液相微萃取-高效液相色谱法测定环境中的吡虫啉

液相微萃取—高效液相色谱法测定环境中的吡虫啉

陈成龙

(东华理工大学化学生物与材料科学学院040312班 江西抚州 344000)

摘 要:本文研究了基于三相中空纤维磁力搅拌的新型液相微萃取(LPME)模式,采用磷酸二氢钾作接受液,快速分离富集稻谷、稻叶、水和土壤中吡虫啉农药残留的前处理技术,以高效液相色谱(HPLC)为检测手段。系统地优化了LPME技术的有机溶剂、搅拌速率和萃取时间等条件。最佳色谱条件为:SB-Phenyl C18

(250mm×4.6mm i.d.,5μm)液相色谱柱,以甲醇:水:三乙胺(80:20:1,v:v)为流动相,流速0.8 ml/min,270 nm波长下检测。得到方法的线性范围0.0001~0.2 µg/ml,相关系数0.9997,最低检出限为5ng/ml(S/N=3),相对标准偏差(RSD)为1.2%加标回收率98. 3%~101. 5%,富集倍数19.2倍。建立了一种简单、快速、准确、环境友好的农药残留检测方法。

关键词:吡虫啉 农药残留 中空纤维 前处理 液相微萃取

The Determination of Imidacloprid in Environment Based on Three-phase Hollow Fiber Liquid Phase Microextraction-High Performance Liquid Chromatography

Chen chenglong

(Applied Chemistry Department ,Eastchina Institute of Techonology ,Fuzhuo,JX344000)

Abstract: A novel method for fast separate and enrichment imidacloprid in paddy,leaf,water and soil was established by using high performance liquid chromatography (HPLC) coupled with a three-phase hollow fiber based liquid phase microextraction (TP-HF-LPME) technique for sample preparation. Parameters related to TP-HF-LPME (organic solvent, stirring speed,pH of donor and acceptor phase, extraction time) were also optimized experimentally. The proposed method integrates extraction,enrichment and clean-up into a single step. The method was developed chromatography was carried out on an SB-Phenyl C18 (250mm ×4.6mm i.d.,5μm ) column,methanol-water –triethylamine,(80∶20:1, V :V) as mobile phase and detection at 270nm. It has been demonstrated to be a very fast,effective and virtually “green” sample preparation technique, which provided a good linear range (0.0001~0.2 μg/ml) with r2 = 0.9997, a low detection limit(5 ng/ml, S/N = 3),RSD=1.2% and the addition recovery was obtained in the range of 98.30-101.5%. The proposed method integrates extraction, enrichment and clean-up into a single step, which is a simple,effective,veracious and environmental method for detecting pesticide residue.

Keywords: imidacloprid pesticide residue hollow fiber pretreatment liquid phase microextraction

目录

1.前言.. .......................................................................................................................... 5

1.1 吡虫啉简介. .................................................................................................... 5

1.2 液相微萃取(LPME) ....................................................................................... 5

1.2.1 液相微萃取的发展历史 .................................................................... 5

1.2.2 液相微萃取的萃取模型 .................................................................... 6

1.2.2.1直接液相微萃取(Direct-LPME) .......................................... 6

1.2.2.2 液相微萃取/后萃取(LPME/BE) .................................... 6

1.2.2.3 顶空液相微萃取(HS-LPME) ......................................... 7

1.2.3 液相微萃取的萃取原理 .................................................................... 7

1.2.3.1 两相LPME萃取原理 ......................................................... 7

1.2.3.2 三相LPME萃取原理 ......................................................... 8

1.2.4 液相微萃取的萃取参数的优化 ........................................................ 8

1.2.4.1 萃取溶剂 ............................................................................... 8

1.2.4.2 盐效应 ................................................................................... 8

1.2.4.3 给出相PH值 ....................................................................... 8

1.2.4.4 温度 ....................................................................................... 8

1.2.4.5 搅拌速度 ............................................................................. 8

1.2.4.6 萃取时间 ............................................................................. 9

1.2.4.7 液滴大小 ............................................................................... 9

2 实验部分 .................................................................................................................... 10

2.1 仪器设备 .......................................................................................................... 10

2.2 试剂 .................................................................................................................. 10

2.3 样品处理 .......................................................................................................... 10

2.3.1 样品的制备 ............................................................................................ 10

2.3.2 样品的保存及处理 ................................................................................ 10

2.4 色谱条件 .......................................................................................................... 10

2.5 吡虫啉标准储备液和标准溶液的配制 ....................................................... 10

2.6 萃取步骤 ........................................................................................................ 11

3 结果与讨论 ................................................................................................................ 12

3.1 萃取条件的选择 .............................................................................................. 12

3.1.1 紫外检测波长的选择 ............................................................................ 12

3.1.2有机溶剂的选择 ..................................................................................... 12

3.1.3 给出相和接收相组成 ............................................................................ 12

3.1.4 萃取时间的选择 .................................................................................... 13

3.1.5 搅拌速度的选择 .................................................................................... 13

3.1.6 实验中三相中空纤维液相微萃取(TP-HF-LPME)条件 ............... 14

3.2 方法学参数考查 .............................................................................................. 14

3.2.1精密度 ..................................................................................................... 14

3.2.2 标准曲线线性范围及相关系数 ............................................................ 14

3.2.3工作曲线线性范围及相关系数 ............................................................. 15

3.2.4 富集倍数 ................................................................................................ 16

3.3 样品的测定 ...................................................................................................... 16

4 结论 .......................................................................................................................... 18

参考文献 ........................................................................................................................ 19

致谢 ................................................................................................................................ 21

1. 前言

1.1 吡虫啉简介

吡虫啉( Imidacloprid),又叫灭虫精,中文通用名咪蚜胶,是1984年德国拜耳公司和日本特殊农药公司共同开发的高效杀虫剂[1],化学名称1 - (6 - 氯-3 - 吡啶基甲基) - N - 硝基亚米唑烷- 2 - 基胺,系具内吸、触杀、胃毒作用的硝基亚甲基类内吸杀虫剂,是烟酸乙酰胆碱酯酶受体的作用体[2,3],干扰害虫运动神经系统使化学信号传递失灵,无交互抗性问题,用于防治刺吸式口器害虫如蚜虫、飞虱、蓟马、粉虱等[4]。吡虫啉的推荐用药量(有效成分)为60~120 g/hm2,目前国内尚未制订稻谷中吡虫啉残留限量的要求,国际上对其残留限量要求为:水果类0.2mg/kg,作物种子0.050mg/kg,易溶于乙腈和二氯甲烷中,化学结构较稳定[5]。该农药会对人类和哺乳动物产生慢性毒理效应[6]。本文采用三相液相微萃取检测稻谷、稻叶、水和土壤中吡虫啉的含量,方法简便、快速,净化效果很好。

吡虫啉的商品名称为:Admire,实验代号:NTN-33893,化学名称为:1 - (6 - 氯-3 - 吡啶基甲基) - N - 硝基亚米唑烷- 2 - 基胺,分子式为:C6H10ClN5O2,结构式为:

吡虫啉的制备[7]

将2-氯-5氯甲基吡啶与咪唑烷溶于乙腈中,加入K2CO3作酸吸收剂,在CsCl的参与下,回执回流5h,得到产品,产品回收率为90.2%。自从吡虫啉以商品形式进入市场,得到推广使用后,许多路线可供选择,本文选择较成熟的路线介绍。

1.2 液相微萃取(LPME)

1.2.1 液相微萃取的发展历史

LPME技术是在液液萃取(liquid-liquid extraction,LLE)和固相微萃取(Solid

Phase Microextraction,SPME)基础上发展起来的一种新型萃取方法。传统的LLE操作步骤繁琐、处理时间长、难于实现自动化,无法适应现代仪器分析速度快、灵敏度高的要求[8-10],以及LLE过程中使用大量有机溶剂且易产生乳化现象的缺

点。SPME装置的萃取头较昂贵,使用寿命较短,多次使用还存在交叉污染问题,且SPME与气相色谱(GC)联用有较大的优势,而与高效液相色谱(HPLC)联用时还需要一个专门的解吸装置,这些弊端也在一定程度上限制了SPME技术的推广

[11-12]。为了解决这些问题,在1996年Fernandez等提示液液微萃取,实现了对样品中的脂肪胺的在线检测。其后Jeannot和Cant well提出溶剂微萃取,并建立了一种悬挂于微进样器针端有机溶剂微滴基础之上的LPME技术[13]。He等将LPME分为静态和动态两种,并首次提出直接浸入式动态LPME。Pedersen-Bjergaard等建立了中空纤维液液液微萃取方式[14]。Theis等建立了顶空溶剂微萃取的装置,Zhu等采用中空纤维悬挂装置,对水样中的硝基苯乙醚进行了富集,富集倍数可达380倍。Shen等利用微进样器内壁形成的有机溶剂膜作为顶空LPME的萃取界面,从组成复杂、较脏的样品基质中萃取了挥发性物质;Hou等首次以中空纤维内壁为萃取界面,采用三相动态液相微萃取萃取了不溶液中的芳香胺;Myung等采用自动LPME装置代替手工操作解决低重复性和低精密度的问题。Chamsaz等第一次用LPME结合光谱方法测定了无机化合物(砷,arsenic)。对于易挥发的萃取剂可利用混合溶剂的方法提高蒸汽压,降低挥发。Wen首次提出了两步液液液微萃取模型(two-step

liquid-liquid-liquid microextraction)。先用10根中空纤维(53.5cm)完成第一次LPME,再用10根HF空腔内的接收相调节PH后作为第二次LPME的给出相,第二次LPME采用一根1.4cm的HF来完成[15]。Jiang等提出了一种新的微萃取方法——溶剂棒萃取(solvent bar microextraction),所用有机萃取剂是密封在一段聚丙烯中空纤维内的。还以理论(Whiteman two film theory)为基础对比了此方法和微滴液相微萃取、静态中空纤维微萃取和SPME三种方法的优缺点[16]。LPME技术的不断发展、改进与完善,使其已成为分离领域一种非常重要的样品前处理技术,已在废水检测[15]、环境分析和药物分析[15]中得到广泛应用。

1.2.2 液相微萃取的萃取模型

LPME技术自从Jeannot和Cant well提出[17],根据样品基体和目标分析物的不同,发情节了不同的萃取模型。其中比较典型、常见的萃取方式分别如下:

1.2.2.1直接液相微萃取(direct liquid-phase microextraction,Direct-LPME)

直接利用悬挂在一根聚四氟乙烯棒端[17]或色谱微量进样器针头[13]的有机溶剂对溶剂中的分析物直接进行萃取的方法,叫做直接液相微萃取法,这种方法一般比较适合于萃取较为洁净的液体样品,但由于悬在色谱微量进样器针头上的有机液滴在样品搅拌是易于脱落,最近有人将多孔性的中空纤维固定在进样器针头上[18],用于保护和容纳有机溶剂,同时由于纤维上的多孔性,增加了溶剂与样品接触的表面积,从而提高了萃取率。

1.2.2.2 液相微萃取/后萃取(liquid-phase microextraction with back

extraction,LPME/BE)

液相微萃取/后萃取又称为液-液-液微萃取(liquid-liquid-liquid

microextraction,LLLME),整个萃取过程如下:给体(样品)中的分析物首先被萃取到有机溶剂中,接着又被后萃取到受体里。这种方式一般适用于在有机溶剂中富集效率不是很高的分析物,需要通过后萃取来进一步提高富集倍数,如在对本酚类化合物进行萃取时,通过调节给体(样品)的PH值来使酚类以中性形式存在,那么它们在给体中的溶解度减少,在搅拌时酚类化合物很容易地被萃取到有机溶剂中,再通过调节受体PH值到强碱性,可以把酚类从有机溶剂中进一步浓缩到富集能力更强的受体(强碱性溶液)里,对芳香胺的萃取也可采用类似的方法,只是在受体中加入了18-冠-6,它可以与芳香胺发生络合作用,实现更佳的富集效果。

1.2.2.3 顶空液相微萃取(headspace liquid-phase microextraction,HS-LPME)

把有机溶剂悬于样品的上部空间而进行萃取的方法,叫做顶空液相微萃取法。这种方法适用于分析物容易进入样品上方空间的挥发性或半挥发性有机化合物。在顶空液相微萃取中包含三相(有机溶剂、液上空间、样品),分析物在三相中的化学势是推动分析物从样品进入有机液滴的驱动力,可以通过不断搅拌样品产生连续的新表面来增强这种驱动力。挥发性化合物在液上空间的传质速度非常快,这是因为在气相中,分析物具有较大的扩散系数,且挥发性化合物从水中到液上空间再到有机溶剂比从水中直接进入有机溶剂的传质速度快得多,所以对于水中的挥发性有机物,顶空液相微萃取法比直接液相微萃取法更快捷。

由于直接液相微萃取法在萃取样品时,不可避免的会有有机液滴外围形成一层稳定的扩散层,这会阻碍分析物向有机溶剂液滴的扩散迁移,而顶空萃取法克服了这一局限,由于分析物在气相的扩散系数是其在凝聚相的104倍,因此对扩散系数较大的挥发性物质,顶空液相微萃取大大缩短了到达平衡所需的时间,同时还可以消除样品基质的干扰。

1.2.3 液相微萃取的萃取原理

由于待测物物化性质的不同以及萃取模型的不同,萃取的原理也不尽相同。分述如下:

1.2.3.1 两相LPME萃取原理

LPME是微型化的液液萃取,其原理和常规液液萃取一样,常用的为“相似相溶”原理,根据萃取剂对物质的高溶解性,将给出相(样品溶液)中待测萃取到有机相中。对于亲水性较强的物质,有机溶剂无法萃取、富集样品中的待测物,常在给出相中加入表面活性剂或离子对溶剂,与待测物生成疏水性物质,再被萃取到有机溶剂中[9];对于易挥发物质,多利用扩散原理,用顶空式LPME萃取富集待测物,待测物首先通过搅拌或加热的方式扩散到给出相上空,再进入悬于给出

相上空的有机溶剂中去。

1.2.3.2 三相LPME萃取原理

三相LPME多与HPLC、LC/MS、CE等分析仪器联用,给出相中的待测物先被萃取到有机相中去,再被反萃取到接收相中去,萃取后取接收相进样测定。这种萃取模型主要用来分析可离子化的物质,利用质子化-去离子化作用,通过调节接收相和给出相的PH,将给出相中的待测物先以分子形式萃取到有机溶剂中,再以离子形式反萃取到接收相中[12,14]。

1.2.4 液相微萃取的萃取参数的优化

根据其萃取模型和萃取原理,主要需要优化的参数有盐效应、给出相PH值、温度、搅拌速度、萃取时间、萃取溶剂和液滴大小等。

1.2.4.1 萃取溶剂

所选萃取溶剂一般要求对待测物选择性好、溶解度高,同时要满足低的水溶性和挥发性以及良好的色谱分析行为。三相体系的萃取溶剂对分析物的溶解度要适中,太低会导致蓠溶剂对目标分析物的萃取能力差,太高会使萃取溶剂中的目标分析物不易被反萃取到接收相中去。中空纤维LPME体系中的萃取溶剂还应考虑到其与中空纤维的兼容性和亲和性,要使其能稳定地固定在中空纤维的壁孔内。常用的萃取溶剂[8]有1-辛醇,二己醚、环己烷、正庚烷,也有使用混合溶剂和离子液体的报道。

1.2.4.2 盐效应

通过向样品中加入一些无机盐类(如NaCl,Na2SO4等),可以增加溶液的离子强度,降低分析物的溶解度,增大分配系数,从而提高萃取效率,这也是提高分析灵敏度的有效途径。但也有研究报道了盐效应在某些体系中对目标分析物的萃取效果无影响,甚至负影响[8]。

1.2.4.3 给出相PH值

控制溶液的PH值能够改变一些分析物在溶液中的存在形式,减少它们在水中的溶解度,增加它们在有机相中的分配。如在对酚类化合物进行LPME/BE时,控制较小的PH值,使溶液中的酚类化合物以分子形式存在,减少了在水中溶解度,从而提高了萃取率。

1.2.4.4 温度

一般来说,温度对液相微萃取有两方面的影响:升高温度,分析物向有机相的扩散系数增大,扩散速度随之增大,同时加强了对流过程,升温有利于缩短达平衡的时间;但是,升温会使分析物的分配系数减小,导致其在溶剂中的萃取量减少。所以,实验时应兼顾萃取时间和萃取效果,寻找最佳的工作温度。

1.2.4.5 搅拌速度

增加搅拌速度便于目标分析物的传质扩散,可提高萃取速度,缩短萃取时间。但不宜太快,太快容易造成溶剂微滴的脱落(Direct-LPME体系中)且易形成空气泡附着在中空纤维的表面阻碍物质的传递。

1.2.4.6 萃取时间

由于液相微萃取过程是一个基于分析物在样品与有机溶剂(或受体)之间分配平衡的过程,所以分析物在平衡时的萃取量将达到最大。对于分配系数较小的分析物,一般需要较长的时间才能达到平衡,所以,选择的萃取时间一般在平衡之前(非平衡)。在这种情况下,为保证得到较好的重现性,萃取时间必须严格控制。另外,萃取时间也会对有机液滴大小产生影响。虽然有机相在水中有较小的溶解度,但随着萃取时间的增加,体积本来就不大的有机液滴就会出现较为明显的损失。为了矫正这种变化,常在萃取溶剂中加入内标。

1.2.4.7 液滴大小

液滴大小对分析的灵敏度影响也很大。一般来说,液滴体积越大,分析物的萃取量越大,有利于提高方法的灵敏度。但由于分析物进入液滴是扩散过程,液滴体积越大,萃取速率越小,达到平衡所需的时间也就越长。

2 实验部分

2.1 仪器设备

Shimadzu LC-20AT岛津高效液相色谱仪,配Shimadzu SPD-20A UV-VIS检测器和超越2000色谱工作站(浙江省科学器材进出口有限责任公司),Accurel Q3/2聚丙烯中空纤维(Membrana,Wuppertal,Germany;壁厚200µm,孔径0.2µm,内径600µm)。

Sep-Pak SUPELCO UISIPREPTMDL(津腾GM-0.33)隔膜真空抽滤装备, 配真空泵;紫外可见分光光度计(UV-260),KQ3200超声波清洗器(昆山市超声仪器有限公司); 电子分析天平(BS124S);78HW-1型恒温磁力搅拌器(江苏金坛市荣华仪器有限公司);LG10-2.4A型高速台式离心机(北京医用离心机厂)。

2.2 试剂

试剂均为分析纯, 三乙胺(分析纯)由上海国药集团化学试剂有限公司生产,吡虫啉由德国Bayer公司提供(纯度≥99.7%),磷酸为分析纯,水为重蒸馏水,甲醇为色谱纯(天津大茂),0.05 mol/L的氢氧化钾溶液。

2.3 样品处理

2.3.1 样品的制备

从稻田取喷洒农药分别为1次、3次和4次的稻谷、稻叶共6份,土壤、湖水和溪水各一份。稻谷经风干、粉碎后过6号筛分为稻米和稻壳,用二次水浸泡超声半小时作为待测试样;稻叶剪细用二次水浸泡超声半小时;土壤用二次水溶解在离心机上离心30分钟(转速为3000 r/min);湖水和溪水直接用隔膜真空抽滤装置过滤待用。

2.3.2 样品的保存及处理

样品在-20℃下密封保存,直至色谱分析。

2.4 色谱条件

色谱柱:SB-Phenyl C18(250mm×4.6mm i.d.,5μm);

流动相:甲醇:水:三乙胺(80:20:1,v:v)

流速:0.8 ml/min

检测波长:270 nm

柱温:室温(25℃)

进样量:5 μl

2.5 吡虫啉标准储备液和标准溶液的配制

0.50 g/ L吡虫啉标准储备液:准确称取吡虫啉标准品0. 0500 g (纯度≥99 % , Bayer 产品), 用甲醇溶解定容至100mL,-4℃保存待用。

标准溶液:分别从上述0.50 g/ L吡虫啉标准储备液中移取0.1,0.2,1.0,2.0,4.0,10.0,20.0ml用二次水定容到50ml容量瓶中,配成1,2,5,10,20,40,100,200μg/ml的标准溶液;1,2μg/ml的标准溶液是用移液枪从0.50 g/ L吡虫啉标准储备液中提取100,200μl定容配制而成的。

2.6 萃取步骤

本实验采用的是一种动态三相中空纤维式萃取模型。具体操作步骤如下:首先将中空纤维切成2.3-2.5cm的小段,放入丙酮中超声清洗15s除去杂质;晾干厚取一段放入有机萃取剂(正辛醇)中超声浸泡10s以使中空纤维壁孔内注满有机溶剂,再将其套在25μl微量进样器(已吸入20μl接收相)针尖,推出接受相,两端分别用热钳子封住,使中空纤维的有效长度保持2cm(约盛5μl接收相);准确量取2ml样品上清液和2 ml 0.05 mol/L KOH于中,放入小S型号磁子,按图1将中空纤维置于玻璃皿中, 在78HW-1型恒温磁力搅拌器上搅拌一定时间后取出,剪开封住的一端,套在25μl微量进样器针尖,再剪开另一端,抽回接收相,取5μl直接进行高效液相色谱(HPLC)测定[19]。

图1 液相微萃取装置图

3 结果与讨论 3.1 萃取条件的选择

3.1.1 紫外检测波长的选择

用二极管阵列检测器对吡虫啉标准溶液在160~400nm波长范围内进行扫描(图2),发现吡虫啉在270 nm处有最大吸收,因此选择270 nm作为检测波长。

3.1.2有机溶剂的选择

三相液相微萃取所用的有机溶剂除了要求对目标分析物由合适的萃取率外(太小不易将目标分析物从给出相中萃取到有机相,太大不易把有机相中的目标分析物反萃取到接收相中去),还要求其能与聚丙烯中空纤维有良好的兼容性(能稳定地固定在中空纤维壁孔内),在水中溶解度低且不易挥发[19]。综合以上因数,本实验对比了正辛醇(n-octanol)、磷酸三丁酯(TBP)、三正辛胺(TOA)和乙酸乙脂(Ethylacetate)四种有机溶剂[20]对吡虫啉的萃取效率(如图3)结果表明正辛醇作为有机萃取剂对吡虫啉的萃取效果最好。

图3 有机溶剂对萃取效率的影响

3.1.3 给出相和接收相组成

吡虫啉是尼古丁乙酰胆碱受体的效应体,是一种二元弱碱物质[21],所以在碱性

溶液中吡虫啉以分子形式存在,溶解度相对较小,更有利于被有机溶剂萃取。因而我们选择2ml 0.05M KOH和2ml 20µg/mL吡虫啉标准溶液作为给出相,采用pH=3的10mM KH2PO4缓冲液作为接收相,因为pH=3既能完全质子化吡虫啉又不会对有机萃取剂产生影响[19]。 3.1.4 萃取时间的选择

由于液相微萃取过程是一个基于分析物在样品与有机溶剂(或受体)之间分配平衡的过程,所以分析物在平衡时的萃取量将达到最大。但是萃取时间太长,有机溶剂溶解到接收相的程度越大,影响测定结果,所以选择合适的萃取时间是很重要的,本实验以1μg.ml-1的吡虫啉标准溶液在优化的TP-HF-LPME条件下做萃取时间的选择性实验,结果如图4和表1:

表1.萃取时间对萃取效率的影响

图4.萃取时间到萃取效率的影响

通过以上的图表证明:萃取时间在17分钟的时的萃取效率最高,本实验采用此萃取时间作为最佳TP-HF-LPME条件。 3.1.5 搅拌速度的选择

理论上增加搅拌速度便于目标分析物的传质扩散,可提高萃取速度,缩短萃取时间。但不宜太快,太快容易造成有机溶剂从中空纤维管上脱落且易形成空气泡附着在中空纤维的表面阻碍物质的传递。本实验以1μg.ml-1吡虫啉标准溶液在优化的TP-HF-LPME条件下做搅拌速度的选择性实验,结果如图5和表2:

表2 磁子的搅拌速度对萃取效率的影响

图5 搅拌速度对萃取效率的影响

通过以上的图表证明:搅拌速度在1000r/min时的萃取效率最高,所以本实验

采用磁子转速为1000r/min为最佳TP-HF-LPME条件。 3.1.6 实验中三相中空纤维液相微萃取(TP-HF-LPME)条件

有机溶剂:正辛醇

给出相:2ml 0.05M KOH+2ml 吡虫啉溶液 接收相:pH=3 10 mM KH2PO4(约5 μl) 搅拌速度:1000r/min 萃取时间:17分钟

3.2 方法学参数考查

3.2.1精密度

在优化的TP-HF-LPME条件下,以2 ml 1μg/ml吡虫啉标准溶液和2 ml 0.05M KOH溶液作为给出相,平行萃取5次进样分析,如表3,得相对标准偏差(RSD)为1.2 %

表3 精密度实验的测定

3.2.2 标准曲线线性范围及相关系数

分别取已过0.45 μm滤膜的上述不同浓度的吡虫啉标准溶液5μl进样测定(图6和表4),得标准曲线线性范围2~100 μg/ml,相关系数0.9995。

表4 吡虫啉的标准曲线

浓度/μg.ml峰高/mv

1952.266

4737.377

8190.420

17986.570

49800.703

100684.969

图6 吡虫啉标准曲线

3.2.3工作曲线线性范围及相关系数

分别以不同浓度的吡虫啉标准样品2 ml与2 ml 0.05 M KOH溶液混合作为给出相,按优化的LPME条件,微萃取后取5 μl接收相进样测定,得工作曲线线性范围0.001~0.05 μg/ml,相关系数0.9997,见图7和表5。

表5 吡虫啉标准工作曲线的制作

浓度/μg.ml 峰高/mv

0.001 495.812

0.005 1083.146

0.01 1986.520

0.03 5282.597

0.05 8413.517

图7 吡虫啉标准工作曲线

3.2.4 富集倍数

将各浓度吡虫啉标液按优化条件TP-HF-LPME后,接收相中吡虫啉浓度相比于原始浓度,即得富集倍数。在优化的TP-HF-LPME条件下,富集倍数为19.2倍。

3.3 样品的测定

先解冻稻谷、稻米、稻壳、水和土壤样品,分别取样品各2ml于样品瓶,分别加入含0.005,0.01,0.05μg/mL吡虫啉标准溶液的0.05mol/L KOH溶液2mL,在优化的TP-HF-LPME条件下萃取后,进样测定。用标准加入法计算样品中吡虫啉,测定结果见表6、图8和图9。

403530

voltage(mV)

2520151050

5

10

time(min)

图8 池塘水样图谱

35 30

25

20 15

10

5

voltage (mV)

510152025

time (min)

图9 稻叶样图谱

表6 不同样品中吡虫啉含量

Table. 6 The content of nicotine in different urine samples

样品 Samples 塘水

加标量(μg/mL) 0.005 0.01 0.05 0.005 0.01 0.05

实测样品测得浓度(平均值±S.D., μg/mL ) (n = 5)

0.0192±0.0008 0.024±0.002 0.061±0.004 0.0071±0.0004 0.0119±0.0007 0.0515±0.019

RSD(%)

回收率(平均值±S.D.,%)(n=5)

92.50% 93.02% 92.70% 94.67% 95.20% 97.14%

4.17 8.33 6.56 5.63 5.88 .3.69

稻叶

4 结论

本文将改进的TP-HF-LPME样品前处理方法应用到环境中吡虫啉含量的测定,该方法与文献[22]比较:(1)富集倍由数17.9倍提高到了19.2倍,具有好的重现性(测定的标准偏差小于1.9%)和低的检测限(0.5μg/L)。(2)样品处理时间缩短8min,整个分析过程可在17min内完成,可用于生物体和环境样品中目标分析物的简单、快速和准确测定。

参考文献

[1] 宣日成,郑魏,刘维屏.吡虫啉的合成方法[J].农药,1998,37(10):11~14.

[2] 陈立,徐汉虹.新型烟碱型杀虫剂吡虫啉作用机制研究进展[J].湖北农

报,1998,18(1):85~88.

[3] 谢心宏.新型杀虫剂吡虫啉[J].农药,1998,37(6):40~42.

[4] 张红, 张丽华, 毛江胜, 黎秀卿, 岳晖. 土壤中吡虫啉残留量 HPLC测定方法的研究[J]. 山东农业科学, 2004, 6: 56-57.

[5] 毛江胜,张红,孟静静,吡虫啉在水稻中的残留动态研究[J].现代农药, 2006, 2: 27-29.

[6] 谷勋刚, 刘晓松. 液相色谱法分析烟草中蚍虫啉[J]. 安徽农业科学, 2006, 34(4): 713-714.

[7] 高仁君,白建军,刘西莉,等.吡虫啉的合成研究[J].农药,1997,36(5):13~14. [8] Psillakis E, Kalogerakis N. Developments in liquid-phase microextraction. Trends in Analytical Chemistry, 2003,22:565~574

[9] Ho T S, Halvorsen T G, Pedersen-Bjergaard S, et al. Liquid-phase microextraction of hydrophilic drugs by carrier-mediated transport.J. Chromatogr.A. 2003, 998: 61~72. [10] Ho T S,Reubsaet J L E, Anthonsen H S,et al. Liquid-phase microextraction based on carrier mediated transport combined with liquid hromatography-mass spectrometry New concept for the determination of polar drugs in a single drop of human plasma.J.Chromatogr.A.2005,1072:29~36.

[11] Pedersen-Bjergaard S,Rasmussen K E.Liquid-phase microextraction utilizing plant oils as intermediate extraction medium-Towards elimination of synthetic organic solvents in sample preparation.J.Sep.Sci.2004,27:1511~1516.

[12] Ma M,Kang S, Zhao Q,et al. Liquid-phase microextraction combined with high-performance liquid chromatography for the determination of local anaesthetics in human urine.J.Pharm.Biomed.Anal.2006,40~128~135.

[13] Jeannot M A.,Cantwell F F. Solvent Microextraction as a Speciation Tool: Determination of Free Progesterone in a Protein Solution.Anal.Chem.1997, 69:2935~2940.

[14] Pedersen-Bjergaard S,Rasmussen K E .Liquid- Liquid- Liquid Microextraction for Sample Preparation of Biological Fluids Prior to Capillary Electrophoresis. Anal.Chem.1997,71:2650~2656.

[15] Wen X, Tu C, Lee H K, Two-Step Liquid- Liquid- Liquid Microextraction of Nonsteroidal Antiinflammatory Drugs in Wastewater. Anal.Chem.2004,76:228~232. [16]Jiang X M, Lee H K. Solvent Bar Microextraction. Anal.Chem.2004,76: 5591~5596.

[17]Jeannot M A.,Cantwell F F. Solvent Micreextraction into a Single Drop. Anal

Chem,1996,68:2236~2240.

[18]Zhao, Lee H K. Liquid-Phase Microextraction Combined with Hollow Fiber as a Sample Preparation Technique Prior to Gas Chromatography/Mass Spectrometry. Anal chem,2002,74:2486~2492. [19] 杨新磊, 罗明标, 唐毓萍. 三相中空纤维式液相微萃取快速富集血浆中尼古丁的研究[J]. 色谱, 2006, 24(6): 555-559

[20] Knut Einar Rasmussen, Stig Pedersen-Bjergaard. Developments in hollow

fibre-Based liquid phase microextraction[J]. Trends in Analytical Chemistry, 2004, 23(1): 1-10. [21] 刘丽丽,李吉海. 新烟碱类杀虫剂的进展与合成[J]. 山东化工, 2003, 1, 11-16. [22] 刘维, 罗明标, 李伯平, 杨枝, 丁健桦. 纳米磁流体用于三相中空纤维液相微

萃取-HPLC法快速测定尿液中尼古丁[J]. 分析测试学报, 2008, 27(2): 165-169.

东华理工大学毕业设计(论文) 致谢 致谢

本论文得以顺利完成首先要感谢罗明标老师。从选择课题、搜集资料、实验过程到撰写论文的各个价段都得到了罗老师的悉心指导。尤其是她渊博的知识、开阔的视野、严谨的治学态度和敏锐的思维给了我深深的启迪。同时,在此次毕业设计过程中我也学到了许多了关于化学分析方面的知识,实验技能有了很大的提高,并且经过一段时间的学习,能够独立分析数据。学会了如何独立思考实验过程,解决实验中出现的一些问题。这些都得益于罗老师悉心指导。在此,特向罗老师表示崇高的敬意和衷心的感谢!

本文的完成还要感谢丁健华老师、李建强老师、孙玉珍师姐和邱昌福师兄对我实验以及论文写作的指导,他为我完成这篇论文中的图表提供了巨大的帮助。还要感谢实验室的其它老师和同学们,他们给了我许多帮助,在此向他们致以最真挚的谢意。

最后,再次对关心、帮助我的老师和同学表示衷心地感谢。

液相微萃取—高效液相色谱法测定环境中的吡虫啉

陈成龙

(东华理工大学化学生物与材料科学学院040312班 江西抚州 344000)

摘 要:本文研究了基于三相中空纤维磁力搅拌的新型液相微萃取(LPME)模式,采用磷酸二氢钾作接受液,快速分离富集稻谷、稻叶、水和土壤中吡虫啉农药残留的前处理技术,以高效液相色谱(HPLC)为检测手段。系统地优化了LPME技术的有机溶剂、搅拌速率和萃取时间等条件。最佳色谱条件为:SB-Phenyl C18

(250mm×4.6mm i.d.,5μm)液相色谱柱,以甲醇:水:三乙胺(80:20:1,v:v)为流动相,流速0.8 ml/min,270 nm波长下检测。得到方法的线性范围0.0001~0.2 µg/ml,相关系数0.9997,最低检出限为5ng/ml(S/N=3),相对标准偏差(RSD)为1.2%加标回收率98. 3%~101. 5%,富集倍数19.2倍。建立了一种简单、快速、准确、环境友好的农药残留检测方法。

关键词:吡虫啉 农药残留 中空纤维 前处理 液相微萃取

The Determination of Imidacloprid in Environment Based on Three-phase Hollow Fiber Liquid Phase Microextraction-High Performance Liquid Chromatography

Chen chenglong

(Applied Chemistry Department ,Eastchina Institute of Techonology ,Fuzhuo,JX344000)

Abstract: A novel method for fast separate and enrichment imidacloprid in paddy,leaf,water and soil was established by using high performance liquid chromatography (HPLC) coupled with a three-phase hollow fiber based liquid phase microextraction (TP-HF-LPME) technique for sample preparation. Parameters related to TP-HF-LPME (organic solvent, stirring speed,pH of donor and acceptor phase, extraction time) were also optimized experimentally. The proposed method integrates extraction,enrichment and clean-up into a single step. The method was developed chromatography was carried out on an SB-Phenyl C18 (250mm ×4.6mm i.d.,5μm ) column,methanol-water –triethylamine,(80∶20:1, V :V) as mobile phase and detection at 270nm. It has been demonstrated to be a very fast,effective and virtually “green” sample preparation technique, which provided a good linear range (0.0001~0.2 μg/ml) with r2 = 0.9997, a low detection limit(5 ng/ml, S/N = 3),RSD=1.2% and the addition recovery was obtained in the range of 98.30-101.5%. The proposed method integrates extraction, enrichment and clean-up into a single step, which is a simple,effective,veracious and environmental method for detecting pesticide residue.

Keywords: imidacloprid pesticide residue hollow fiber pretreatment liquid phase microextraction

目录

1.前言.. .......................................................................................................................... 5

1.1 吡虫啉简介. .................................................................................................... 5

1.2 液相微萃取(LPME) ....................................................................................... 5

1.2.1 液相微萃取的发展历史 .................................................................... 5

1.2.2 液相微萃取的萃取模型 .................................................................... 6

1.2.2.1直接液相微萃取(Direct-LPME) .......................................... 6

1.2.2.2 液相微萃取/后萃取(LPME/BE) .................................... 6

1.2.2.3 顶空液相微萃取(HS-LPME) ......................................... 7

1.2.3 液相微萃取的萃取原理 .................................................................... 7

1.2.3.1 两相LPME萃取原理 ......................................................... 7

1.2.3.2 三相LPME萃取原理 ......................................................... 8

1.2.4 液相微萃取的萃取参数的优化 ........................................................ 8

1.2.4.1 萃取溶剂 ............................................................................... 8

1.2.4.2 盐效应 ................................................................................... 8

1.2.4.3 给出相PH值 ....................................................................... 8

1.2.4.4 温度 ....................................................................................... 8

1.2.4.5 搅拌速度 ............................................................................. 8

1.2.4.6 萃取时间 ............................................................................. 9

1.2.4.7 液滴大小 ............................................................................... 9

2 实验部分 .................................................................................................................... 10

2.1 仪器设备 .......................................................................................................... 10

2.2 试剂 .................................................................................................................. 10

2.3 样品处理 .......................................................................................................... 10

2.3.1 样品的制备 ............................................................................................ 10

2.3.2 样品的保存及处理 ................................................................................ 10

2.4 色谱条件 .......................................................................................................... 10

2.5 吡虫啉标准储备液和标准溶液的配制 ....................................................... 10

2.6 萃取步骤 ........................................................................................................ 11

3 结果与讨论 ................................................................................................................ 12

3.1 萃取条件的选择 .............................................................................................. 12

3.1.1 紫外检测波长的选择 ............................................................................ 12

3.1.2有机溶剂的选择 ..................................................................................... 12

3.1.3 给出相和接收相组成 ............................................................................ 12

3.1.4 萃取时间的选择 .................................................................................... 13

3.1.5 搅拌速度的选择 .................................................................................... 13

3.1.6 实验中三相中空纤维液相微萃取(TP-HF-LPME)条件 ............... 14

3.2 方法学参数考查 .............................................................................................. 14

3.2.1精密度 ..................................................................................................... 14

3.2.2 标准曲线线性范围及相关系数 ............................................................ 14

3.2.3工作曲线线性范围及相关系数 ............................................................. 15

3.2.4 富集倍数 ................................................................................................ 16

3.3 样品的测定 ...................................................................................................... 16

4 结论 .......................................................................................................................... 18

参考文献 ........................................................................................................................ 19

致谢 ................................................................................................................................ 21

1. 前言

1.1 吡虫啉简介

吡虫啉( Imidacloprid),又叫灭虫精,中文通用名咪蚜胶,是1984年德国拜耳公司和日本特殊农药公司共同开发的高效杀虫剂[1],化学名称1 - (6 - 氯-3 - 吡啶基甲基) - N - 硝基亚米唑烷- 2 - 基胺,系具内吸、触杀、胃毒作用的硝基亚甲基类内吸杀虫剂,是烟酸乙酰胆碱酯酶受体的作用体[2,3],干扰害虫运动神经系统使化学信号传递失灵,无交互抗性问题,用于防治刺吸式口器害虫如蚜虫、飞虱、蓟马、粉虱等[4]。吡虫啉的推荐用药量(有效成分)为60~120 g/hm2,目前国内尚未制订稻谷中吡虫啉残留限量的要求,国际上对其残留限量要求为:水果类0.2mg/kg,作物种子0.050mg/kg,易溶于乙腈和二氯甲烷中,化学结构较稳定[5]。该农药会对人类和哺乳动物产生慢性毒理效应[6]。本文采用三相液相微萃取检测稻谷、稻叶、水和土壤中吡虫啉的含量,方法简便、快速,净化效果很好。

吡虫啉的商品名称为:Admire,实验代号:NTN-33893,化学名称为:1 - (6 - 氯-3 - 吡啶基甲基) - N - 硝基亚米唑烷- 2 - 基胺,分子式为:C6H10ClN5O2,结构式为:

吡虫啉的制备[7]

将2-氯-5氯甲基吡啶与咪唑烷溶于乙腈中,加入K2CO3作酸吸收剂,在CsCl的参与下,回执回流5h,得到产品,产品回收率为90.2%。自从吡虫啉以商品形式进入市场,得到推广使用后,许多路线可供选择,本文选择较成熟的路线介绍。

1.2 液相微萃取(LPME)

1.2.1 液相微萃取的发展历史

LPME技术是在液液萃取(liquid-liquid extraction,LLE)和固相微萃取(Solid

Phase Microextraction,SPME)基础上发展起来的一种新型萃取方法。传统的LLE操作步骤繁琐、处理时间长、难于实现自动化,无法适应现代仪器分析速度快、灵敏度高的要求[8-10],以及LLE过程中使用大量有机溶剂且易产生乳化现象的缺

点。SPME装置的萃取头较昂贵,使用寿命较短,多次使用还存在交叉污染问题,且SPME与气相色谱(GC)联用有较大的优势,而与高效液相色谱(HPLC)联用时还需要一个专门的解吸装置,这些弊端也在一定程度上限制了SPME技术的推广

[11-12]。为了解决这些问题,在1996年Fernandez等提示液液微萃取,实现了对样品中的脂肪胺的在线检测。其后Jeannot和Cant well提出溶剂微萃取,并建立了一种悬挂于微进样器针端有机溶剂微滴基础之上的LPME技术[13]。He等将LPME分为静态和动态两种,并首次提出直接浸入式动态LPME。Pedersen-Bjergaard等建立了中空纤维液液液微萃取方式[14]。Theis等建立了顶空溶剂微萃取的装置,Zhu等采用中空纤维悬挂装置,对水样中的硝基苯乙醚进行了富集,富集倍数可达380倍。Shen等利用微进样器内壁形成的有机溶剂膜作为顶空LPME的萃取界面,从组成复杂、较脏的样品基质中萃取了挥发性物质;Hou等首次以中空纤维内壁为萃取界面,采用三相动态液相微萃取萃取了不溶液中的芳香胺;Myung等采用自动LPME装置代替手工操作解决低重复性和低精密度的问题。Chamsaz等第一次用LPME结合光谱方法测定了无机化合物(砷,arsenic)。对于易挥发的萃取剂可利用混合溶剂的方法提高蒸汽压,降低挥发。Wen首次提出了两步液液液微萃取模型(two-step

liquid-liquid-liquid microextraction)。先用10根中空纤维(53.5cm)完成第一次LPME,再用10根HF空腔内的接收相调节PH后作为第二次LPME的给出相,第二次LPME采用一根1.4cm的HF来完成[15]。Jiang等提出了一种新的微萃取方法——溶剂棒萃取(solvent bar microextraction),所用有机萃取剂是密封在一段聚丙烯中空纤维内的。还以理论(Whiteman two film theory)为基础对比了此方法和微滴液相微萃取、静态中空纤维微萃取和SPME三种方法的优缺点[16]。LPME技术的不断发展、改进与完善,使其已成为分离领域一种非常重要的样品前处理技术,已在废水检测[15]、环境分析和药物分析[15]中得到广泛应用。

1.2.2 液相微萃取的萃取模型

LPME技术自从Jeannot和Cant well提出[17],根据样品基体和目标分析物的不同,发情节了不同的萃取模型。其中比较典型、常见的萃取方式分别如下:

1.2.2.1直接液相微萃取(direct liquid-phase microextraction,Direct-LPME)

直接利用悬挂在一根聚四氟乙烯棒端[17]或色谱微量进样器针头[13]的有机溶剂对溶剂中的分析物直接进行萃取的方法,叫做直接液相微萃取法,这种方法一般比较适合于萃取较为洁净的液体样品,但由于悬在色谱微量进样器针头上的有机液滴在样品搅拌是易于脱落,最近有人将多孔性的中空纤维固定在进样器针头上[18],用于保护和容纳有机溶剂,同时由于纤维上的多孔性,增加了溶剂与样品接触的表面积,从而提高了萃取率。

1.2.2.2 液相微萃取/后萃取(liquid-phase microextraction with back

extraction,LPME/BE)

液相微萃取/后萃取又称为液-液-液微萃取(liquid-liquid-liquid

microextraction,LLLME),整个萃取过程如下:给体(样品)中的分析物首先被萃取到有机溶剂中,接着又被后萃取到受体里。这种方式一般适用于在有机溶剂中富集效率不是很高的分析物,需要通过后萃取来进一步提高富集倍数,如在对本酚类化合物进行萃取时,通过调节给体(样品)的PH值来使酚类以中性形式存在,那么它们在给体中的溶解度减少,在搅拌时酚类化合物很容易地被萃取到有机溶剂中,再通过调节受体PH值到强碱性,可以把酚类从有机溶剂中进一步浓缩到富集能力更强的受体(强碱性溶液)里,对芳香胺的萃取也可采用类似的方法,只是在受体中加入了18-冠-6,它可以与芳香胺发生络合作用,实现更佳的富集效果。

1.2.2.3 顶空液相微萃取(headspace liquid-phase microextraction,HS-LPME)

把有机溶剂悬于样品的上部空间而进行萃取的方法,叫做顶空液相微萃取法。这种方法适用于分析物容易进入样品上方空间的挥发性或半挥发性有机化合物。在顶空液相微萃取中包含三相(有机溶剂、液上空间、样品),分析物在三相中的化学势是推动分析物从样品进入有机液滴的驱动力,可以通过不断搅拌样品产生连续的新表面来增强这种驱动力。挥发性化合物在液上空间的传质速度非常快,这是因为在气相中,分析物具有较大的扩散系数,且挥发性化合物从水中到液上空间再到有机溶剂比从水中直接进入有机溶剂的传质速度快得多,所以对于水中的挥发性有机物,顶空液相微萃取法比直接液相微萃取法更快捷。

由于直接液相微萃取法在萃取样品时,不可避免的会有有机液滴外围形成一层稳定的扩散层,这会阻碍分析物向有机溶剂液滴的扩散迁移,而顶空萃取法克服了这一局限,由于分析物在气相的扩散系数是其在凝聚相的104倍,因此对扩散系数较大的挥发性物质,顶空液相微萃取大大缩短了到达平衡所需的时间,同时还可以消除样品基质的干扰。

1.2.3 液相微萃取的萃取原理

由于待测物物化性质的不同以及萃取模型的不同,萃取的原理也不尽相同。分述如下:

1.2.3.1 两相LPME萃取原理

LPME是微型化的液液萃取,其原理和常规液液萃取一样,常用的为“相似相溶”原理,根据萃取剂对物质的高溶解性,将给出相(样品溶液)中待测萃取到有机相中。对于亲水性较强的物质,有机溶剂无法萃取、富集样品中的待测物,常在给出相中加入表面活性剂或离子对溶剂,与待测物生成疏水性物质,再被萃取到有机溶剂中[9];对于易挥发物质,多利用扩散原理,用顶空式LPME萃取富集待测物,待测物首先通过搅拌或加热的方式扩散到给出相上空,再进入悬于给出

相上空的有机溶剂中去。

1.2.3.2 三相LPME萃取原理

三相LPME多与HPLC、LC/MS、CE等分析仪器联用,给出相中的待测物先被萃取到有机相中去,再被反萃取到接收相中去,萃取后取接收相进样测定。这种萃取模型主要用来分析可离子化的物质,利用质子化-去离子化作用,通过调节接收相和给出相的PH,将给出相中的待测物先以分子形式萃取到有机溶剂中,再以离子形式反萃取到接收相中[12,14]。

1.2.4 液相微萃取的萃取参数的优化

根据其萃取模型和萃取原理,主要需要优化的参数有盐效应、给出相PH值、温度、搅拌速度、萃取时间、萃取溶剂和液滴大小等。

1.2.4.1 萃取溶剂

所选萃取溶剂一般要求对待测物选择性好、溶解度高,同时要满足低的水溶性和挥发性以及良好的色谱分析行为。三相体系的萃取溶剂对分析物的溶解度要适中,太低会导致蓠溶剂对目标分析物的萃取能力差,太高会使萃取溶剂中的目标分析物不易被反萃取到接收相中去。中空纤维LPME体系中的萃取溶剂还应考虑到其与中空纤维的兼容性和亲和性,要使其能稳定地固定在中空纤维的壁孔内。常用的萃取溶剂[8]有1-辛醇,二己醚、环己烷、正庚烷,也有使用混合溶剂和离子液体的报道。

1.2.4.2 盐效应

通过向样品中加入一些无机盐类(如NaCl,Na2SO4等),可以增加溶液的离子强度,降低分析物的溶解度,增大分配系数,从而提高萃取效率,这也是提高分析灵敏度的有效途径。但也有研究报道了盐效应在某些体系中对目标分析物的萃取效果无影响,甚至负影响[8]。

1.2.4.3 给出相PH值

控制溶液的PH值能够改变一些分析物在溶液中的存在形式,减少它们在水中的溶解度,增加它们在有机相中的分配。如在对酚类化合物进行LPME/BE时,控制较小的PH值,使溶液中的酚类化合物以分子形式存在,减少了在水中溶解度,从而提高了萃取率。

1.2.4.4 温度

一般来说,温度对液相微萃取有两方面的影响:升高温度,分析物向有机相的扩散系数增大,扩散速度随之增大,同时加强了对流过程,升温有利于缩短达平衡的时间;但是,升温会使分析物的分配系数减小,导致其在溶剂中的萃取量减少。所以,实验时应兼顾萃取时间和萃取效果,寻找最佳的工作温度。

1.2.4.5 搅拌速度

增加搅拌速度便于目标分析物的传质扩散,可提高萃取速度,缩短萃取时间。但不宜太快,太快容易造成溶剂微滴的脱落(Direct-LPME体系中)且易形成空气泡附着在中空纤维的表面阻碍物质的传递。

1.2.4.6 萃取时间

由于液相微萃取过程是一个基于分析物在样品与有机溶剂(或受体)之间分配平衡的过程,所以分析物在平衡时的萃取量将达到最大。对于分配系数较小的分析物,一般需要较长的时间才能达到平衡,所以,选择的萃取时间一般在平衡之前(非平衡)。在这种情况下,为保证得到较好的重现性,萃取时间必须严格控制。另外,萃取时间也会对有机液滴大小产生影响。虽然有机相在水中有较小的溶解度,但随着萃取时间的增加,体积本来就不大的有机液滴就会出现较为明显的损失。为了矫正这种变化,常在萃取溶剂中加入内标。

1.2.4.7 液滴大小

液滴大小对分析的灵敏度影响也很大。一般来说,液滴体积越大,分析物的萃取量越大,有利于提高方法的灵敏度。但由于分析物进入液滴是扩散过程,液滴体积越大,萃取速率越小,达到平衡所需的时间也就越长。

2 实验部分

2.1 仪器设备

Shimadzu LC-20AT岛津高效液相色谱仪,配Shimadzu SPD-20A UV-VIS检测器和超越2000色谱工作站(浙江省科学器材进出口有限责任公司),Accurel Q3/2聚丙烯中空纤维(Membrana,Wuppertal,Germany;壁厚200µm,孔径0.2µm,内径600µm)。

Sep-Pak SUPELCO UISIPREPTMDL(津腾GM-0.33)隔膜真空抽滤装备, 配真空泵;紫外可见分光光度计(UV-260),KQ3200超声波清洗器(昆山市超声仪器有限公司); 电子分析天平(BS124S);78HW-1型恒温磁力搅拌器(江苏金坛市荣华仪器有限公司);LG10-2.4A型高速台式离心机(北京医用离心机厂)。

2.2 试剂

试剂均为分析纯, 三乙胺(分析纯)由上海国药集团化学试剂有限公司生产,吡虫啉由德国Bayer公司提供(纯度≥99.7%),磷酸为分析纯,水为重蒸馏水,甲醇为色谱纯(天津大茂),0.05 mol/L的氢氧化钾溶液。

2.3 样品处理

2.3.1 样品的制备

从稻田取喷洒农药分别为1次、3次和4次的稻谷、稻叶共6份,土壤、湖水和溪水各一份。稻谷经风干、粉碎后过6号筛分为稻米和稻壳,用二次水浸泡超声半小时作为待测试样;稻叶剪细用二次水浸泡超声半小时;土壤用二次水溶解在离心机上离心30分钟(转速为3000 r/min);湖水和溪水直接用隔膜真空抽滤装置过滤待用。

2.3.2 样品的保存及处理

样品在-20℃下密封保存,直至色谱分析。

2.4 色谱条件

色谱柱:SB-Phenyl C18(250mm×4.6mm i.d.,5μm);

流动相:甲醇:水:三乙胺(80:20:1,v:v)

流速:0.8 ml/min

检测波长:270 nm

柱温:室温(25℃)

进样量:5 μl

2.5 吡虫啉标准储备液和标准溶液的配制

0.50 g/ L吡虫啉标准储备液:准确称取吡虫啉标准品0. 0500 g (纯度≥99 % , Bayer 产品), 用甲醇溶解定容至100mL,-4℃保存待用。

标准溶液:分别从上述0.50 g/ L吡虫啉标准储备液中移取0.1,0.2,1.0,2.0,4.0,10.0,20.0ml用二次水定容到50ml容量瓶中,配成1,2,5,10,20,40,100,200μg/ml的标准溶液;1,2μg/ml的标准溶液是用移液枪从0.50 g/ L吡虫啉标准储备液中提取100,200μl定容配制而成的。

2.6 萃取步骤

本实验采用的是一种动态三相中空纤维式萃取模型。具体操作步骤如下:首先将中空纤维切成2.3-2.5cm的小段,放入丙酮中超声清洗15s除去杂质;晾干厚取一段放入有机萃取剂(正辛醇)中超声浸泡10s以使中空纤维壁孔内注满有机溶剂,再将其套在25μl微量进样器(已吸入20μl接收相)针尖,推出接受相,两端分别用热钳子封住,使中空纤维的有效长度保持2cm(约盛5μl接收相);准确量取2ml样品上清液和2 ml 0.05 mol/L KOH于中,放入小S型号磁子,按图1将中空纤维置于玻璃皿中, 在78HW-1型恒温磁力搅拌器上搅拌一定时间后取出,剪开封住的一端,套在25μl微量进样器针尖,再剪开另一端,抽回接收相,取5μl直接进行高效液相色谱(HPLC)测定[19]。

图1 液相微萃取装置图

3 结果与讨论 3.1 萃取条件的选择

3.1.1 紫外检测波长的选择

用二极管阵列检测器对吡虫啉标准溶液在160~400nm波长范围内进行扫描(图2),发现吡虫啉在270 nm处有最大吸收,因此选择270 nm作为检测波长。

3.1.2有机溶剂的选择

三相液相微萃取所用的有机溶剂除了要求对目标分析物由合适的萃取率外(太小不易将目标分析物从给出相中萃取到有机相,太大不易把有机相中的目标分析物反萃取到接收相中去),还要求其能与聚丙烯中空纤维有良好的兼容性(能稳定地固定在中空纤维壁孔内),在水中溶解度低且不易挥发[19]。综合以上因数,本实验对比了正辛醇(n-octanol)、磷酸三丁酯(TBP)、三正辛胺(TOA)和乙酸乙脂(Ethylacetate)四种有机溶剂[20]对吡虫啉的萃取效率(如图3)结果表明正辛醇作为有机萃取剂对吡虫啉的萃取效果最好。

图3 有机溶剂对萃取效率的影响

3.1.3 给出相和接收相组成

吡虫啉是尼古丁乙酰胆碱受体的效应体,是一种二元弱碱物质[21],所以在碱性

溶液中吡虫啉以分子形式存在,溶解度相对较小,更有利于被有机溶剂萃取。因而我们选择2ml 0.05M KOH和2ml 20µg/mL吡虫啉标准溶液作为给出相,采用pH=3的10mM KH2PO4缓冲液作为接收相,因为pH=3既能完全质子化吡虫啉又不会对有机萃取剂产生影响[19]。 3.1.4 萃取时间的选择

由于液相微萃取过程是一个基于分析物在样品与有机溶剂(或受体)之间分配平衡的过程,所以分析物在平衡时的萃取量将达到最大。但是萃取时间太长,有机溶剂溶解到接收相的程度越大,影响测定结果,所以选择合适的萃取时间是很重要的,本实验以1μg.ml-1的吡虫啉标准溶液在优化的TP-HF-LPME条件下做萃取时间的选择性实验,结果如图4和表1:

表1.萃取时间对萃取效率的影响

图4.萃取时间到萃取效率的影响

通过以上的图表证明:萃取时间在17分钟的时的萃取效率最高,本实验采用此萃取时间作为最佳TP-HF-LPME条件。 3.1.5 搅拌速度的选择

理论上增加搅拌速度便于目标分析物的传质扩散,可提高萃取速度,缩短萃取时间。但不宜太快,太快容易造成有机溶剂从中空纤维管上脱落且易形成空气泡附着在中空纤维的表面阻碍物质的传递。本实验以1μg.ml-1吡虫啉标准溶液在优化的TP-HF-LPME条件下做搅拌速度的选择性实验,结果如图5和表2:

表2 磁子的搅拌速度对萃取效率的影响

图5 搅拌速度对萃取效率的影响

通过以上的图表证明:搅拌速度在1000r/min时的萃取效率最高,所以本实验

采用磁子转速为1000r/min为最佳TP-HF-LPME条件。 3.1.6 实验中三相中空纤维液相微萃取(TP-HF-LPME)条件

有机溶剂:正辛醇

给出相:2ml 0.05M KOH+2ml 吡虫啉溶液 接收相:pH=3 10 mM KH2PO4(约5 μl) 搅拌速度:1000r/min 萃取时间:17分钟

3.2 方法学参数考查

3.2.1精密度

在优化的TP-HF-LPME条件下,以2 ml 1μg/ml吡虫啉标准溶液和2 ml 0.05M KOH溶液作为给出相,平行萃取5次进样分析,如表3,得相对标准偏差(RSD)为1.2 %

表3 精密度实验的测定

3.2.2 标准曲线线性范围及相关系数

分别取已过0.45 μm滤膜的上述不同浓度的吡虫啉标准溶液5μl进样测定(图6和表4),得标准曲线线性范围2~100 μg/ml,相关系数0.9995。

表4 吡虫啉的标准曲线

浓度/μg.ml峰高/mv

1952.266

4737.377

8190.420

17986.570

49800.703

100684.969

图6 吡虫啉标准曲线

3.2.3工作曲线线性范围及相关系数

分别以不同浓度的吡虫啉标准样品2 ml与2 ml 0.05 M KOH溶液混合作为给出相,按优化的LPME条件,微萃取后取5 μl接收相进样测定,得工作曲线线性范围0.001~0.05 μg/ml,相关系数0.9997,见图7和表5。

表5 吡虫啉标准工作曲线的制作

浓度/μg.ml 峰高/mv

0.001 495.812

0.005 1083.146

0.01 1986.520

0.03 5282.597

0.05 8413.517

图7 吡虫啉标准工作曲线

3.2.4 富集倍数

将各浓度吡虫啉标液按优化条件TP-HF-LPME后,接收相中吡虫啉浓度相比于原始浓度,即得富集倍数。在优化的TP-HF-LPME条件下,富集倍数为19.2倍。

3.3 样品的测定

先解冻稻谷、稻米、稻壳、水和土壤样品,分别取样品各2ml于样品瓶,分别加入含0.005,0.01,0.05μg/mL吡虫啉标准溶液的0.05mol/L KOH溶液2mL,在优化的TP-HF-LPME条件下萃取后,进样测定。用标准加入法计算样品中吡虫啉,测定结果见表6、图8和图9。

403530

voltage(mV)

2520151050

5

10

time(min)

图8 池塘水样图谱

35 30

25

20 15

10

5

voltage (mV)

510152025

time (min)

图9 稻叶样图谱

表6 不同样品中吡虫啉含量

Table. 6 The content of nicotine in different urine samples

样品 Samples 塘水

加标量(μg/mL) 0.005 0.01 0.05 0.005 0.01 0.05

实测样品测得浓度(平均值±S.D., μg/mL ) (n = 5)

0.0192±0.0008 0.024±0.002 0.061±0.004 0.0071±0.0004 0.0119±0.0007 0.0515±0.019

RSD(%)

回收率(平均值±S.D.,%)(n=5)

92.50% 93.02% 92.70% 94.67% 95.20% 97.14%

4.17 8.33 6.56 5.63 5.88 .3.69

稻叶

4 结论

本文将改进的TP-HF-LPME样品前处理方法应用到环境中吡虫啉含量的测定,该方法与文献[22]比较:(1)富集倍由数17.9倍提高到了19.2倍,具有好的重现性(测定的标准偏差小于1.9%)和低的检测限(0.5μg/L)。(2)样品处理时间缩短8min,整个分析过程可在17min内完成,可用于生物体和环境样品中目标分析物的简单、快速和准确测定。

参考文献

[1] 宣日成,郑魏,刘维屏.吡虫啉的合成方法[J].农药,1998,37(10):11~14.

[2] 陈立,徐汉虹.新型烟碱型杀虫剂吡虫啉作用机制研究进展[J].湖北农

报,1998,18(1):85~88.

[3] 谢心宏.新型杀虫剂吡虫啉[J].农药,1998,37(6):40~42.

[4] 张红, 张丽华, 毛江胜, 黎秀卿, 岳晖. 土壤中吡虫啉残留量 HPLC测定方法的研究[J]. 山东农业科学, 2004, 6: 56-57.

[5] 毛江胜,张红,孟静静,吡虫啉在水稻中的残留动态研究[J].现代农药, 2006, 2: 27-29.

[6] 谷勋刚, 刘晓松. 液相色谱法分析烟草中蚍虫啉[J]. 安徽农业科学, 2006, 34(4): 713-714.

[7] 高仁君,白建军,刘西莉,等.吡虫啉的合成研究[J].农药,1997,36(5):13~14. [8] Psillakis E, Kalogerakis N. Developments in liquid-phase microextraction. Trends in Analytical Chemistry, 2003,22:565~574

[9] Ho T S, Halvorsen T G, Pedersen-Bjergaard S, et al. Liquid-phase microextraction of hydrophilic drugs by carrier-mediated transport.J. Chromatogr.A. 2003, 998: 61~72. [10] Ho T S,Reubsaet J L E, Anthonsen H S,et al. Liquid-phase microextraction based on carrier mediated transport combined with liquid hromatography-mass spectrometry New concept for the determination of polar drugs in a single drop of human plasma.J.Chromatogr.A.2005,1072:29~36.

[11] Pedersen-Bjergaard S,Rasmussen K E.Liquid-phase microextraction utilizing plant oils as intermediate extraction medium-Towards elimination of synthetic organic solvents in sample preparation.J.Sep.Sci.2004,27:1511~1516.

[12] Ma M,Kang S, Zhao Q,et al. Liquid-phase microextraction combined with high-performance liquid chromatography for the determination of local anaesthetics in human urine.J.Pharm.Biomed.Anal.2006,40~128~135.

[13] Jeannot M A.,Cantwell F F. Solvent Microextraction as a Speciation Tool: Determination of Free Progesterone in a Protein Solution.Anal.Chem.1997, 69:2935~2940.

[14] Pedersen-Bjergaard S,Rasmussen K E .Liquid- Liquid- Liquid Microextraction for Sample Preparation of Biological Fluids Prior to Capillary Electrophoresis. Anal.Chem.1997,71:2650~2656.

[15] Wen X, Tu C, Lee H K, Two-Step Liquid- Liquid- Liquid Microextraction of Nonsteroidal Antiinflammatory Drugs in Wastewater. Anal.Chem.2004,76:228~232. [16]Jiang X M, Lee H K. Solvent Bar Microextraction. Anal.Chem.2004,76: 5591~5596.

[17]Jeannot M A.,Cantwell F F. Solvent Micreextraction into a Single Drop. Anal

Chem,1996,68:2236~2240.

[18]Zhao, Lee H K. Liquid-Phase Microextraction Combined with Hollow Fiber as a Sample Preparation Technique Prior to Gas Chromatography/Mass Spectrometry. Anal chem,2002,74:2486~2492. [19] 杨新磊, 罗明标, 唐毓萍. 三相中空纤维式液相微萃取快速富集血浆中尼古丁的研究[J]. 色谱, 2006, 24(6): 555-559

[20] Knut Einar Rasmussen, Stig Pedersen-Bjergaard. Developments in hollow

fibre-Based liquid phase microextraction[J]. Trends in Analytical Chemistry, 2004, 23(1): 1-10. [21] 刘丽丽,李吉海. 新烟碱类杀虫剂的进展与合成[J]. 山东化工, 2003, 1, 11-16. [22] 刘维, 罗明标, 李伯平, 杨枝, 丁健桦. 纳米磁流体用于三相中空纤维液相微

萃取-HPLC法快速测定尿液中尼古丁[J]. 分析测试学报, 2008, 27(2): 165-169.

东华理工大学毕业设计(论文) 致谢 致谢

本论文得以顺利完成首先要感谢罗明标老师。从选择课题、搜集资料、实验过程到撰写论文的各个价段都得到了罗老师的悉心指导。尤其是她渊博的知识、开阔的视野、严谨的治学态度和敏锐的思维给了我深深的启迪。同时,在此次毕业设计过程中我也学到了许多了关于化学分析方面的知识,实验技能有了很大的提高,并且经过一段时间的学习,能够独立分析数据。学会了如何独立思考实验过程,解决实验中出现的一些问题。这些都得益于罗老师悉心指导。在此,特向罗老师表示崇高的敬意和衷心的感谢!

本文的完成还要感谢丁健华老师、李建强老师、孙玉珍师姐和邱昌福师兄对我实验以及论文写作的指导,他为我完成这篇论文中的图表提供了巨大的帮助。还要感谢实验室的其它老师和同学们,他们给了我许多帮助,在此向他们致以最真挚的谢意。

最后,再次对关心、帮助我的老师和同学表示衷心地感谢。


相关文章

  • 苯并咪唑类杀菌剂残留分析方法研究进展
  • 2011年第3期 文献著录格式:陈伟,朱盈蕊,刘红彦,等.苯并咪唑类杀菌剂残留分析方法研究进展[J ].浙江农业科学,2011(3):623-629. 苯并咪唑类杀菌剂残留分析方法研究进展 陈 伟 1,2 2 ,朱盈蕊1,刘红彦1,,倪云霞 ...查看


  • 茶叶农药残留分析的研究进展_朱旭君
  • 茶叶农药残留分析的研究进展 朱旭君,侯如燕* (教育部.农业部茶叶生物化学与生物技术重点开放实验室,安徽农业大学,合肥 230036) 摘 要 对茶叶农药残留分析技术及其进展进行了综述.样品制备技术中,除固相萃 取外,超临界流体萃取,基质固 ...查看


  • 环境.食品中亚硝胺类污染物检测方法研究进展
  • 环境.食品中亚硝胺类污染物检测方法研究进展 摘要 亚硝胺是强致癌物,是最重要的化学致癌物之一,是三大食品污染物之一.食物.化妆品.啤酒.香烟等都含有亚硝酸胺.本文对环境.食品中亚硝胺类污染物检测方法进行综述,以为我国相关质量管理和控制提供技 ...查看


  • 高效液相色谱法测定化妆品中α-.β-熊果苷及烟酰胺
  • 2010年1月 January2010 色谱 V01.28No.1 89-92 ChineseJournalofChromatography 技术与应用 DOI:10.3724/SP.J.1123.2010.00089 高效液相色谱法测定化 ...查看


  • 土壤中六种新烟碱类农药残留的分离及光谱研究
  • 土壤中六种新烟碱类农药残留的分离及光谱研究 孙宝利,陕 红,李艳华,曾娅玲,申秀丽,仝乘风 中国农业科学院农业环境与可持续发展研究所.农业部农业环境与气候变化重点开放实验室,北京100081 摘要建立了一种可同时检测土壤中吡虫啉.啶虫脒.噻 ...查看


  • 高效液相色谱定量分析过程可分为样品的前处理
  • 高效液相色谱定量分析过程可分为样品的前处理.标准品的配制.进样.色谱分离.检测及数据处理等七个步骤. 一 误差的主要来源 随着现在市场销售仪器自动化程度的提高,进样.色谱分离.检测及数据处理等实验环节对实验结果产生的误差越来越小,尤其在高效 ...查看


  • 高效液相色谱_串联质谱法测定人参中的多菌灵残留
  • 第29卷第3期2010年5月 大连工业大学学报 Journal of Dalian Polytechnic University Vol. 29No. 3M ay 2010 文章编号:1674 1404(2010) 03 0165 03 高 ...查看


  • 季铵盐检测技术研究进展
  • 第45卷第9期2015年9月 涂料工业 PAINT&COATINGSINDUSTRY V01.45No.9 Sep.2015 季铵盐检测技术研究进展 吴 乐,陶乃旺,江水旺 (中国船舶重工集团公司第七二五研究所厦门分部,福建厦门36 ...查看


  • 固相萃取技术论文
  • 固相萃取技术 摘要:了解固相萃取技术的新进展及其在体内药物分析中的应用情况.介绍固相萃取 基本原理.填料种类和自动化操作等,并对该技术在体内药物分析中的应用进行综述. 关键词:固相萃取 体内药物分析 近年来,由于高效液相色谱,特别是反相高效 ...查看


热门内容