几何体的外接球与内切球

几何体的外接球与内切球

1、内切球球心到多面体各面的距离均相等,外接球球心到多面体各顶点的距离均相等。 2、正多面体的内切球和外接球的球心重合。

3、正棱锥的内切球和外接球球心都在高线上,但不重合。 4、体积分割是求内切球半径的通用做法。 一、外接球

(一)多面体几何性质法

1、 已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,则这个球的表面积是 A.16 B.20 C.24 D.32

小结 本题是运用“正四棱柱的体对角线的长等于其外接球的直径”这一性质来求解的. 2、一个长方体的各顶点均在同一球的球面上,且一个顶点上的三条棱的长分别为1,2,3,

则此球的表面积为 。 (二)补形法

1、

.

2、设P,A,B,C是球O面上的四点,且PA,PB,PC两两互相垂直,若PAPBPCa, 则球心O到截面ABC的距离是 .

小结 一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为a、b、c,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为R

,则有2R

3、三棱锥OABCOA,OB,OC两两垂直,且OAOB2OC2aOABC外接球的表面积为( )

A.6a9a.12a D.24a

4、三棱锥PABC的四个顶点均在同一球面上,其中ABC是正三角形 PA平面

2

2

2

2

ABC,PA2AB6则该球的体积为( )

A. 163 B. 32 C. 48 D. 643

答案及解析:

10.B

点评: 本题考查球的内接体与球的关系,考查空间想象能力,利用割补法结合球内接多面体的几何特征求出球的半径是解题的关键.

5、如图的几何体是长方体 ABCDA1B1C1D1的一部分,其中 ABAD3,DD1BB12cm则该几何体的外接球的表面积为 (A 11cm2 (B) 22

cm22

( D)

cm2

答案及解析:

12.【知识点】几何体的结构. G1

B 解析:该几何体的外接球即长方体ABCDA1B1C1D1的外接球,而若长方体

ABCDA1B1C1D1的外接球半径为R ,则长方体ABCDA1B1C1D1的体对角线为2R,

所以(2R)33222R故选 B.

【思路点拨】分析该几何体的外接球与长方体ABCDA1B1C1D1的外接球的关系,进而得结论.

2

2

2

2

2

11

,所以该几何体的外接球的表面积22cm2,2

6、一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积是( )

A. 12π

B. 4

π

C. 3π

D. 12

π

答案及解析:

14.

考点: 由三视图求面积、体积.

分析: 三视图复原几何体是四棱锥,扩展为正方体,它的体对角线,就是球的直径,求出半径,解出球的表面积.

解答: 解:由三视图知该几何体为四棱锥,记作S﹣ABCD,

其中SA⊥面ABCD.面ABCD为正方形,将此四棱锥还原为正方体,易知正方体的体对角线即为外接球直径,所以2r=∴S球=4πr=4π×=3π. 答案:C

点评: 本题考查三视图求表面积,几何体的外接球问题,是基础题.

(三)寻求轴截面圆半径法

1、正四棱锥S

ABCD2

S、A、B、C、D都在同一球面上,则此球的体积为

A

图3

B

C

小结 根据题意,我们可以选择最佳角度找出含有正棱锥特征元素的外接球的一个轴截面圆,于是该圆的半径就是所求的外接球的半径.本题提供的这种思路是探求正棱锥外接球半径的通解通法,该方法的实质就是通过寻找外接球的一个轴截面圆,从而把立体几何问题转化为平面几何问题来研究.这种等价转化的数学思想方法值得我们学习.

2、求棱长为 a 的正四面体 P – ABC 的外接球的表面积

3、三棱柱ABC﹣A1B1C1中,AA1=2且AA1⊥平面ABC,△ABC是边长为棱柱的六个顶点都在一个球面上,则这个球的体积为() A. 8π

B.

C.

D. 8

π 的正三角形,该三

答案及解析:

7.C

考点: 球的体积和表面积.

专题: 计算题;空间位置关系与距离.

分析: 根据题意,正三棱柱的底面中心的连线的中点就是外接球的球心,求出球的半径即可求出球的体积.

解答: 解:由题意可知:正三棱柱的底面中心的连线的中点就是外接球的球心, 因为△ABC是边长为

的正三角形,所以底面中心到顶点的距离为:1;

=.

因为AA1=2且AA1⊥平面ABC,所以外接球的半径为:r=所以外接球的体积为:V=πr=π×(故选:C.

3

)=

3

点评: 本题给出正三棱柱有一个外接球,在已知底面边长的情况下求球的体积.着重考查了正三棱柱的性质、正三角形的计算和球的体积公式等知识,属于中档题. 8.

4、已知三棱锥ABCD中,ABACBDCD2,BC2AD,直线AD与底面

BCD所成角为,则此时三棱锥外接球的体积为

3

A. 8

答案及解析:

11.D

(四)球心定位法

1、在矩形ABCD中,AB4,BC3,沿AC将矩形ABCD折成一个直二面角BACD,则四面体ABCD的外接球的体积为 A.

D

[1**********]5

 B. C. D. 12963

图4

2、如图所示是一个几何体的三视图,则这个几何体外接球的表面积为

A. 8 B. 16 C. 32 D. 64

3、三棱锥PABC中,底面ABC是边长为2的正三角形, PAABCPA2 )

A

B

C.2 D

4、如图,在三棱锥A﹣BCD中,△ACD与△BCD是全等的等腰三角形,且平面ACD⊥平面BCD,AB=2CD=4,则该三棱锥的外接球的表面积为

B.

C.答案及解析:

D.27.E.

F.考点:球的体积和表面积;球内接多面体. G.专题:空间位置关系与距离.

H.分析:取AB,CD中点分别为E,F,连接EF,AF,BF,求出EF,判断三棱锥的外接球球心O在线段EF上,连接OA,OC,求出半径,然后求解表面积.

I.解答: 解:取AB,CD中点分别为E,F,连接EF,AF,BF,由题意知AF⊥BF,AF=BF,EF=2,易知三棱锥的外接球球心O在线段EF上,连接OA,OC,有R=AE+OE,R=CF+OF,求得

,所以其表面积为

2

2

2

2

2

2

J.故答案为:

K.

L.点评:本小题主要考查球的内接几何体的相关计算问题,对考生的空间想象能力与运算求解能力以及数形结合思想都提出很高要求,本题是一道综合题,属于较难题. M.28. N.29.

5、在三棱锥ABCD中,底面BCD为边长为2的正三角形,顶点A在底面BCD上的射影为BCD的中心, 若E为BC的中点,且直线AE与底面BCD所成角的正切值为

O

ABCD外接球的表面积为__________.

P.答案及解析:

Q.29.6

R.

二、内切球问题 1、一气球(近似看成球体)在不变形的前提下放在由长为2的12根木条搭成的正方体中,该气球球表面积最大是__________.

2、正三棱锥的高为 1

,底面边长为。求棱锥的内切球的表面积。

3、 三棱锥ABCD的两条棱ABCD6,其余各棱长均为5,求三棱锥的内切球半径.

4、如图,已知球O是棱长为1 的正方体ABCD﹣A1B1C1D1的内切球,则平面ACD1截球O的截面面积为

( )

A.

π

B.

C.

D.

π

答案及解析:

4.C

考点:截面及其作法. 专题:空间位置关系与距离.

分析:根据正方体和球的结构特征,判断出平面ACD1是正三角形,求出它的边长,再通过图求出它的内切圆的半径,最后求出内切圆的面积 解答: 解:根据题意知,平面ACD1是边长为

的正三角形,

且球与以点D为公共点的三个面的切点恰为三角形ACD1三边的中点, 故所求截面的面积是该正三角形的内切圆的面积,

则由图得,△ACD1内切圆的半径是则所求的截面圆的面积是π×故选:C

×

×tan30°==

已知正四棱锥OABCD(底面是正方形且顶点在顶面的射影是底面正方形的中心的棱锥叫做正四棱锥)的体积为12,

底面边长为则正四棱锥OABCD内切球的表面积为________.

答案及解析:

28.4

几何体的外接球与内切球

1、内切球球心到多面体各面的距离均相等,外接球球心到多面体各顶点的距离均相等。 2、正多面体的内切球和外接球的球心重合。

3、正棱锥的内切球和外接球球心都在高线上,但不重合。 4、体积分割是求内切球半径的通用做法。 一、外接球

(一)多面体几何性质法

1、 已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,则这个球的表面积是 A.16 B.20 C.24 D.32

小结 本题是运用“正四棱柱的体对角线的长等于其外接球的直径”这一性质来求解的. 2、一个长方体的各顶点均在同一球的球面上,且一个顶点上的三条棱的长分别为1,2,3,

则此球的表面积为 。 (二)补形法

1、

.

2、设P,A,B,C是球O面上的四点,且PA,PB,PC两两互相垂直,若PAPBPCa, 则球心O到截面ABC的距离是 .

小结 一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为a、b、c,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为R

,则有2R

3、三棱锥OABCOA,OB,OC两两垂直,且OAOB2OC2aOABC外接球的表面积为( )

A.6a9a.12a D.24a

4、三棱锥PABC的四个顶点均在同一球面上,其中ABC是正三角形 PA平面

2

2

2

2

ABC,PA2AB6则该球的体积为( )

A. 163 B. 32 C. 48 D. 643

答案及解析:

10.B

点评: 本题考查球的内接体与球的关系,考查空间想象能力,利用割补法结合球内接多面体的几何特征求出球的半径是解题的关键.

5、如图的几何体是长方体 ABCDA1B1C1D1的一部分,其中 ABAD3,DD1BB12cm则该几何体的外接球的表面积为 (A 11cm2 (B) 22

cm22

( D)

cm2

答案及解析:

12.【知识点】几何体的结构. G1

B 解析:该几何体的外接球即长方体ABCDA1B1C1D1的外接球,而若长方体

ABCDA1B1C1D1的外接球半径为R ,则长方体ABCDA1B1C1D1的体对角线为2R,

所以(2R)33222R故选 B.

【思路点拨】分析该几何体的外接球与长方体ABCDA1B1C1D1的外接球的关系,进而得结论.

2

2

2

2

2

11

,所以该几何体的外接球的表面积22cm2,2

6、一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积是( )

A. 12π

B. 4

π

C. 3π

D. 12

π

答案及解析:

14.

考点: 由三视图求面积、体积.

分析: 三视图复原几何体是四棱锥,扩展为正方体,它的体对角线,就是球的直径,求出半径,解出球的表面积.

解答: 解:由三视图知该几何体为四棱锥,记作S﹣ABCD,

其中SA⊥面ABCD.面ABCD为正方形,将此四棱锥还原为正方体,易知正方体的体对角线即为外接球直径,所以2r=∴S球=4πr=4π×=3π. 答案:C

点评: 本题考查三视图求表面积,几何体的外接球问题,是基础题.

(三)寻求轴截面圆半径法

1、正四棱锥S

ABCD2

S、A、B、C、D都在同一球面上,则此球的体积为

A

图3

B

C

小结 根据题意,我们可以选择最佳角度找出含有正棱锥特征元素的外接球的一个轴截面圆,于是该圆的半径就是所求的外接球的半径.本题提供的这种思路是探求正棱锥外接球半径的通解通法,该方法的实质就是通过寻找外接球的一个轴截面圆,从而把立体几何问题转化为平面几何问题来研究.这种等价转化的数学思想方法值得我们学习.

2、求棱长为 a 的正四面体 P – ABC 的外接球的表面积

3、三棱柱ABC﹣A1B1C1中,AA1=2且AA1⊥平面ABC,△ABC是边长为棱柱的六个顶点都在一个球面上,则这个球的体积为() A. 8π

B.

C.

D. 8

π 的正三角形,该三

答案及解析:

7.C

考点: 球的体积和表面积.

专题: 计算题;空间位置关系与距离.

分析: 根据题意,正三棱柱的底面中心的连线的中点就是外接球的球心,求出球的半径即可求出球的体积.

解答: 解:由题意可知:正三棱柱的底面中心的连线的中点就是外接球的球心, 因为△ABC是边长为

的正三角形,所以底面中心到顶点的距离为:1;

=.

因为AA1=2且AA1⊥平面ABC,所以外接球的半径为:r=所以外接球的体积为:V=πr=π×(故选:C.

3

)=

3

点评: 本题给出正三棱柱有一个外接球,在已知底面边长的情况下求球的体积.着重考查了正三棱柱的性质、正三角形的计算和球的体积公式等知识,属于中档题. 8.

4、已知三棱锥ABCD中,ABACBDCD2,BC2AD,直线AD与底面

BCD所成角为,则此时三棱锥外接球的体积为

3

A. 8

答案及解析:

11.D

(四)球心定位法

1、在矩形ABCD中,AB4,BC3,沿AC将矩形ABCD折成一个直二面角BACD,则四面体ABCD的外接球的体积为 A.

D

[1**********]5

 B. C. D. 12963

图4

2、如图所示是一个几何体的三视图,则这个几何体外接球的表面积为

A. 8 B. 16 C. 32 D. 64

3、三棱锥PABC中,底面ABC是边长为2的正三角形, PAABCPA2 )

A

B

C.2 D

4、如图,在三棱锥A﹣BCD中,△ACD与△BCD是全等的等腰三角形,且平面ACD⊥平面BCD,AB=2CD=4,则该三棱锥的外接球的表面积为

B.

C.答案及解析:

D.27.E.

F.考点:球的体积和表面积;球内接多面体. G.专题:空间位置关系与距离.

H.分析:取AB,CD中点分别为E,F,连接EF,AF,BF,求出EF,判断三棱锥的外接球球心O在线段EF上,连接OA,OC,求出半径,然后求解表面积.

I.解答: 解:取AB,CD中点分别为E,F,连接EF,AF,BF,由题意知AF⊥BF,AF=BF,EF=2,易知三棱锥的外接球球心O在线段EF上,连接OA,OC,有R=AE+OE,R=CF+OF,求得

,所以其表面积为

2

2

2

2

2

2

J.故答案为:

K.

L.点评:本小题主要考查球的内接几何体的相关计算问题,对考生的空间想象能力与运算求解能力以及数形结合思想都提出很高要求,本题是一道综合题,属于较难题. M.28. N.29.

5、在三棱锥ABCD中,底面BCD为边长为2的正三角形,顶点A在底面BCD上的射影为BCD的中心, 若E为BC的中点,且直线AE与底面BCD所成角的正切值为

O

ABCD外接球的表面积为__________.

P.答案及解析:

Q.29.6

R.

二、内切球问题 1、一气球(近似看成球体)在不变形的前提下放在由长为2的12根木条搭成的正方体中,该气球球表面积最大是__________.

2、正三棱锥的高为 1

,底面边长为。求棱锥的内切球的表面积。

3、 三棱锥ABCD的两条棱ABCD6,其余各棱长均为5,求三棱锥的内切球半径.

4、如图,已知球O是棱长为1 的正方体ABCD﹣A1B1C1D1的内切球,则平面ACD1截球O的截面面积为

( )

A.

π

B.

C.

D.

π

答案及解析:

4.C

考点:截面及其作法. 专题:空间位置关系与距离.

分析:根据正方体和球的结构特征,判断出平面ACD1是正三角形,求出它的边长,再通过图求出它的内切圆的半径,最后求出内切圆的面积 解答: 解:根据题意知,平面ACD1是边长为

的正三角形,

且球与以点D为公共点的三个面的切点恰为三角形ACD1三边的中点, 故所求截面的面积是该正三角形的内切圆的面积,

则由图得,△ACD1内切圆的半径是则所求的截面圆的面积是π×故选:C

×

×tan30°==

已知正四棱锥OABCD(底面是正方形且顶点在顶面的射影是底面正方形的中心的棱锥叫做正四棱锥)的体积为12,

底面边长为则正四棱锥OABCD内切球的表面积为________.

答案及解析:

28.4


相关文章

  • 空间几何体的外接球 学案05
  • 空间几何体的外接球 1. 长方体AC ' 的长宽高分别是3,2,1,那么该长方体的外接球的半径为 ' A ' ' C A 2. 圆柱的底面半径是1,母线长是2,那么该圆柱的外接球半径为 3. 圆锥的底面半径是1,母线长是2,那么该圆锥的外接 ...查看


  • 多面体的外接(内切)球半径的求法举要
  • 求三视图还原而成的几何体的外接(内切)球的表面积或体积的问题在2016届各地的高考模拟题中大量出现,这是高考的重点,也是学生学习的难点.困难表现在两个方面:一是根据三视图如何准确还原几何体:二是依据画出的几何体的特征如何采用适当的方法求外接 ...查看


  • 多面体外接球问题1
  • 多面体外接球问题1 1.三棱柱ABC -A 1B 1C 1的各个顶点都在球O 的球面上, 且AB =AC =1, BC CC 1⊥平面ABC .若球O 的表面积为3π,则这个三棱柱的体积是( ) 111 B.C . D.1 63 2 ∆AB ...查看


  • 精选立体几何三视图.几何体外接球练习
  • 三视图 一.常规几何体 例1.水平放置的三棱柱的侧棱长和底边长均为2,且侧棱AA 1⊥面A 1B 1C 1,正视图是边长为2的正方形, 该三棱柱的侧视图面积为( ). A . 4 B 2 C . 6 D . 3 例2.若一个底面是正三角形的 ...查看


  • 多面体外接球问题的变式探究
  • [学法指导] 多面体外接球问题的变式探究 陈志超 (辽宁省大连市金州高级中学,辽宁大连116100) 多面体的外接球问题是有关球的问题的基本题型之一,它能全方立体几何是培养空间想象能力很好的素材,摘要: 这类问题由于不易画图而变得抽象难解, ...查看


  • 几何体外接球精美讲义
  • 第二讲 几何体的外接球和内切球问题 ※基础知识: 1.常见平面图形:正方形,长方形,正三角形的外接圆和内切圆 长方形(正方形)的外接圆半径为对角线长的一半,正方形的内切圆半径为边长的一半: 正三角形的内切圆半径:2a 外接圆半径:a 三角形 ...查看


  • 内切球与外接球
  • 立体几何中的"内切"与"外接"问题的探究 1 球与柱体 规则的柱体,如正方体.长方体.正棱柱等能够和球进行充分的组合,以外接和内切两种形态进行结合,通过球的半径和棱柱的棱产生联系,然后考查几何体的体积 ...查看


  • 空间几何体的内切球与外接球
  • <空间几何体的内切球与外接球> 一.正方体 1. 一个正方体的体积为8,则这个正方体的内切球的表面积是 ( ) A . 8π B. 6π C. 4π D. π 2. 已知正方体外接球的体积是32π,那么正方体的棱长等于( ) 3 ...查看


  • 简单多面体外接球球心的确定
  • 简单多面体外接球球心的确定 一.知识点总结: 1. 由球的定义确定球心 (1) 长方体或正方体的外接球的球心是其对角线的中点. (2) 正棱柱的外接球的球心是上下底面中心连接的中点 (3) 直三棱柱的外接球的球心是上下底面三角形外心连线的中 ...查看


热门内容