小学奥数流水行程问题教学设计

流水行程问题教学设计

本课分为两课时,第一课时为例题讲解、答疑激趣、归纳算理、布置课后作业;第二课时为习题讲解,反思总结。

一、教学目标:

1、知识与技能:掌握行船、流水问题的基本规律,能理清水速、船速之间的关系

2、过程与方法:经历应用问题的解决,掌握流水行程问题的基本解决方法和步骤,学会用画图等方法解决问题

3、情感态度价值观:经历问题解决的步骤,加强逻辑能力和思维水平,增加学生思维的挑战,引发学生的兴趣。

二、教学重点:船速、水速和顺水、逆水的等量关系式

教学难点:理解问题的解决方法

三、教学过程

(一)展示例题,指出关键 已知一艘轮船顺水行48千米需4小时,逆水行48千米需6小时.现在轮船从上游A港到下游B港.已知两港间的水路长为72千米,开船时一旅客从窗口扔到水里一块木板,问船到B港时,木块离B港还有多远?

1、理解信息。请学生从中找出关键词和所了解到的信息,说说如何理解

2、集思广益。根据你了解到的信息,如何解决现在的问题

3、教师展示思路:

分析:顺水行速度为:48÷4=12(千米),逆水行速度为:48÷6=8(千米). 因为顺水速度是比船的速度多了水的速度,而逆水速度是船的速度再减去水的速度,因此顺水速度和逆水速度之间相差的是“两个水的速度”,因此可求出水的速度为:(12-8)÷2=2(千米).

现条件为到下游,因此是顺水行驶,从A到B所用时间为:72÷12=6(小时).

木板从开始到结束所用时间与船相同,木板随水而飘,所以行驶的速度就是水的速度,可求出6小时木板的路程为:

6×2=12(千米);与船所到达的B地距离还差:72-12=60(千米).

解:顺水行速度为:48÷4=12(千米),

逆水行速度为:48÷6=8(千米),

水的速度为:(12-8)÷2=2(千米),

从A到B所用时间为:72÷12=6(小时),

6小时木板的路程为:6×2=12(千米),

与船所到达的B地距离还差:72-12=60(千米).

答:船到B港时,木块离B港还有60米.

此题运用了关系式:(顺水速度-逆水速度)÷2=水速 (二)训练拓展,巩固思维

根据学生所学到的关系式进行进一步推理。

已知:(顺水速度-逆水速度)÷2=水速

可得:(顺水速度+逆水速度)÷2=船速

船速+水速=顺水速度

船速-水速=逆水速度

静水中的速度=船速

(三)习题精讲精练

1、轮船在静水中的速度是每小时21千米,轮船自甲港逆水航行8小时,到达相距144千米的乙港,再从乙港返回甲港需要多少小时?

2、一艘轮船从甲港开往乙港,顺水而行每小时28千米,返回甲港时逆水而行用了6小时,已知水速是每小时4千米,甲、乙两港相距多少千米?

3、一艘轮船顺流航行140千米,逆流航行80千米,共用了15小时;后来顺流航行60其千米,逆流航行120千米,也用了15小时。求水流的速度。

4、甲乙两个码头相距112千米,一只船从乙码头逆水而上,行了8小时到达甲码头。已知船速是水速的15倍,这只船从甲码头返回乙码头需要几小时?

5、一艘轮船往返于相距240千米的甲乙两港之间,逆水速度是每小时18千米,顺水的速度是每小时26千米。一艘汽艇的速度是每小时20千米,这艘汽艇往返于两港之间共需多少小时

(四)课后反思,归纳总结

这一讲我们学到了什么,在进行练习时需要注意什么

流水行程问题教学设计

本课分为两课时,第一课时为例题讲解、答疑激趣、归纳算理、布置课后作业;第二课时为习题讲解,反思总结。

一、教学目标:

1、知识与技能:掌握行船、流水问题的基本规律,能理清水速、船速之间的关系

2、过程与方法:经历应用问题的解决,掌握流水行程问题的基本解决方法和步骤,学会用画图等方法解决问题

3、情感态度价值观:经历问题解决的步骤,加强逻辑能力和思维水平,增加学生思维的挑战,引发学生的兴趣。

二、教学重点:船速、水速和顺水、逆水的等量关系式

教学难点:理解问题的解决方法

三、教学过程

(一)展示例题,指出关键 已知一艘轮船顺水行48千米需4小时,逆水行48千米需6小时.现在轮船从上游A港到下游B港.已知两港间的水路长为72千米,开船时一旅客从窗口扔到水里一块木板,问船到B港时,木块离B港还有多远?

1、理解信息。请学生从中找出关键词和所了解到的信息,说说如何理解

2、集思广益。根据你了解到的信息,如何解决现在的问题

3、教师展示思路:

分析:顺水行速度为:48÷4=12(千米),逆水行速度为:48÷6=8(千米). 因为顺水速度是比船的速度多了水的速度,而逆水速度是船的速度再减去水的速度,因此顺水速度和逆水速度之间相差的是“两个水的速度”,因此可求出水的速度为:(12-8)÷2=2(千米).

现条件为到下游,因此是顺水行驶,从A到B所用时间为:72÷12=6(小时).

木板从开始到结束所用时间与船相同,木板随水而飘,所以行驶的速度就是水的速度,可求出6小时木板的路程为:

6×2=12(千米);与船所到达的B地距离还差:72-12=60(千米).

解:顺水行速度为:48÷4=12(千米),

逆水行速度为:48÷6=8(千米),

水的速度为:(12-8)÷2=2(千米),

从A到B所用时间为:72÷12=6(小时),

6小时木板的路程为:6×2=12(千米),

与船所到达的B地距离还差:72-12=60(千米).

答:船到B港时,木块离B港还有60米.

此题运用了关系式:(顺水速度-逆水速度)÷2=水速 (二)训练拓展,巩固思维

根据学生所学到的关系式进行进一步推理。

已知:(顺水速度-逆水速度)÷2=水速

可得:(顺水速度+逆水速度)÷2=船速

船速+水速=顺水速度

船速-水速=逆水速度

静水中的速度=船速

(三)习题精讲精练

1、轮船在静水中的速度是每小时21千米,轮船自甲港逆水航行8小时,到达相距144千米的乙港,再从乙港返回甲港需要多少小时?

2、一艘轮船从甲港开往乙港,顺水而行每小时28千米,返回甲港时逆水而行用了6小时,已知水速是每小时4千米,甲、乙两港相距多少千米?

3、一艘轮船顺流航行140千米,逆流航行80千米,共用了15小时;后来顺流航行60其千米,逆流航行120千米,也用了15小时。求水流的速度。

4、甲乙两个码头相距112千米,一只船从乙码头逆水而上,行了8小时到达甲码头。已知船速是水速的15倍,这只船从甲码头返回乙码头需要几小时?

5、一艘轮船往返于相距240千米的甲乙两港之间,逆水速度是每小时18千米,顺水的速度是每小时26千米。一艘汽艇的速度是每小时20千米,这艘汽艇往返于两港之间共需多少小时

(四)课后反思,归纳总结

这一讲我们学到了什么,在进行练习时需要注意什么


相关文章

  • 小学六年级奥数题:行程问题流水行舟练习题八
  • 编者小语:行程问题在六年级奥数题中经常出现.小升初测试和奥数杯赛都对行程问题青睐.编辑为六年级的同学准备了六年级奥数题中关于行程问题流水行舟的练习题八,希望能更好让同学们掌握相关知识.1.两个码头相距192千米,一艘汽艇顺水行完全程需要8小 ...查看


  • 奥数课程简介
  • 课程体系:小学奥数十二级课程体系介绍 小学部 2012-10-11 19:42:46 数学--学而思奥数十二级课程体系 经典课程 年级 对应级别 对应课程 解决问题 免费试听 一级(上) 暑期班 一年级暑期班是整个奥数十二级体系的开始.通过 ...查看


  • 小学奥数题型总结
  • [盈亏问题公式] (1)一次有余(盈),一次不够(亏),可用公式: (盈+亏)÷(两次每人分配数的差)=人数. 例如,"小朋友分桃子,每人10个少9个,每人8个多7个.问:有多少个小朋友和多少个桃子?" 解(7+9)÷( ...查看


  • 小学奥数知识点汇总
  • 来源:郑州奥数网整理 2011-11-08 15:40:37 标签:小升初 小升初奥数 奥数知识点 1.和差倍问题 和差问题 和倍问题 差倍问题 已知条件 几个数的和与差 几个数的和与倍数 几个数的差与倍数 公式适用范围 已知两个数的和,差 ...查看


  • [奥数] 流水行船问题,比你想的还要简单
  • 流水行船问题一般看起来很复杂,因为除了正常的路程.船速.时间外,还要多考虑一个水速,并且还要区分顺水还是逆水,感觉超级复杂,比如下面一个例子: 例1:一条船从甲码头出发,速度是每分钟60米,在一条水速为每分钟20米的小河里顺水而下,到了乙码 ...查看


  • 小学奥数行程问题应用题
  • 小学奥数行程问题应用题试题及答案 1.羊跑5步的时间马跑3步,马跑4步的距离羊跑7步,现在羊已跑出30米,马开始追它.问:羊再跑多远,马可以追上它? 解: 根据"马跑4步的距离羊跑7步",可以设马每步长为7x 米,则羊每 ...查看


  • 小学奥数行程问题及公式
  • 小学奥数<行程问题及公式> 例1:A .B 两城相距240千米,一辆汽车计划用6小时从A 城开到B 城,汽车行驶了一半路程,因故障在中途停留了30分钟,如果按原计划到达B 城,汽车在后半段路程时速度应加快多少? 例2:两码头相距 ...查看


  • 五年级奥数行程问题和牛吃草问题公式
  • 五年级知识(公式)复习 行程问题: 1. 相遇问题 路程和=速度和×相遇时间 2. 追及问题 路程差=速度差×追及时间 3. 流水行船 顺水速度=船速+水速 逆水速度=船速-水速 船速=(顺水速度+逆水速度)÷2 水速=(顺水速度-逆水速度 ...查看


  • 什么是奥数
  • 什么是奥数? 最近,奥数似乎一下子成了关注的焦点了.褒贬不一,各持一词.今天也来说说这奥数. 第一,什么是奥数? 奥数就是奥林匹克数学的简称. 1934年和1935年,前苏联开始在列宁格勒和莫斯科举办中学数学竞赛,并冠以数学奥林匹克的名称. ...查看


热门内容