空间激光通信

空间激光通信研究现状

空间激光通信相对射频通信有着速率高、容量大等许多优点,从上世纪80年代起,各国就陆续开展了对空间激光通信的研究。目前,各国激光通信的调制方式主要分为PPM 、PSK 和OOK 三种,本文按照调制方式对各国的空间激光通信研究现状进行描述。

1,PPM

欧洲的SILEX 项目、OPTEL 项目和美国的LLCD 项目、LCRD 项目、MLCD 项目使用或部分使用PPM 调制方式。

1.1,LLCD 项目[1~3]

LLCD 是美国NASA2013年开始实行的一个项目,该项目建了两个探测器,月球环境探测器LLST 和地面站LLGT ,LLST 和LLGT 的通信距离距离在35000~400000km之间。 如图1(1)所示,地面站LLGT 重达7吨,有4个15cm 发射镜头和4个40cm 接收镜头组成。LLGT 的发射机使用的调制方式为4-PPM ,每4个数据时隙后跟有12个或者28个静默时隙,发射激光器的波长是1550nm ,通过4个发射镜头实现4路时分复用,信号发射前经过一个10W 光放大器放大,传输速率为10/20Mbps,这个速度是目前地月RF 通信的5000倍。为降低误码率采用了turbo 码作为信道编码,码率为1/2,实现了0误码。4路接收镜头阵列有效提高了接收信号强度,接收机是4个超导单光子计数探测器(工作在3K 温度上),接收灵敏度极高,如图1(2)所示,能够提供高速光子计数测量[1]。

月球探测器LLST 由光学模块、调制解调器、电子控制器三个模块组成[2],质量30kg 。光学模块由一个10cm 镜头的镜头组成,完成发射和接收光信号的功能,光学模块安装在一个二轴平衡台上,台上有粗瞄准和捕获探测器,该模块能够测试飞船的振动并进行补偿,实现对地面站的瞄准和捕获,光学模块通过光纤耦合到调制解调模块上。调制解调模块的主要功能是调制和解调光信号,如图2所示,模块内置了311MHz 低噪声时钟(经VCO 可倍频至5GHz ),解调模块前置了一个0.5W 的放大器,对接收光信号进行放大,光信号进入后一部分经PLL 使时钟频率同步,一部分进入解调器,解调器的时隙时钟由频率同步后的时钟提供(不需要额外的时隙同步),FPGA 的主要作用是上行链路帧同步,下行链路产生帧

信号发送出去[3]。电子控制器模块有一些控制算法功能包括稳定光模块等。LLST 的激光器功率仅为0.5W ,波长为1550nm ,使用的调制方式16-ppm ,速率达到了40-622Mbps ,使用turobo 码信道编码,码率为1/2,速率为40/80/155/311Mbps时可做到0误码,速率622Mbps 时误码率小于10^-5。上行链路速度明显小于下行,一个原因是地面接收机没有体积质量等要求,灵敏度可以做的很高,另一个原因是大气信道具有不对称性,对上行链路的影响较大,使之误码率变高。

图1 (1)地面站LLGT (2)接收机在各个速率下的接收灵敏度

图2 月球探测器LLST 信号处理过程

LLCD 除了实现月地高速通信外,还实现了cm 距离精度的测距功能[3]。

1.2,LCRD 项目[4~5]

2013美国NASA 提出LCRD 激光通信卫星中继项目(后面的数据都是预定的,还未实测),任务包括:高速地面和GEO 双向通行;GND-GEO-GND 中继实验;验证PPM 适合深空通信和功率受限的小型星地通信,DPSK 适合近地高速通信。如图3所示,LCRD

终端

包括DPSK 模块、PPM 模块和光学控制模块[5]。

PPM 模块与LLCD 的PPM 模块类似,下行将使用1/2码率串行级联16-PPM 的turbo 码,上行4-PPM ,使用硬判决方式,时钟、速率等和LLCD 一样,调制模块使用的是MOPA 结构,CW 激光器经马赫-曾德尔调制器调制后,再经二阶EDFA 放大到0.5W 平均功率发射。接收机有前置放大器,后分三路,分别用以通信、时钟恢复、空间跟踪。DPSK 模块有着优越的噪声耐性,因而可以支持极高的速率,速率72Mbps~2.88Gbps(编码后1.25Gbps) ,未来改进中有望支持10Gbps 。DPSK 模块的调制过程与PPM 模块的几乎一摸一样,但是DPSK 功率要求高,受限于EDFA 平均功率,DPSK 模块只在小部分时间内发送脉冲[4]。DPSK 解调模块使用平衡接收和硬判决方式,与BPSK 解调方式不同,DPSK 不需要本地振荡器,只需要将一部分信号光延时后与原信号干涉即可。

地面站有两个,一个是LLCD 项目中的LLGT 地面站,可接收和发射PPM 信号。另一个是OCTL 地面站,可接受和发射DPSK 和PPM 信号。

图3 卫星LCRD 终端

1.3,其他PPM 项目

2009美国NASA 提出MLCD[6](火星激光通信演示验证),如图4

所示,火星到地球

信道衰减较大,因此将使用PPM 调制方式,计划实现1~100Mbps深空高数据远程通信,卫星上用直径30.5cm 天线,采用CCD 成像接收,发射用MOPA 结构。地面采用直径1m 光学天线,4路复用,或者6路直径30cm 天线,波长1060nm 。

图4 太阳系信道衰减图

SILEX[7~8]是2001年法国在GEO 和LEO 卫星进行的通信实验,通信距离4000km ,调制方式为PPM ,速率为50Mbps ,误码率为10^-6。

OPTEL[9]是瑞士的一个激光通信项目,短距离到长距离多个卫星终端2000~80000km,速率在1.5~2.5Gbps之间。OPTEL-25终端:LEO-LEO ,调制方式为BPSK ,信号光波长1064nm 功率1.25W ,使用信标光瞄准捕获,信标光波长808nm 。OPTEL-u 终端,星地通信卫星,下行2X1.25Gbps ,调制方式OOK ,可切换至8-ppm ,上行调制方式为16-PPM 。 2,OOK

早期的项目使用的一般是OOK ,日本的LUCE 、欧洲的OPTEL 、美国的OPLAS 使用或者部分使用OOK 调制方式。

2.1,OPALS 项目[10~13]

OPALS 项目是美国JPL (喷气动力实验室)2014年实施的空间站与地面站激光通信实验,考虑到价格和风险等因素,OPALS 的终端没有使用最先进的激光通信科技,终端结构如图5所示。OPALS 的主要作用是获得大气干扰数据,测试连接可靠性,测试开环瞄准捕获跟踪的性能。

OPALS 为单向通信链路,下行主要参数有:调制方式为OOK ,速率30~50Mbps

,误

码率10^-4,通信波长1550nm ,平均功率2.5W ,传输距离700km 。OPALS 的瞄准系统和光学镜头安装在2轴平衡架上,上面装有等步进马达,能够调节110°X40°范围的发射角度。光学模块上有一个976nm 感光相机用以捕获和跟踪地面信标光,还有一个瞄准仪用来发射信号光。地面站OGTL 光学镜头用以发射976nm 信标光和接收1550nm 信号光。标激光波长976nm ,功率5W ,光束角度1.7mrad 。地面站和空间站通过RF 通信来分析激光通信的性能。

图5 OPALS 终端

2.2,其他OOK 项目

LUCE[14~15](前身是第一个星地激光通信终端LCE,1995,LEO-GND ,速度

1.04Mbps )是日本和欧洲早期进行的一个激光通信实验项目。实验结果如下:(1)2005日本和欧洲进行了GEO-LEO 通信实验,通信距离48000km ,发射波长847nm ,接收波长819nm ,调制方式为OOK ,接收速率为2.048Mbps ,发射速率50Mbps ,误码率达10^-7。

(2)2006年日本进行GEO-GND 通信实验,在OICETS 卫星与NICT 地面站间进行激光通信,发射波长847nm ,接收波长819nm ,调制方式为OOK ,上行速率为2.048Mbps ,下行速率为50Mbps ,误码率10^-7。

3,

PSK

欧洲的LCTSX 、EDRS 和美国的LCRD 使用或者部分使用PSK 调制方式。

3.1,LCTSX 项目和EDRS 项目[16~18]

2008年欧洲开始实施LCTSX 项目及后续的EDRS 项目(2014)。LCTSX 项目欧洲做了三个LCT 终端,两个在卫星站,一个在地面站。 LCTSX 的LCT 终端总功率120W (光传输功率0.7W ),镜头镜头125mm ,体积0.5mX0.5mX0.6m 。发射机由LD 泵浦源和Nd :YAG MISER 激光器组成,LD 泵浦源模块包括两个LD 阵列,一个使用一个备用,每个阵列有多个LD ,目的是提高发射机的使用寿命。如图6(1)所示是LCT 调制解调原理图,种子光经相位调制器将电信号调制到光上,经光放大器发射到信道上。接收机是基于光学costas 锁相的BPSK 零差解调系统,是灵敏度最高的接收系统。光学锁相环需解决多普勒频移等因素,使接收信号与本振同频,再使用本振和接收信号光干涉,拍出RF 信号,再经滤波得到RF 信号。从原理图还可以看出这些通信用光信号的另一个作用是瞄准。

考虑到GEO-GND 实验距离更远,光衰减更大,EDRS 项目的LCT 终端和LCTSX 的LCT 终端有些不同,LCT 终端总功率160W (光功率2.2W ),镜头135mm ,大小0.6mX0.6mX0.7m 。EDRS 的GEO-GND 链路目前先使用RF 通信,因为LCT 终端镜头大小适应LEO ,对于GEO 来说太小,后续将改为激光通信。相比LCTSX ,EDRS 提高的是通信时间和实用性。

实验结果如下:(1)LEO-LEO 实验:TerraSAR-X 卫星与NFIRE 卫星;二相相移键控/零差相干解调,调制方式BPSK ,波长1064nm ,距离1000~5100km,速率 5.625Gbps (24个信道),误码率小于10^-7。(2)LEO-GND-LEO中继实验: 距离1000km ,上行误码率10^-5,下行零误码,卫星接收后解调,再调制发射,其他数据同上。 GEO-LEO 实验(欧洲EDRS 项目,2014年): Sentinel1卫星与Alphasat 卫星。 设计距离45000km ,调制方式BPSK ,速率1.8Gbps ,误码率10^-8,

LCTSX 的LCT 终端使用PAT(瞄准,捕获,跟踪) 建立通信,具体步骤如图6(2)所

示。OPTEL 等项目的瞄准捕获系统是通过使用与通信波长不同波长的广角信标激光实现的,与这些项目不同,LCT 没有使用广角信标激光。如图6(2)所示,卫星上有星历表,先通过星历表计算轨道,用以粗瞄准,然后LCT 的通信用激光器进行空间捕获,捕获成功后再进行外差追踪,对其频率捕获,通过光学costas 锁相环进行锁相,使本地振荡器与信号光同频,实现零差追踪,最后通过零差解调系统实现通信功能。

图6 (1)LCT 的调制解调系统 (2)PAT 系统

3.2,其他PSK 项目

LCRD 和OPTEL-u 后续将使用DPSK 调制方式。如图7所示,从星座图可以看出,PSK 的平衡接收机灵敏度相对OOK 有3dB 优势,同时文献中也提到归零码优于不归零码

[19]。而上面提到过,DPSK 相对BPSK 不需要本地振荡器,也就不需要光锁相环等结构,解调模块简单。

图7 OOK 和DPSK 的星座图

图8是DPSK ,OOK ,PPM 的带宽系数(图中横坐标,单位[(bit/s)/Hz]^-1)与需要的信噪比(图中纵坐标,PPB 光子每比特) 与香农极限的比较图[20]。DPSK (带前置放大器)在兼顾PPB 和带宽利用率的时候性能优越,硬判决条件下在3 光子每比特(5dB )时带宽利用率达到了0.5bit/s/Hz,明显优于OOK 和PPM 。带宽系数比较大时,PPM 需要的光子每比特数较低,性能较好,且带宽系数越低,PPM 的阶数越大性能越好。例如带宽系数大于100时,1024-PPM 优于256-PPM 优于4-PPM 优于2-PPM 。M 进制ppm 在功率受限时也表现良好,且随着带宽系数增加,越来越接近香农极限。

图8 OOK,DPSK,PPM 性能对比图

上述使用PPM 和OOK 的项目速率一般在M 级别,而使用PSK 的项目速度能达到G 级别,结合上面说到美国LCRD 项目的任务,我们可以初步判断判断在近地功率受限小项目以及深空(地月、地火)通信等功率受限信道中适用PPM ,而近地(星地、星间)高速通信则适用DPSK 。

俄罗斯的SLS 项目因为没有查到通信方式,所以放到最后讲下主要参数。SLS[21~22]是2012俄罗斯航天部门在国际空间站和北高加索地面站进行的激光通信实验。通信距离为1000km ,空间站发射波长1550nm ,光发射功率6W ,测试传输速率3/125/622Mbps,连接时间小于5min ;地面站发射波长850nm 速率3Mbps ,连接时间小于10min 。

4,其他空间光通信相关进展

前文的项目都是星间通信或者星地通信,本节将简要介绍星空、空地等链路的相关项目以及国内相关进展。

4.1,星空

LOLA 项目[23]是法国2006年进行的一个星空通信实验,由高轨道Artemis 卫星与某飞机进行激光通信实验,通信光波长为848nm ,功率仅为104mW ,上行调制方式为BPPM(二进制PPM), 速率为2Mbps ,下行链路调制方式为OOK ,速率为50Mbps

。飞机的飞行高

度为9km ,与Artermis 卫星的通信距离达到了40000km 。

4.2,空地

OCD 项目是2005年美国喷气推进实验室进行的一个空地激光通信项目,高空飞机飞行高度10~23km,光波长1550nm ,功率200mW ,调制方式为OOK ,速率达到了2.5Gpbs 。

ARGOS 是2008年德国DLR 航空部门在飞机与地面站之间进行的激光通信实验,距离为10~85km,速率为150Mbps 。2013年又进行了实验,飞机与地面站距离大于50km ,飞行速度0.7马赫,速率达到了1.25Gbps 。

4.3,空空

Falcon 是2011年美国ITT 公司进行的一个空空激光通信实验,两家飞机距离94~132km进行激光通信,光波长1550nm ,速率2.5Gbps ,误码率10^-6;

4.4,地地

2005年德国DLR 航空部门在La Palma 岛屿和Tene-rife 岛屿进行了地地激光通信实验,使用的是BPSK 调制方式,通信距离为142km ,速率达到了5.6Gbps ;

2006年美国约翰普金斯大学应用物理实验室在飞艇和地面车载终端之间进行了激光通信实验,通信距离1.4km ,使用波分复用速度达到了80Gbps[24]。

2009年某实验室巴黎两个大楼进行了激光通信实验,通信距离212m ,速率达到了

1.28Tbps(32路波分复用X40Gbps)[25]。

4.5,国内相关进展

国内空间激光通信进展如图9所示[26]。

图9 国内空间激光通信进展

缩写:

GEO :Geosynchronous orbit,高地球轨道,2000km 以上

LEO :Low Earth orbit,低地球轨道,2000km 以下

GND :地面

MOPA :主振功率放大器

PAT:pointing,acquisition ,tracking, 瞄准,捕获,跟踪

PPB: Photons per bit,光子每比特

CCD :Charge-coupled Device,CCD 图像传感器

参考文献

[1]Matthew E. Grein*, Andrew J. Kerman, Eric A. Dauler. An optical receiver for the Lunar

Laser Communication Demonstration based on photon-counting superconducting nanowires. Proc. of SPIE Vol. 9492 949208-1,2015

[2]

[3]M. L. Stevens, R. R. Parenti, M. M. Willis.The Lunar Laser Communication Demonstration time-of-flight measurement system: overview, on-orbit performance and ranging analysis.Proc. of SPIE Vol. 9739 973908-12,2016

[4]Bernard L. Edwards ,Dave Israel. Overview of the Laser Communications Relay

Demonstration Project.

[5]Bernard L Edwards, David J Israel, Donald E Whiteman. A Space Based Optical

Communications Relay Architecture to Support Future NASA Science and Exploration Missions.Proc. International Conference on Space Optical Systems and Applications (ICSOS) ,2 S6-1, Kobe, Japan, May 7-9 ,2014

[6]D. M. Boroson , A. Biswas, B. L. Edwards. MLCD Overview of NASA’s Mars Laser Communications Demonstration System.

[7]Zoran Sodnik, Bernhard Furch ,Hanspeter Lutz.Free-Space Laser Communication Activities in Europe: SILEX and beyond. IEEE,0-7803-9556-5/06/$20.00 , 2006

[8]T. Tolker-Nielsen,J-C. Guillen. SILEX The First European Optical Communication Terminal in Orbit. EESA bulletin 96 november 1998

[9]Dreischer Thomas, Thieme Björn, Bacher Michael. OPTEL-μ A Compact System for Optical Downlinks from LEO Satellites

[10]Matthew J Abrahamson, Oleg V Sindiy, Bogdan V Oaida.OPALS Mission System

Operations Architecture for an Optical Communications Demonstration on the ISS. SpaceOps Conference,2014

[11]Bogdan V Oaida, Matthew J Abrahamson, Robert J WitoffOPALS. An Optical

Communications Technology Demonstration from the International Space Station. IEEE,978-1-4673-1813-6/13/$31.00 ,2013

[12]Jessica N Bowles-Martinez, Baris I Erkmen, Parker A Fagrelius. A COTS-Based Technical Demonstration of Optical Communications

[13]M. W. Wright, M. W. Wilkerson, R. R. Tang. Qualification Testing of Fiber-based Laser Transmitters and on-orbit Validation of a Commercial Laser System.ICSO,2014

[14]Takashi Jono, Yoshihisa Takayama, Nobuhiro Kura. OICETS on-orbit laser communication experiments. In Lasers and Applications in Science and Engineering, pages

610503{610503. International Society for Optics and Photonics, 2006.

[15]Ryan W. Kingsbury, Prof. Kerri L. Cahoy. Optical Communications for Small Satellites

[16]Stefan Seel, Hartmut Kämpfner, Frank Heine. Space to Ground Bidirectional Optical Communication Link at 5.6 Gbps and EDRS Connectivity Outlook.IEEEAC paper #1111, Version 2, Updated October 27, 2010

[17]Mark Gregory, Frank Heine, Hartmut Kämpfner. Commercial optical inter-satellite communication at high data rates.Optical Engineering 51(3), 031202 ,2012

[18]M. Gregory, F. Heine, H. Kämpfner1. Tesat Laser Communication Terminal Performance Results on 2.6Gbit Coherent Inter Satellite and Satellite to Ground Links. ICSO,2010

[19]A. H. Gnauck,P. J. Winzer. Optical Phase-Shift-Keyed Transmission.Journal of LightwaveI Technology, VOL. 23, NO. 1, 2005

[20]David O. Caplan.Laser communication transmitter and receiver design.J. Opt. Fiber.

Commun. Rep. 4, 225–362 ,2007

[21]V. Grigoryev, V. Kovalev, V. Shargorodskiy, V. Sumerin.High-bit-rate Laser Space Communication Technology and Results of on-board Experiment.ICSOS, 2014

[22]https://directory.eoportal.org/web/eoportal/satellite-missions/i/iss-btls

[23]Vincent Cazaubiel, Gilles Planche, Vincent Chorvalli. LOLA a 40.000km Optical Link Between an Aircraft and a Geostationary Satellite.ESA SP-621, June 2006

[24] Sova R M,Sluz J E,Young D W.et al.80Gb/s free-space optical communication demonstration between an aerostat and a ground terminal[C]

[25]E. Ciaramella, Y. Arimoto, G. Contestabile.1.28 terabit/s (32x40 Gbit/s) wdm transmission system for free space optical communications.IEEE,2009

[26]姜会林,安岩,张雅琳,等.空间激光通信现状、发展趋势及关键技术分析[J]. 飞行器测控学报,2015

空间激光通信研究现状

空间激光通信相对射频通信有着速率高、容量大等许多优点,从上世纪80年代起,各国就陆续开展了对空间激光通信的研究。目前,各国激光通信的调制方式主要分为PPM 、PSK 和OOK 三种,本文按照调制方式对各国的空间激光通信研究现状进行描述。

1,PPM

欧洲的SILEX 项目、OPTEL 项目和美国的LLCD 项目、LCRD 项目、MLCD 项目使用或部分使用PPM 调制方式。

1.1,LLCD 项目[1~3]

LLCD 是美国NASA2013年开始实行的一个项目,该项目建了两个探测器,月球环境探测器LLST 和地面站LLGT ,LLST 和LLGT 的通信距离距离在35000~400000km之间。 如图1(1)所示,地面站LLGT 重达7吨,有4个15cm 发射镜头和4个40cm 接收镜头组成。LLGT 的发射机使用的调制方式为4-PPM ,每4个数据时隙后跟有12个或者28个静默时隙,发射激光器的波长是1550nm ,通过4个发射镜头实现4路时分复用,信号发射前经过一个10W 光放大器放大,传输速率为10/20Mbps,这个速度是目前地月RF 通信的5000倍。为降低误码率采用了turbo 码作为信道编码,码率为1/2,实现了0误码。4路接收镜头阵列有效提高了接收信号强度,接收机是4个超导单光子计数探测器(工作在3K 温度上),接收灵敏度极高,如图1(2)所示,能够提供高速光子计数测量[1]。

月球探测器LLST 由光学模块、调制解调器、电子控制器三个模块组成[2],质量30kg 。光学模块由一个10cm 镜头的镜头组成,完成发射和接收光信号的功能,光学模块安装在一个二轴平衡台上,台上有粗瞄准和捕获探测器,该模块能够测试飞船的振动并进行补偿,实现对地面站的瞄准和捕获,光学模块通过光纤耦合到调制解调模块上。调制解调模块的主要功能是调制和解调光信号,如图2所示,模块内置了311MHz 低噪声时钟(经VCO 可倍频至5GHz ),解调模块前置了一个0.5W 的放大器,对接收光信号进行放大,光信号进入后一部分经PLL 使时钟频率同步,一部分进入解调器,解调器的时隙时钟由频率同步后的时钟提供(不需要额外的时隙同步),FPGA 的主要作用是上行链路帧同步,下行链路产生帧

信号发送出去[3]。电子控制器模块有一些控制算法功能包括稳定光模块等。LLST 的激光器功率仅为0.5W ,波长为1550nm ,使用的调制方式16-ppm ,速率达到了40-622Mbps ,使用turobo 码信道编码,码率为1/2,速率为40/80/155/311Mbps时可做到0误码,速率622Mbps 时误码率小于10^-5。上行链路速度明显小于下行,一个原因是地面接收机没有体积质量等要求,灵敏度可以做的很高,另一个原因是大气信道具有不对称性,对上行链路的影响较大,使之误码率变高。

图1 (1)地面站LLGT (2)接收机在各个速率下的接收灵敏度

图2 月球探测器LLST 信号处理过程

LLCD 除了实现月地高速通信外,还实现了cm 距离精度的测距功能[3]。

1.2,LCRD 项目[4~5]

2013美国NASA 提出LCRD 激光通信卫星中继项目(后面的数据都是预定的,还未实测),任务包括:高速地面和GEO 双向通行;GND-GEO-GND 中继实验;验证PPM 适合深空通信和功率受限的小型星地通信,DPSK 适合近地高速通信。如图3所示,LCRD

终端

包括DPSK 模块、PPM 模块和光学控制模块[5]。

PPM 模块与LLCD 的PPM 模块类似,下行将使用1/2码率串行级联16-PPM 的turbo 码,上行4-PPM ,使用硬判决方式,时钟、速率等和LLCD 一样,调制模块使用的是MOPA 结构,CW 激光器经马赫-曾德尔调制器调制后,再经二阶EDFA 放大到0.5W 平均功率发射。接收机有前置放大器,后分三路,分别用以通信、时钟恢复、空间跟踪。DPSK 模块有着优越的噪声耐性,因而可以支持极高的速率,速率72Mbps~2.88Gbps(编码后1.25Gbps) ,未来改进中有望支持10Gbps 。DPSK 模块的调制过程与PPM 模块的几乎一摸一样,但是DPSK 功率要求高,受限于EDFA 平均功率,DPSK 模块只在小部分时间内发送脉冲[4]。DPSK 解调模块使用平衡接收和硬判决方式,与BPSK 解调方式不同,DPSK 不需要本地振荡器,只需要将一部分信号光延时后与原信号干涉即可。

地面站有两个,一个是LLCD 项目中的LLGT 地面站,可接收和发射PPM 信号。另一个是OCTL 地面站,可接受和发射DPSK 和PPM 信号。

图3 卫星LCRD 终端

1.3,其他PPM 项目

2009美国NASA 提出MLCD[6](火星激光通信演示验证),如图4

所示,火星到地球

信道衰减较大,因此将使用PPM 调制方式,计划实现1~100Mbps深空高数据远程通信,卫星上用直径30.5cm 天线,采用CCD 成像接收,发射用MOPA 结构。地面采用直径1m 光学天线,4路复用,或者6路直径30cm 天线,波长1060nm 。

图4 太阳系信道衰减图

SILEX[7~8]是2001年法国在GEO 和LEO 卫星进行的通信实验,通信距离4000km ,调制方式为PPM ,速率为50Mbps ,误码率为10^-6。

OPTEL[9]是瑞士的一个激光通信项目,短距离到长距离多个卫星终端2000~80000km,速率在1.5~2.5Gbps之间。OPTEL-25终端:LEO-LEO ,调制方式为BPSK ,信号光波长1064nm 功率1.25W ,使用信标光瞄准捕获,信标光波长808nm 。OPTEL-u 终端,星地通信卫星,下行2X1.25Gbps ,调制方式OOK ,可切换至8-ppm ,上行调制方式为16-PPM 。 2,OOK

早期的项目使用的一般是OOK ,日本的LUCE 、欧洲的OPTEL 、美国的OPLAS 使用或者部分使用OOK 调制方式。

2.1,OPALS 项目[10~13]

OPALS 项目是美国JPL (喷气动力实验室)2014年实施的空间站与地面站激光通信实验,考虑到价格和风险等因素,OPALS 的终端没有使用最先进的激光通信科技,终端结构如图5所示。OPALS 的主要作用是获得大气干扰数据,测试连接可靠性,测试开环瞄准捕获跟踪的性能。

OPALS 为单向通信链路,下行主要参数有:调制方式为OOK ,速率30~50Mbps

,误

码率10^-4,通信波长1550nm ,平均功率2.5W ,传输距离700km 。OPALS 的瞄准系统和光学镜头安装在2轴平衡架上,上面装有等步进马达,能够调节110°X40°范围的发射角度。光学模块上有一个976nm 感光相机用以捕获和跟踪地面信标光,还有一个瞄准仪用来发射信号光。地面站OGTL 光学镜头用以发射976nm 信标光和接收1550nm 信号光。标激光波长976nm ,功率5W ,光束角度1.7mrad 。地面站和空间站通过RF 通信来分析激光通信的性能。

图5 OPALS 终端

2.2,其他OOK 项目

LUCE[14~15](前身是第一个星地激光通信终端LCE,1995,LEO-GND ,速度

1.04Mbps )是日本和欧洲早期进行的一个激光通信实验项目。实验结果如下:(1)2005日本和欧洲进行了GEO-LEO 通信实验,通信距离48000km ,发射波长847nm ,接收波长819nm ,调制方式为OOK ,接收速率为2.048Mbps ,发射速率50Mbps ,误码率达10^-7。

(2)2006年日本进行GEO-GND 通信实验,在OICETS 卫星与NICT 地面站间进行激光通信,发射波长847nm ,接收波长819nm ,调制方式为OOK ,上行速率为2.048Mbps ,下行速率为50Mbps ,误码率10^-7。

3,

PSK

欧洲的LCTSX 、EDRS 和美国的LCRD 使用或者部分使用PSK 调制方式。

3.1,LCTSX 项目和EDRS 项目[16~18]

2008年欧洲开始实施LCTSX 项目及后续的EDRS 项目(2014)。LCTSX 项目欧洲做了三个LCT 终端,两个在卫星站,一个在地面站。 LCTSX 的LCT 终端总功率120W (光传输功率0.7W ),镜头镜头125mm ,体积0.5mX0.5mX0.6m 。发射机由LD 泵浦源和Nd :YAG MISER 激光器组成,LD 泵浦源模块包括两个LD 阵列,一个使用一个备用,每个阵列有多个LD ,目的是提高发射机的使用寿命。如图6(1)所示是LCT 调制解调原理图,种子光经相位调制器将电信号调制到光上,经光放大器发射到信道上。接收机是基于光学costas 锁相的BPSK 零差解调系统,是灵敏度最高的接收系统。光学锁相环需解决多普勒频移等因素,使接收信号与本振同频,再使用本振和接收信号光干涉,拍出RF 信号,再经滤波得到RF 信号。从原理图还可以看出这些通信用光信号的另一个作用是瞄准。

考虑到GEO-GND 实验距离更远,光衰减更大,EDRS 项目的LCT 终端和LCTSX 的LCT 终端有些不同,LCT 终端总功率160W (光功率2.2W ),镜头135mm ,大小0.6mX0.6mX0.7m 。EDRS 的GEO-GND 链路目前先使用RF 通信,因为LCT 终端镜头大小适应LEO ,对于GEO 来说太小,后续将改为激光通信。相比LCTSX ,EDRS 提高的是通信时间和实用性。

实验结果如下:(1)LEO-LEO 实验:TerraSAR-X 卫星与NFIRE 卫星;二相相移键控/零差相干解调,调制方式BPSK ,波长1064nm ,距离1000~5100km,速率 5.625Gbps (24个信道),误码率小于10^-7。(2)LEO-GND-LEO中继实验: 距离1000km ,上行误码率10^-5,下行零误码,卫星接收后解调,再调制发射,其他数据同上。 GEO-LEO 实验(欧洲EDRS 项目,2014年): Sentinel1卫星与Alphasat 卫星。 设计距离45000km ,调制方式BPSK ,速率1.8Gbps ,误码率10^-8,

LCTSX 的LCT 终端使用PAT(瞄准,捕获,跟踪) 建立通信,具体步骤如图6(2)所

示。OPTEL 等项目的瞄准捕获系统是通过使用与通信波长不同波长的广角信标激光实现的,与这些项目不同,LCT 没有使用广角信标激光。如图6(2)所示,卫星上有星历表,先通过星历表计算轨道,用以粗瞄准,然后LCT 的通信用激光器进行空间捕获,捕获成功后再进行外差追踪,对其频率捕获,通过光学costas 锁相环进行锁相,使本地振荡器与信号光同频,实现零差追踪,最后通过零差解调系统实现通信功能。

图6 (1)LCT 的调制解调系统 (2)PAT 系统

3.2,其他PSK 项目

LCRD 和OPTEL-u 后续将使用DPSK 调制方式。如图7所示,从星座图可以看出,PSK 的平衡接收机灵敏度相对OOK 有3dB 优势,同时文献中也提到归零码优于不归零码

[19]。而上面提到过,DPSK 相对BPSK 不需要本地振荡器,也就不需要光锁相环等结构,解调模块简单。

图7 OOK 和DPSK 的星座图

图8是DPSK ,OOK ,PPM 的带宽系数(图中横坐标,单位[(bit/s)/Hz]^-1)与需要的信噪比(图中纵坐标,PPB 光子每比特) 与香农极限的比较图[20]。DPSK (带前置放大器)在兼顾PPB 和带宽利用率的时候性能优越,硬判决条件下在3 光子每比特(5dB )时带宽利用率达到了0.5bit/s/Hz,明显优于OOK 和PPM 。带宽系数比较大时,PPM 需要的光子每比特数较低,性能较好,且带宽系数越低,PPM 的阶数越大性能越好。例如带宽系数大于100时,1024-PPM 优于256-PPM 优于4-PPM 优于2-PPM 。M 进制ppm 在功率受限时也表现良好,且随着带宽系数增加,越来越接近香农极限。

图8 OOK,DPSK,PPM 性能对比图

上述使用PPM 和OOK 的项目速率一般在M 级别,而使用PSK 的项目速度能达到G 级别,结合上面说到美国LCRD 项目的任务,我们可以初步判断判断在近地功率受限小项目以及深空(地月、地火)通信等功率受限信道中适用PPM ,而近地(星地、星间)高速通信则适用DPSK 。

俄罗斯的SLS 项目因为没有查到通信方式,所以放到最后讲下主要参数。SLS[21~22]是2012俄罗斯航天部门在国际空间站和北高加索地面站进行的激光通信实验。通信距离为1000km ,空间站发射波长1550nm ,光发射功率6W ,测试传输速率3/125/622Mbps,连接时间小于5min ;地面站发射波长850nm 速率3Mbps ,连接时间小于10min 。

4,其他空间光通信相关进展

前文的项目都是星间通信或者星地通信,本节将简要介绍星空、空地等链路的相关项目以及国内相关进展。

4.1,星空

LOLA 项目[23]是法国2006年进行的一个星空通信实验,由高轨道Artemis 卫星与某飞机进行激光通信实验,通信光波长为848nm ,功率仅为104mW ,上行调制方式为BPPM(二进制PPM), 速率为2Mbps ,下行链路调制方式为OOK ,速率为50Mbps

。飞机的飞行高

度为9km ,与Artermis 卫星的通信距离达到了40000km 。

4.2,空地

OCD 项目是2005年美国喷气推进实验室进行的一个空地激光通信项目,高空飞机飞行高度10~23km,光波长1550nm ,功率200mW ,调制方式为OOK ,速率达到了2.5Gpbs 。

ARGOS 是2008年德国DLR 航空部门在飞机与地面站之间进行的激光通信实验,距离为10~85km,速率为150Mbps 。2013年又进行了实验,飞机与地面站距离大于50km ,飞行速度0.7马赫,速率达到了1.25Gbps 。

4.3,空空

Falcon 是2011年美国ITT 公司进行的一个空空激光通信实验,两家飞机距离94~132km进行激光通信,光波长1550nm ,速率2.5Gbps ,误码率10^-6;

4.4,地地

2005年德国DLR 航空部门在La Palma 岛屿和Tene-rife 岛屿进行了地地激光通信实验,使用的是BPSK 调制方式,通信距离为142km ,速率达到了5.6Gbps ;

2006年美国约翰普金斯大学应用物理实验室在飞艇和地面车载终端之间进行了激光通信实验,通信距离1.4km ,使用波分复用速度达到了80Gbps[24]。

2009年某实验室巴黎两个大楼进行了激光通信实验,通信距离212m ,速率达到了

1.28Tbps(32路波分复用X40Gbps)[25]。

4.5,国内相关进展

国内空间激光通信进展如图9所示[26]。

图9 国内空间激光通信进展

缩写:

GEO :Geosynchronous orbit,高地球轨道,2000km 以上

LEO :Low Earth orbit,低地球轨道,2000km 以下

GND :地面

MOPA :主振功率放大器

PAT:pointing,acquisition ,tracking, 瞄准,捕获,跟踪

PPB: Photons per bit,光子每比特

CCD :Charge-coupled Device,CCD 图像传感器

参考文献

[1]Matthew E. Grein*, Andrew J. Kerman, Eric A. Dauler. An optical receiver for the Lunar

Laser Communication Demonstration based on photon-counting superconducting nanowires. Proc. of SPIE Vol. 9492 949208-1,2015

[2]

[3]M. L. Stevens, R. R. Parenti, M. M. Willis.The Lunar Laser Communication Demonstration time-of-flight measurement system: overview, on-orbit performance and ranging analysis.Proc. of SPIE Vol. 9739 973908-12,2016

[4]Bernard L. Edwards ,Dave Israel. Overview of the Laser Communications Relay

Demonstration Project.

[5]Bernard L Edwards, David J Israel, Donald E Whiteman. A Space Based Optical

Communications Relay Architecture to Support Future NASA Science and Exploration Missions.Proc. International Conference on Space Optical Systems and Applications (ICSOS) ,2 S6-1, Kobe, Japan, May 7-9 ,2014

[6]D. M. Boroson , A. Biswas, B. L. Edwards. MLCD Overview of NASA’s Mars Laser Communications Demonstration System.

[7]Zoran Sodnik, Bernhard Furch ,Hanspeter Lutz.Free-Space Laser Communication Activities in Europe: SILEX and beyond. IEEE,0-7803-9556-5/06/$20.00 , 2006

[8]T. Tolker-Nielsen,J-C. Guillen. SILEX The First European Optical Communication Terminal in Orbit. EESA bulletin 96 november 1998

[9]Dreischer Thomas, Thieme Björn, Bacher Michael. OPTEL-μ A Compact System for Optical Downlinks from LEO Satellites

[10]Matthew J Abrahamson, Oleg V Sindiy, Bogdan V Oaida.OPALS Mission System

Operations Architecture for an Optical Communications Demonstration on the ISS. SpaceOps Conference,2014

[11]Bogdan V Oaida, Matthew J Abrahamson, Robert J WitoffOPALS. An Optical

Communications Technology Demonstration from the International Space Station. IEEE,978-1-4673-1813-6/13/$31.00 ,2013

[12]Jessica N Bowles-Martinez, Baris I Erkmen, Parker A Fagrelius. A COTS-Based Technical Demonstration of Optical Communications

[13]M. W. Wright, M. W. Wilkerson, R. R. Tang. Qualification Testing of Fiber-based Laser Transmitters and on-orbit Validation of a Commercial Laser System.ICSO,2014

[14]Takashi Jono, Yoshihisa Takayama, Nobuhiro Kura. OICETS on-orbit laser communication experiments. In Lasers and Applications in Science and Engineering, pages

610503{610503. International Society for Optics and Photonics, 2006.

[15]Ryan W. Kingsbury, Prof. Kerri L. Cahoy. Optical Communications for Small Satellites

[16]Stefan Seel, Hartmut Kämpfner, Frank Heine. Space to Ground Bidirectional Optical Communication Link at 5.6 Gbps and EDRS Connectivity Outlook.IEEEAC paper #1111, Version 2, Updated October 27, 2010

[17]Mark Gregory, Frank Heine, Hartmut Kämpfner. Commercial optical inter-satellite communication at high data rates.Optical Engineering 51(3), 031202 ,2012

[18]M. Gregory, F. Heine, H. Kämpfner1. Tesat Laser Communication Terminal Performance Results on 2.6Gbit Coherent Inter Satellite and Satellite to Ground Links. ICSO,2010

[19]A. H. Gnauck,P. J. Winzer. Optical Phase-Shift-Keyed Transmission.Journal of LightwaveI Technology, VOL. 23, NO. 1, 2005

[20]David O. Caplan.Laser communication transmitter and receiver design.J. Opt. Fiber.

Commun. Rep. 4, 225–362 ,2007

[21]V. Grigoryev, V. Kovalev, V. Shargorodskiy, V. Sumerin.High-bit-rate Laser Space Communication Technology and Results of on-board Experiment.ICSOS, 2014

[22]https://directory.eoportal.org/web/eoportal/satellite-missions/i/iss-btls

[23]Vincent Cazaubiel, Gilles Planche, Vincent Chorvalli. LOLA a 40.000km Optical Link Between an Aircraft and a Geostationary Satellite.ESA SP-621, June 2006

[24] Sova R M,Sluz J E,Young D W.et al.80Gb/s free-space optical communication demonstration between an aerostat and a ground terminal[C]

[25]E. Ciaramella, Y. Arimoto, G. Contestabile.1.28 terabit/s (32x40 Gbit/s) wdm transmission system for free space optical communications.IEEE,2009

[26]姜会林,安岩,张雅琳,等.空间激光通信现状、发展趋势及关键技术分析[J]. 飞行器测控学报,2015


相关文章

  • 空间激光通信研究现状及发展趋势
  • 空间激光通信研究现状及发展趋势 前言:在即将到来的信息时代,构建信息传播速率快.信息传输量大.覆盖空间广阔的通信网络是很重要的.空间激光通信技术正是构建符合未来社会发展需求的通信网络的重要技术支持之一.我国的各大高校和科学研究机构都有对这一 ...查看


  • 激光通信技术的军事应用与发展分析
  • 总第228期2013年第6期 舰船电子工程 ShiElectronicEnineerin pgg Vol.33No.6 16 激光通信技术的军事应用与发展分析 郑连泽 李国柱 ()海军装备部西安军事代表局 西安 710054 * 摘 要 激 ...查看


  • 一种用于平滑大气湍流效应的光学天线设计
  • 一种小型化平滑大气湍流效应的光学天线设计 王志勇 1 引言 无线光通信是以激光为载体,使用光脉冲调制信号,在真空或大气层中传递信息的通信技术,包括空间激光通信.星地激光通信以及近地大气激光通信.相对传统的利用电磁波的无线通信方式,无线光通信 ...查看


  • 可见与近红外激光通信系统光学滤光膜的研制
  • 第39卷 第12期2012年12月 中 国 激 光 Vol.39,No.12 ,December2012 可见与近红外激光通信系统光学滤光膜的研制 付秀华1 寇雷雷1* 张 静1 许阳月1 张 燃2 ( 1 长春理工大学光电工程学院,吉林长 ...查看


  • 信息传输技术的发展论文
  • 信息传输技术的发展--"应用与展望" 信息传输技术的发展--"应用与展望" 人类社会离不开信息技术的交流和沟通,最早的通信方式有烽火.暗号.鸡毛信.飞鸽传书.千里驿站等,由于传输速度慢.信息量小,不能 ...查看


  • 无线电通信常识
  • 无线电通信常识 作者:佚名 来源:不详 发布时间:2008-10-5 17:56:14 发布人:admin 增大字体 减小字体 无线电通信是怎样进行的?作战飞机上的飞行员和指挥部对话,并没有电线从他们的话筒通向指挥部.你每天听收音机或看电视 ...查看


  • 各种各样的人造卫星
  • 各种各样的人造卫星 人造地球卫星有它独具的优越条件.它本身无需动力就可以在大气外层空间长时间运行,能在几百公里到几万公里高度的大范围内活动,飞越地球上的绝大部分地区,甚至全球飞行,执行航天任务.这是大气层内任何飞行器都无法比拟的.自从第一颗 ...查看


  • 答案整理:光与现代科技讲座2015
  • 1. 什么是光?光波的频率和波长范围是多少?可见光的波长范围是什么?什么 是电磁波波谱? 光是电磁波谱中波长范围为1nm~1mm或者频率在3*1011Hz~ 3*1017Hz 范围的电磁辐射,是能量与信息的载体. 可见光是波长为380nm~ ...查看


  • 现代通信关键技术(5000字论文)
  • 现代通信关键技术 摘要:信息智能处理技术是信号与信息技术领域一个前沿的富有挑战性的研究方向,它以人工智能理论为基础,侧重于信息处理的智能化,包括计算机智能化(文字.图像.语音等信息智能处理).通信智能化以及控制信息智能化.融合信息智能技术就 ...查看


热门内容