pvd物理气象沉积

pvd 物理气象沉积

物理气相沉积(PVD)技术

第一节 概述

物理气相沉积技术早在20世纪初已有些应用,但在最近30年迅速发展,成为一门极具广阔应用前景的新技术。,并向着环保型、清洁型趋势发展。20世纪90年代初至今,在钟表行业,尤其是高档手表金属外观件的表面处理方面达到越来越为广泛的应用。 物理气相沉积(Physical Vapor Deposition,PVD) 技术表示在真空条件下,采用物理方法,将材料源——固体或液体表面气化成气态原子、分子或部分电离成离子,并通过低压气体(或等离子体) 过程,在基体表面沉积具有某种特殊功能的薄膜的技术。 物理气相沉积的主要方法有,真空蒸镀、溅射镀膜、电弧等离子体镀、离子镀膜,及分子束外延等。发展到目前,物理气相沉积技术不仅可沉积金属膜、合金膜、还可以沉积化合物、陶瓷、半导体、聚合物膜等。

真空蒸镀基本原理是在真空条件下,使金属、金属合金或化合物蒸发,然后沉积在基体表面上,蒸发的方法常用电阻加热,高频感应加热,电子柬、激光束、离子束高能轰击镀料,使蒸发成气相,然后沉积在基体表面,历史上,真空蒸镀是PVD 法中使用最早的技术。

溅射镀膜基本原理是充氩(Ar)气的真空条件下,使氩气进行辉光放电,这时氩(Ar)原子电离成氩离子(Ar+),氩离子在电场力的作用下,加速轰击以镀料制作的阴极靶材,靶材会被溅射出来而沉积到工件表面。如果采用直流辉光放电,称直流(Qc)溅射,射频(RF)辉光放电引起的称射频溅射。磁控(M)辉光放电引起的称磁控溅射。 电弧等离子体镀膜基本原理是在真空条件下,用引弧针引弧,使真空金壁(阳极) 和镀材(阴极) 之间进行弧光放电,阴极表面快速移动着多个阴极弧斑,不断迅速蒸发甚至“异华”镀料,使之电离成以镀料为主要成分的电弧等离子体,并能迅速将镀料沉积于基体。因为有多弧斑,所以也称多弧蒸发离化过程。

离子镀基本原理是在真空条件下,采用某种等离子体电离技术,使镀料原子部分电离成离子,同时产生许多高能量的中性原子,在被镀基体上加负偏压。这样在深度负偏压的作用下,离子沉积于基体表面形成薄膜。

物理气相沉积技术基本原理可分三个工艺步骤:

(1)镀料的气化:即使镀料蒸发,异华或被溅射,也就是通过镀料的气化源。

(2)镀料原子、分子或离子的迁移:由气化源供出原子、分子或离子经过碰撞后,产生多种反应。

(3)镀料原子、分子或离子在基体上沉积。

物理气相沉积技术工艺过程简单,对环境改善,无污染,耗材少,成膜均

匀致密,与基体的结合力强。该技术广

泛应用于航空航天、电子、光学、机械、建筑、轻工、冶金、材料等领域,可制备具有耐磨、耐腐饰、装饰、导电、绝缘、光导、压电、磁性、润滑、超导等特性的膜层。

随着高科技及新兴工业发展,物理气相沉积技术出现了不少新的先进的亮点,如多弧离子镀与磁控溅射兼容技术,大型矩形长弧靶和溅射靶,非平衡磁控溅射靶,孪生靶技术,带状泡沫多弧沉积卷绕镀层技术,条状纤维织物卷绕镀层技术等,使用的镀层成套设备,向计算机全自动,大型化工业规模方向发展。

第二节 真空蒸镀

(一) 真空蒸镀原理

(1) 真空蒸镀是在真空条件下,将镀料加热并蒸发,使大量的原子、分子气化并离开液体镀料或离开固体镀料表面(升华) 。

(2)气态的原子、分子在真空中经过很少的碰撞迁移到基体。

(3)镀料原子、分子沉积在基体表面形成薄膜。

(二) 蒸发源

将镀料加热到蒸发温度并使之气化,这种加热装置称为蒸发源。最常用的蒸发源是电阻蒸发源和电子束蒸发源,特殊用途的蒸发源有高频感应加热、电弧加热、辐射加热、激光加热蒸发源等。

(三) 真空蒸镀工艺实例 以塑料金属化为例, 真空蒸镀工艺包括:镀前处理、镀膜及后处理。

真空蒸镀的基本工艺过程如下:

(1)镀前处理,包括清洗镀件和预处理。具体清洗方法有清洗剂清洗、化学溶剂清洗、超声波清洗和离子轰击清洗等。具体预处理有除静电,涂底漆等。

(2)装炉,包括真空室清理及镀件挂具的清洗,蒸发源安装、调试、镀件褂卡。

(3)抽真空,一般先粗抽至6.6Pa 以上,更早打开扩散泵的前级维持真空泵,加热扩散泵,待预热足够后,打开高阀,用扩散泵抽至6×10-3Pa 半底真空度。

(4)烘烤,将镀件烘烤加热到所需温度。

(5)离子轰击,真空度一般在10Pa ~10-1Pa ,离子轰击电压200V ~1kV 负高压,离击时间为5min ~30min,

(6)预熔,调整电流使镀料预熔,调整电流使镀料预熔,除气1min ~2min 。

(7)蒸发沉积,根据要求调整蒸发电流,直到所需沉积时间结束。

(8)冷却,镀件在真空室内冷却到一定温度。

(9)出炉,.取件后,关闭真空室,抽真空至l × l0-1Pa ,扩散泵冷却到允许温度,才可关闭维持泵和冷却水。

(10)后处理,涂面漆。

第三节 溅射镀膜

溅射镀膜是指在真空条件下,利用获得功能的粒子轰击靶材料表面,使靶材表面原子获得足够的能量而逃逸的过程称为溅射。被溅射的靶材沉积到基材表面,就称作溅射镀

。 溅射镀膜中的入射离子,一般采用辉光放电获得,在l0-2Pa ~10Pa 范围,所以溅 射出来的粒子在飞向基体过程中,易和真空室中的气体分子发生碰撞,使运动方向随机,沉积的膜易于均匀。近年发展起来的规模性磁控溅射镀膜,沉积速率较高,工艺重复性好,便于自动化,已适当于进行大型建筑装饰镀膜,及工业材料的功能性镀膜,及TGN-JR 型用多弧或磁控溅射在卷材的泡沫塑料及纤维织物表面镀镍Ni 及银Ag 。

第四节 电弧蒸发和电弧等离子体镀膜

这里指的是PVD 领域通常采用的冷阴极电弧蒸发,以固体镀料作为阴极,采用水冷、使冷阴极表面形成许多亮斑,即阴极弧斑。弧斑就是电弧在阴极附近的弧根。在极小空间的电流密度极高,弧斑尺寸极小,估计约为1μm ~100μm ,电流密度高达l05A /cm2~107A /cm2。每个弧斑存在极短时间,爆发性地蒸发离化阴极改正点处的镀料,蒸发离化后的金属离子,在阴极表面也会产生新的弧斑,许多弧斑不断产生和消失,所以又称多弧蒸发。 最早设计的等离子体加速器型多弧蒸发离化源,是在阴极背后配置磁场,使蒸发后的离子获得霍尔(hall)加速效应,有利于离子增大能量轰击量体,采用这种电弧蒸发离化源镀膜,离化率较高,所以又称为电弧等离子体镀膜。 由于镀料的蒸发离化靠电弧,所以属于区别于第二节,第三节所述的蒸发手段。

第五节 离子镀

离子镀技术最早在1963年由D .M .Mattox 提出,1972年,Bunshah &Juntz推出活性反应蒸发离子镀(AREIP),沉积TiN,TiC 等超硬膜,1972年Moley&Smith发展完善了空心热阴极离子镀,l973年又发展出射频离子镀(RFIP)。20世纪80年代,又发展出磁控溅射离子镀(MSIP)和多弧离子镀(MAIP)。

(一) 离子镀

离子镀的基本特点是采用某种方法(如电子束蒸发磁控溅射,或多弧蒸发离化等) 使中性粒子电离成离子和电子,在基体上必须施加负偏压,从而使离子对基体产生轰击,适当降低负偏压后,使离子进而沉积于基体成膜。 离子镀的优点如下:①膜层和基体结合力强。②膜层均匀,致密。③在负偏压作用下绕镀性好。④无污染。⑤多种基体材料均适合于离子镀。

(二) 反应性离子镀

如果采用电子束蒸发源蒸发,在坩埚上方加20V ~100V 的正偏压。在真空室中导人反应性气体。如N2、02、C2H2、CH4等代替Ar ,或混入Ar ,电子束中的高能电子(几千至几万电子伏特) ,不仅使镀料熔化蒸发,而且能在熔化的镀料表面激励出二次电子,这些二次电子在上方正偏压作用下加速,与镀料蒸发中性粒子发生碰撞而电离成离子,在工件

面发生离化反应,从而获得氧化物(如Te02:Si02、Al203、Zn0、Sn02、Cr203、Zr02、In02等) 。其特点是沉积率高,工艺温度低。

(三)

多弧离子镀

多弧离子镀又称作电弧离子镀,由于在阴极上有多个弧斑持续呈现,故称作“多弧”。多弧离子镀的主要特点如下: (1)阴极电弧蒸发离化源可从固体阴极直接产生等离子体,而不产生熔池,所以可以任意方位布置,也可采用多个蒸发离化源。 (2)镀料的离化率高,一般达60%~90%,显著提高与基体的结合力改善膜层的性能。 (3)沉积速率高,改善镀膜的效率。 (4)设备结构简单,弧电源工作在低电压大电流工况,工作较为安全。 英文指"phisical vapor deposition" 简称PVD. 是镀膜行业常用的术语. PVD(物理气相沉积) 镀膜技术主要分为三类,真空蒸发镀膜、真空溅射镀和真空离子镀膜。对应于PVD 技术的三个分类,相应的真空镀膜设备也就有真空蒸发镀膜机、真空溅射镀膜机和真空离子镀膜机这三种。

近十多年来,真空离子镀膜技术的发展是最快的,它已经成为当今最先进的表面处理方式之一。我们通常所说的PVD 镀膜 ,指的就是真空离子镀膜;通常所说的PVD 镀膜机,指的也就是真空离子镀膜机。

物理气相沉积(PVD )

物理气相沉积是通过蒸发,电离或溅射等过程,产生金属粒子并与反应气体反应形成化合物沉积在工件表面。物理气象沉积方法有真空镀,真空溅射和离子镀三种,目前应用较广的是离子镀。

离子镀是借助于惰性气体辉光放电,使镀料(如金属钛)气化蒸发离子化,离子经电场加速,以较高能量轰击工件表面,此时如通入CO2,N2等反应气体,便可在工件表面获得TiC,TiN 覆盖层,硬度高达2000HV 。离子镀的重要特点是沉积温度只有500℃左右,且覆盖层附着力强,适用于高速钢工具,热锻模等。

pvd 物理气象沉积

物理气相沉积(PVD)技术

第一节 概述

物理气相沉积技术早在20世纪初已有些应用,但在最近30年迅速发展,成为一门极具广阔应用前景的新技术。,并向着环保型、清洁型趋势发展。20世纪90年代初至今,在钟表行业,尤其是高档手表金属外观件的表面处理方面达到越来越为广泛的应用。 物理气相沉积(Physical Vapor Deposition,PVD) 技术表示在真空条件下,采用物理方法,将材料源——固体或液体表面气化成气态原子、分子或部分电离成离子,并通过低压气体(或等离子体) 过程,在基体表面沉积具有某种特殊功能的薄膜的技术。 物理气相沉积的主要方法有,真空蒸镀、溅射镀膜、电弧等离子体镀、离子镀膜,及分子束外延等。发展到目前,物理气相沉积技术不仅可沉积金属膜、合金膜、还可以沉积化合物、陶瓷、半导体、聚合物膜等。

真空蒸镀基本原理是在真空条件下,使金属、金属合金或化合物蒸发,然后沉积在基体表面上,蒸发的方法常用电阻加热,高频感应加热,电子柬、激光束、离子束高能轰击镀料,使蒸发成气相,然后沉积在基体表面,历史上,真空蒸镀是PVD 法中使用最早的技术。

溅射镀膜基本原理是充氩(Ar)气的真空条件下,使氩气进行辉光放电,这时氩(Ar)原子电离成氩离子(Ar+),氩离子在电场力的作用下,加速轰击以镀料制作的阴极靶材,靶材会被溅射出来而沉积到工件表面。如果采用直流辉光放电,称直流(Qc)溅射,射频(RF)辉光放电引起的称射频溅射。磁控(M)辉光放电引起的称磁控溅射。 电弧等离子体镀膜基本原理是在真空条件下,用引弧针引弧,使真空金壁(阳极) 和镀材(阴极) 之间进行弧光放电,阴极表面快速移动着多个阴极弧斑,不断迅速蒸发甚至“异华”镀料,使之电离成以镀料为主要成分的电弧等离子体,并能迅速将镀料沉积于基体。因为有多弧斑,所以也称多弧蒸发离化过程。

离子镀基本原理是在真空条件下,采用某种等离子体电离技术,使镀料原子部分电离成离子,同时产生许多高能量的中性原子,在被镀基体上加负偏压。这样在深度负偏压的作用下,离子沉积于基体表面形成薄膜。

物理气相沉积技术基本原理可分三个工艺步骤:

(1)镀料的气化:即使镀料蒸发,异华或被溅射,也就是通过镀料的气化源。

(2)镀料原子、分子或离子的迁移:由气化源供出原子、分子或离子经过碰撞后,产生多种反应。

(3)镀料原子、分子或离子在基体上沉积。

物理气相沉积技术工艺过程简单,对环境改善,无污染,耗材少,成膜均

匀致密,与基体的结合力强。该技术广

泛应用于航空航天、电子、光学、机械、建筑、轻工、冶金、材料等领域,可制备具有耐磨、耐腐饰、装饰、导电、绝缘、光导、压电、磁性、润滑、超导等特性的膜层。

随着高科技及新兴工业发展,物理气相沉积技术出现了不少新的先进的亮点,如多弧离子镀与磁控溅射兼容技术,大型矩形长弧靶和溅射靶,非平衡磁控溅射靶,孪生靶技术,带状泡沫多弧沉积卷绕镀层技术,条状纤维织物卷绕镀层技术等,使用的镀层成套设备,向计算机全自动,大型化工业规模方向发展。

第二节 真空蒸镀

(一) 真空蒸镀原理

(1) 真空蒸镀是在真空条件下,将镀料加热并蒸发,使大量的原子、分子气化并离开液体镀料或离开固体镀料表面(升华) 。

(2)气态的原子、分子在真空中经过很少的碰撞迁移到基体。

(3)镀料原子、分子沉积在基体表面形成薄膜。

(二) 蒸发源

将镀料加热到蒸发温度并使之气化,这种加热装置称为蒸发源。最常用的蒸发源是电阻蒸发源和电子束蒸发源,特殊用途的蒸发源有高频感应加热、电弧加热、辐射加热、激光加热蒸发源等。

(三) 真空蒸镀工艺实例 以塑料金属化为例, 真空蒸镀工艺包括:镀前处理、镀膜及后处理。

真空蒸镀的基本工艺过程如下:

(1)镀前处理,包括清洗镀件和预处理。具体清洗方法有清洗剂清洗、化学溶剂清洗、超声波清洗和离子轰击清洗等。具体预处理有除静电,涂底漆等。

(2)装炉,包括真空室清理及镀件挂具的清洗,蒸发源安装、调试、镀件褂卡。

(3)抽真空,一般先粗抽至6.6Pa 以上,更早打开扩散泵的前级维持真空泵,加热扩散泵,待预热足够后,打开高阀,用扩散泵抽至6×10-3Pa 半底真空度。

(4)烘烤,将镀件烘烤加热到所需温度。

(5)离子轰击,真空度一般在10Pa ~10-1Pa ,离子轰击电压200V ~1kV 负高压,离击时间为5min ~30min,

(6)预熔,调整电流使镀料预熔,调整电流使镀料预熔,除气1min ~2min 。

(7)蒸发沉积,根据要求调整蒸发电流,直到所需沉积时间结束。

(8)冷却,镀件在真空室内冷却到一定温度。

(9)出炉,.取件后,关闭真空室,抽真空至l × l0-1Pa ,扩散泵冷却到允许温度,才可关闭维持泵和冷却水。

(10)后处理,涂面漆。

第三节 溅射镀膜

溅射镀膜是指在真空条件下,利用获得功能的粒子轰击靶材料表面,使靶材表面原子获得足够的能量而逃逸的过程称为溅射。被溅射的靶材沉积到基材表面,就称作溅射镀

。 溅射镀膜中的入射离子,一般采用辉光放电获得,在l0-2Pa ~10Pa 范围,所以溅 射出来的粒子在飞向基体过程中,易和真空室中的气体分子发生碰撞,使运动方向随机,沉积的膜易于均匀。近年发展起来的规模性磁控溅射镀膜,沉积速率较高,工艺重复性好,便于自动化,已适当于进行大型建筑装饰镀膜,及工业材料的功能性镀膜,及TGN-JR 型用多弧或磁控溅射在卷材的泡沫塑料及纤维织物表面镀镍Ni 及银Ag 。

第四节 电弧蒸发和电弧等离子体镀膜

这里指的是PVD 领域通常采用的冷阴极电弧蒸发,以固体镀料作为阴极,采用水冷、使冷阴极表面形成许多亮斑,即阴极弧斑。弧斑就是电弧在阴极附近的弧根。在极小空间的电流密度极高,弧斑尺寸极小,估计约为1μm ~100μm ,电流密度高达l05A /cm2~107A /cm2。每个弧斑存在极短时间,爆发性地蒸发离化阴极改正点处的镀料,蒸发离化后的金属离子,在阴极表面也会产生新的弧斑,许多弧斑不断产生和消失,所以又称多弧蒸发。 最早设计的等离子体加速器型多弧蒸发离化源,是在阴极背后配置磁场,使蒸发后的离子获得霍尔(hall)加速效应,有利于离子增大能量轰击量体,采用这种电弧蒸发离化源镀膜,离化率较高,所以又称为电弧等离子体镀膜。 由于镀料的蒸发离化靠电弧,所以属于区别于第二节,第三节所述的蒸发手段。

第五节 离子镀

离子镀技术最早在1963年由D .M .Mattox 提出,1972年,Bunshah &Juntz推出活性反应蒸发离子镀(AREIP),沉积TiN,TiC 等超硬膜,1972年Moley&Smith发展完善了空心热阴极离子镀,l973年又发展出射频离子镀(RFIP)。20世纪80年代,又发展出磁控溅射离子镀(MSIP)和多弧离子镀(MAIP)。

(一) 离子镀

离子镀的基本特点是采用某种方法(如电子束蒸发磁控溅射,或多弧蒸发离化等) 使中性粒子电离成离子和电子,在基体上必须施加负偏压,从而使离子对基体产生轰击,适当降低负偏压后,使离子进而沉积于基体成膜。 离子镀的优点如下:①膜层和基体结合力强。②膜层均匀,致密。③在负偏压作用下绕镀性好。④无污染。⑤多种基体材料均适合于离子镀。

(二) 反应性离子镀

如果采用电子束蒸发源蒸发,在坩埚上方加20V ~100V 的正偏压。在真空室中导人反应性气体。如N2、02、C2H2、CH4等代替Ar ,或混入Ar ,电子束中的高能电子(几千至几万电子伏特) ,不仅使镀料熔化蒸发,而且能在熔化的镀料表面激励出二次电子,这些二次电子在上方正偏压作用下加速,与镀料蒸发中性粒子发生碰撞而电离成离子,在工件

面发生离化反应,从而获得氧化物(如Te02:Si02、Al203、Zn0、Sn02、Cr203、Zr02、In02等) 。其特点是沉积率高,工艺温度低。

(三)

多弧离子镀

多弧离子镀又称作电弧离子镀,由于在阴极上有多个弧斑持续呈现,故称作“多弧”。多弧离子镀的主要特点如下: (1)阴极电弧蒸发离化源可从固体阴极直接产生等离子体,而不产生熔池,所以可以任意方位布置,也可采用多个蒸发离化源。 (2)镀料的离化率高,一般达60%~90%,显著提高与基体的结合力改善膜层的性能。 (3)沉积速率高,改善镀膜的效率。 (4)设备结构简单,弧电源工作在低电压大电流工况,工作较为安全。 英文指"phisical vapor deposition" 简称PVD. 是镀膜行业常用的术语. PVD(物理气相沉积) 镀膜技术主要分为三类,真空蒸发镀膜、真空溅射镀和真空离子镀膜。对应于PVD 技术的三个分类,相应的真空镀膜设备也就有真空蒸发镀膜机、真空溅射镀膜机和真空离子镀膜机这三种。

近十多年来,真空离子镀膜技术的发展是最快的,它已经成为当今最先进的表面处理方式之一。我们通常所说的PVD 镀膜 ,指的就是真空离子镀膜;通常所说的PVD 镀膜机,指的也就是真空离子镀膜机。

物理气相沉积(PVD )

物理气相沉积是通过蒸发,电离或溅射等过程,产生金属粒子并与反应气体反应形成化合物沉积在工件表面。物理气象沉积方法有真空镀,真空溅射和离子镀三种,目前应用较广的是离子镀。

离子镀是借助于惰性气体辉光放电,使镀料(如金属钛)气化蒸发离子化,离子经电场加速,以较高能量轰击工件表面,此时如通入CO2,N2等反应气体,便可在工件表面获得TiC,TiN 覆盖层,硬度高达2000HV 。离子镀的重要特点是沉积温度只有500℃左右,且覆盖层附着力强,适用于高速钢工具,热锻模等。


相关文章

  • 纳米材料制备方法综述
  • 纳米材料制备方法综述 摘要:纳米材料由于其特殊性质,近年来受到人们极大的关注.随着纳米科技的发展,纳米材料的制备方法已日趋成熟.纳米材料的制备方法按物态一般可归纳为气相法.液相法.固相法.目前,各国科学家在纳米材料的研究方面已取得了显著的成 ...查看


  • 电子束加工技术及其应用
  • 电子束加工技术及其应用 2008034121 电子束加工是在真空条件下, 利用聚焦后能量密度极高(106-109W/cm2) 的电子束, 以极高的速 度冲击到工件表面极小的面积上, 在很短的时间(几分之一微秒) 内, 其能量的大部分转变为热 ...查看


  • 铝合金硬质氧化现状及发展趋势
  • 铝合金硬质氧化现状及发展趋势 新型硬质氧化功能覆层技术,包括低温化学硬质氧化涂层技术及超深层铝合金硬质氧化改性技术,它运用物理.化学或物理化学等技术手段来改变"材料及其铝合金硬质氧化成份和组织结构",其特点是保持基体材料 ...查看


  • 纳米粉体的制备方法及其研究进展
  • 纳米粉体的制备方法及团聚简介 摘要:本文简要综述了制备纳米粉体的相关方法,物理方法有气体冷凝法.侧射法.高能机械球磨法等,化学方法有固相配位化学法.溶胶-凝胶法.沉淀法.化学气相沉积法等.并且简要的介绍了团聚的原因及如何防止纳米团聚 关键词 ...查看


  • 催化剂制备方法大全
  • 催化剂制备方法简介 1.催化剂制备常规方法 (1)浸渍法 a过量浸渍法 b等量浸渍法(多次浸渍以防止竞争吸附) (2)沉淀法(制氧化物或复合氧化物)(注意加料顺序:正加法或倒加法,沉淀 剂加到盐溶液为正,反之为倒加) a单组分沉淀法 b多组 ...查看


  • 类金刚石碳膜的制备及其机械性能和应用
  • 类金刚石碳膜的制备及其机械性能和应用 类金刚石碳(diamond-like carbon )膜简称DLC 膜,是一类物理和化学性质类似于金刚石且具有独特摩擦学特性的非晶碳膜.类金刚石碳膜易于大面积沉积,沉积速度快,沉积温度低,可采用金属和非 ...查看


  • 表面处理技术
  • 第六节 可控气氛热处理和化学热处理 由于大多数的钢铁热处理是在空气中进行的,所以氧 化.脱碳是热处理常见的缺陷之一.它不但造成钢铁材 料的大量损耗,而且也使产品质量及使用寿命下降.据 统计,在汽车制造业中,在氧化介质中热处理造成的烧 损量占 ...查看


  • 表面处理技术分类
  • 表面处理技术分类 根据使用的方法不同,可将表面处理技术分为下述种类. 一.电化学方法 这种方法是利用电极反应,在工件表面形成镀层.其中主要的方法是: (一)电镀 在电解质溶液中,工件为阴极,在外电流作用下,使其表面形成镀层的过程,称为电镀. ...查看


  • 表面工程技术的作用
  • 表面工程技术的作用 表面工程技术的作用是多种多样的,但其最重要的作用为提高金属机件的耐蚀性.耐磨性及获得电.磁.光等功能性表面层. 1) 腐蚀保护性 即可以提高基体材料的耐大气.海洋大气.天然水及某些酸碱盐的腐蚀作 用.例如若在钢构件上喷涂 ...查看


热门内容