理解半衰期的实验

Experiment

9.1

Understanding Half-Life

Prelab = 12 Lab Report = 98

Introduction:

grams of carbon-14 today, in 5730 years you would have In any sample of a radioactive isotope, the individual

50 grams of the carbon-14 left. You would have 25 atoms are decaying in a random fashion. It is impossible

grams left after 5730 more years had passed. Half-lives to predict which atom is the next to decay, yet statistically

of radioactive isotopes vary greatly, from much less than you can predict how many atoms will decay in a certain

a second to billions of years. The half-life is a very period of time. Scientists measure how much time

important consideration when choosing a radioactive elapses while half of the atoms of a given radioactive

isotope for a specific application such as a medical sample decay. That time is called the half life. For

tracer. example, the half-life of the carbon-14 isotope is 5730

years. This means that if you were to start with 100

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

Objectives:

1. Interpret a model of radioactivity and half-life. 3. Relate half-life and geologic dating. 2. Demonstrate the connection between half-life and a decay graph.

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

Apparatus :

Shoe box or equivalent 200 or more pennies•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

Procedure:

2. 1. Place at least 200 pennies on the counter tails up.

Then put them into a paper bag. Shake the bag for several seconds. Open the bad and pour the pennies onto the counter and remove all the pennies that have

3. the “heads” side up. Carefully count these pennies

and record the number on Data Table 1. Do not put

4. these pennies back in the box. Put the other pennies

back in the bag.

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

Shake the bag again for several seconds. Open the bag and pour pennies onto the counter and again remove all the pennies with “heads” side up. Count the pennies and record in Data Table 1.

Continue this process until one or no pennies remain. Record the number each time.

Put all the materials away and begin the calculations and questions.

(12) Prelab Questions:

(2) 1. Explain what is meant by the term half-life. (2) 2. What is the half-life of carbon-14?

(2) 3. How can carbon-14 help determine the

age of a fossil?

4. Suppose you have a radioactive isotope with

a half-life of two years and you start with 800 grams of this substance today. (14) Data:

(2) a. How much will you have two years from

today?

(2) b How much will you have eight years from

today?

(2) 5. Is the quantity of a radioactive isotope

ever equal to exactly zero? Explain you answer.

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

How many pennies did you begin with? _____ Shake number Number of pennies removed

Experiment 9.2

December 18, 2009

Page 1

(10) Stamp of Approval..…..

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

(12) Calculations : Using your data complete the table below.

(2) 1. In this exercise, what is the “half-life” of your “atomic pennies”? (You choose!)

(10) 2. Use this value to calculate “Time passed.”

Time passed Pennies remaining in bag

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

(38) Analysis:

(2) 6. Is it possible to predict approximately how many (20) 1. Make a graph of your results using Graphical

pennies will be “heads” up for each shake? Explain Analysis. Plot time on the x-axis and pennies

your answer. remaining on the y-axis.

7. Check with at least two other groups in your class. (2) 2. How would you describe the shape of your graph?

Look at both the data collected and the graphs you (4) 3. Suppose you had started with 1000 pennies.

constructed. Would the shape of the graph be different? Explain

(2) a. Was your data identical to other groups? your answer.

(2) b. Was your graph identical to other groups? (2) 4. Approximately what percent of the pennies were

(2) c. Explain the similarities and differences. removed with each shake?

(2) 5. Is it possible to identify in advance which pennies

will be “heads” up?

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

(12) Real World Connections

(4) 1. The half-life of iodine-125 is 60 days. The half-life

of iodine-131 is 8.05 days. Often iodine is used to help identify diseases of the thyroid gland. Which of these two isotopes do you think would be the best to use in this application? Explain your answer. (4) 2. One of the controversies surrounding the use of

nuclear power is the storage of nuclear waste. Explain how the concept of half-life is an important consideration in this debate.

(4) 3. In a tree or other living organism, the amount of

carbon-14 is quite low. In fact, the number of decays or disintegrations is only about 15.3 disintegrations per minute. This rate remains constant while the tree is alive because the carbon-14 is being replaced in the tree through respiration. When the tree dies, the rate slowly decreases according to the half-life of carbon-14. Suppose a piece of fossil tree is

analyzed and found to be disintegrating at a rate of Experiment 9.2

about 3.8 disintegrations per minute. About how old is this fossil?

No Conclusion

December 18, 2009 Page 2

Experiment

9.1

Understanding Half-Life

Prelab = 12 Lab Report = 98

Introduction:

grams of carbon-14 today, in 5730 years you would have In any sample of a radioactive isotope, the individual

50 grams of the carbon-14 left. You would have 25 atoms are decaying in a random fashion. It is impossible

grams left after 5730 more years had passed. Half-lives to predict which atom is the next to decay, yet statistically

of radioactive isotopes vary greatly, from much less than you can predict how many atoms will decay in a certain

a second to billions of years. The half-life is a very period of time. Scientists measure how much time

important consideration when choosing a radioactive elapses while half of the atoms of a given radioactive

isotope for a specific application such as a medical sample decay. That time is called the half life. For

tracer. example, the half-life of the carbon-14 isotope is 5730

years. This means that if you were to start with 100

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

Objectives:

1. Interpret a model of radioactivity and half-life. 3. Relate half-life and geologic dating. 2. Demonstrate the connection between half-life and a decay graph.

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

Apparatus :

Shoe box or equivalent 200 or more pennies•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

Procedure:

2. 1. Place at least 200 pennies on the counter tails up.

Then put them into a paper bag. Shake the bag for several seconds. Open the bad and pour the pennies onto the counter and remove all the pennies that have

3. the “heads” side up. Carefully count these pennies

and record the number on Data Table 1. Do not put

4. these pennies back in the box. Put the other pennies

back in the bag.

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

Shake the bag again for several seconds. Open the bag and pour pennies onto the counter and again remove all the pennies with “heads” side up. Count the pennies and record in Data Table 1.

Continue this process until one or no pennies remain. Record the number each time.

Put all the materials away and begin the calculations and questions.

(12) Prelab Questions:

(2) 1. Explain what is meant by the term half-life. (2) 2. What is the half-life of carbon-14?

(2) 3. How can carbon-14 help determine the

age of a fossil?

4. Suppose you have a radioactive isotope with

a half-life of two years and you start with 800 grams of this substance today. (14) Data:

(2) a. How much will you have two years from

today?

(2) b How much will you have eight years from

today?

(2) 5. Is the quantity of a radioactive isotope

ever equal to exactly zero? Explain you answer.

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

How many pennies did you begin with? _____ Shake number Number of pennies removed

Experiment 9.2

December 18, 2009

Page 1

(10) Stamp of Approval..…..

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

(12) Calculations : Using your data complete the table below.

(2) 1. In this exercise, what is the “half-life” of your “atomic pennies”? (You choose!)

(10) 2. Use this value to calculate “Time passed.”

Time passed Pennies remaining in bag

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

(38) Analysis:

(2) 6. Is it possible to predict approximately how many (20) 1. Make a graph of your results using Graphical

pennies will be “heads” up for each shake? Explain Analysis. Plot time on the x-axis and pennies

your answer. remaining on the y-axis.

7. Check with at least two other groups in your class. (2) 2. How would you describe the shape of your graph?

Look at both the data collected and the graphs you (4) 3. Suppose you had started with 1000 pennies.

constructed. Would the shape of the graph be different? Explain

(2) a. Was your data identical to other groups? your answer.

(2) b. Was your graph identical to other groups? (2) 4. Approximately what percent of the pennies were

(2) c. Explain the similarities and differences. removed with each shake?

(2) 5. Is it possible to identify in advance which pennies

will be “heads” up?

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

(12) Real World Connections

(4) 1. The half-life of iodine-125 is 60 days. The half-life

of iodine-131 is 8.05 days. Often iodine is used to help identify diseases of the thyroid gland. Which of these two isotopes do you think would be the best to use in this application? Explain your answer. (4) 2. One of the controversies surrounding the use of

nuclear power is the storage of nuclear waste. Explain how the concept of half-life is an important consideration in this debate.

(4) 3. In a tree or other living organism, the amount of

carbon-14 is quite low. In fact, the number of decays or disintegrations is only about 15.3 disintegrations per minute. This rate remains constant while the tree is alive because the carbon-14 is being replaced in the tree through respiration. When the tree dies, the rate slowly decreases according to the half-life of carbon-14. Suppose a piece of fossil tree is

analyzed and found to be disintegrating at a rate of Experiment 9.2

about 3.8 disintegrations per minute. About how old is this fossil?

No Conclusion

December 18, 2009 Page 2


相关文章

  • [药理学实验]教学大纲
  • <药理学实验>教学大纲 [课程编号]17315272 [英文名称]Experiments of Pharmacology [课程学时]16 [适用专业]制药工程 一.本实验课程的教学目的和要求 药理学实验是与药理学理论教学密切的 ...查看


  • 23.原子核
  • 第二十二章 原子核 第一部分 教学纲要 3.新课标: (1)了解人类探索原子结构的历史以及有关经典实验. (2)知道原子核的组成.知道放射性和原子核的衰变.会用半衰期描述衰变速度,知道半衰期的统计意义. (3)知道X 射线.α射线.β射线. ...查看


  • 步步高导学案第十九章学案1.2
  • 学案1 原子核的组成 学案2 放射性元素的衰变 [目标定位] 1.了解什么是放射性.天然放射现象.衰变.2.知道原子核的组成及三种射线的特征.3.理解α衰变和β衰变的规律及实质,并能熟练书写衰变方程.4.理解半衰期的概念,学会利用半衰期解决 ...查看


  • 高三生物集体备课教案
  • 高三生物集体备课教案 时间 2007年12月7日 地点 生物实验室 人员 生物组全体教师 主备人陈富国 内容:第二节 人和高等动物生命活动的调节 一 体液调节 教学目的 1. 动物激素的种类和生理作用(C:理解). 2. 激素分泌的调节(C ...查看


  • 江苏省普通高中物理课程标准教学要求
  • 江苏省普通高中物理课程标准教学要求说明 为贯彻教育部制定的<普通高中物理课程标准>(以下简称<课标>).帮助广大高中物理教师把握教学的深广度,我们组织编写了<高中物理教学要求>(以下简称<要求> ...查看


  • [高中物理教学要求]的说明
  • 江苏省普通高中物理课程标准教学要求 说 明 为贯彻教育部制定的<普通高中物理课程标准>(以下简称<课标>).帮助广大高中物理教师把握教学的深广度,我们组织编写了<高中物理教学要求>(以下简称<要求& ...查看


  • 新课标对学生及教师的要求
  • 新课标对学生及教师的要求 一.物理科要考查的能力 1.理解能力 理解物理概念.物理规律的确切含义,理解物理规律的适用条件,以及它们在简单情况下的应用:能够清楚认识概念和规律的表达形式(包括文字.数学.图像三种表达形式):能够鉴别关于概念和规 ...查看


  • 高三物理原子核衰变及半衰期2
  • 3.2 原子核衰变及半衰期 新课标要求 1.知识与技能 (1)了解天然放射现象及其规律: (2)知道三种射线的本质,以及如何利用磁场区分它们: (3)知道放射现象的实质是原子核的衰变: (4)知道两种衰变的基本性质,并掌握原子核的衰变规律: ...查看


  • 论文写作五要素
  • 论文写作五要素 论文写作五要素之一:创新性 在科学与技术的发展处于转折.发现和革命的时期,像本世纪之初量子论诞生那种充满重大发现的年代:像四十年代未至五十年代初发明晶体管的年代,像五十年代发现DNA 双螺旋结构从而开创分于生物学的激动人心的 ...查看


热门内容