多样,如采用E-PHEMT晶体管(ATF-55143)器件模型和其他元件模型设计,LQ801宽带功率晶体管,由于实验室条件有限以及要结合课堂学以致用, ...查看


  • 高频变压器的制作
  • 高频变压器的制作 高频变压器的线路图如图1所示. 图1 高频变压器的线路图 高频变压器的制作流程如图2所示. 图2 高频变压器的制作流程 高频变压器的制作大致包括以下十个过程,对每个过程的流程.工艺及注意事项作详细的分析. 1.绕线 (1) ...查看


  • 高频逆变器中高频变压器的绕制方法
  • 高频逆变器中高频变压器的绕制方法 -------------------------------------------------------------------------------- 高频链逆变技术用高频变压器代替传统逆变器中笨 ...查看


  • 新型模块式高频高压大功率开关电源的设计
  • 应用天地 新型模块式高频高压大功率开关电源的设计 艾伦通信工程有限公司 吴康 前言 计算机.变频控制.办公设备和航空等许多应用领域 都需要集成化.智能化及模块化的高频大功率开关电源,但常见的产品是AC/DC或DC/DC等通信用开关电源,电压 ...查看


  • 晶体管中频小信号选频放大
  • 高频电子线路 课程设计报告 2013-2014学年第一学期 院(系) 电子信息学院 专 业 通信工程 班级 BX11XX 学生姓名 XXX 课设时间 2013.1215-2013.12. 指导老师 陈布雨 提交时间 2013.12.20 目 ...查看


  • 高频功率放大器设计
  • 高频电子线路课程设计报告 设计题目:高频功率放大器设计 专业班级:通信1112班 姓名:霍晓康 学号:1170131233 指导教师:刁少岚 时间:2013年1月 目录 一.课程设计目的及要求 二.工具软件的学习与应用 三.设计方案及运行结 ...查看


  • 240W半桥型开关稳压电源设计
  • 辽 宁 工 业 大 学 电力电子技术课程设计(论文) 题目: 240W 半桥型开关稳压电源设计 院(系): 工程技术学院 专业班级: 电气121 学 号: 12190** 学生姓名: 海** 指导教师: 李** (签字) 起止时间:2014 ...查看


热门内容