低碳钢拉伸试验

低碳钢和灰口铸铁的拉伸、压缩实验

1 实验目的

⑴.观察低碳钢在拉伸时的各种现象,并测定低碳钢在拉伸时的屈服极限σs,强度极限

σb,延伸率δ10和断面收缩率ψ。

⑵.观察铸铁在轴向拉伸时的各种现象。

⑶.观察低碳钢和铸铁在轴向压缩过程中的各种现象。

⑷.观察试样受力和变形两者间的相互关系,并注意观察材料的弹性、屈服、强化、颈缩、断裂等物理现象。测定该试样所代表材料的FS、Fb和∆l等值。

⑸.对典型的塑性材料和脆性材料进行受力变形现象比较,对其强度指标和塑性指标进行比较。

⑹.学习、掌握电子万能试验机的使用方法及其工作原理。

2 仪器设备和量具

50KN电子万能试验机,单向引伸计,钢板尺,游标卡尺。

3 试件

实验证明,试件尺寸和形状对实验结果有影响。为了便于比较各种材料的机械性能,

国家标准中对试件的尺寸和形状有统一规定。根据国家标准,(GB6397-86),将金属拉伸比例试件的尺寸列表如下:

本实验的拉伸试件采用国家标准中规定的长比例试件(图2-1),实验段直径d0=10mm,标距l0=100mm。本实验的压缩试件采用国家标准(GB7314-87)中规定的圆柱形试件

h/d0=2,d0=15mm(图2-2)。

图2-2 压缩试件

4 实验原理和方法

(一)低碳钢的拉伸实验

在拉伸实验前,测定低碳钢试件的直径d0和标距l0。实验时,首先将试件安装在实验机的上、下夹头内,并在实验段的标记处安装引伸仪,以测量实验段的变形。然后开动实验机,缓慢加载,与实验机相联的微机会自动绘制出载荷-变形曲线(F-∆l曲线,见图2-3)或应力-应变曲线(σ-ε曲线,见图2-4),随着载荷的逐渐增大,材料呈现出不同的力学性能:

Δl

图2-4

图2-3

(1)弹性阶段(Ob段)

在拉伸的初始阶段,σ-ε曲线(Oa段)为一直线,说明应力与应变成正比,即满足胡克定理,此阶段称为线形阶段。线性段的最高点称为材料的比例极限(σP),线性段的直线斜率即为材料的弹性摸量E。

线性阶段后,σ-ε曲线不为直线(ab段),应力应变不再成正比,但若在整个弹性阶段卸载,应力应变曲线会沿原曲线返回,载荷卸到零时,变形也完全消失。卸载后变形能完全消失的应力最大点称为材料的弹性极限(σe),一般对于钢等许多材料,其弹性极限与比例极限非常接近。

(2)屈服阶段(bc段)

超过弹性阶段后,应力几乎不变,只是在某一微小范围内上下波动,而应变却急剧增长,这种现象成为屈服。使材料发生屈服的应力称为屈服应力或屈服极限(σs)。

当材料屈服时,如果用砂纸将试件表面打磨,会发现试件表面呈现出与轴线成45斜纹。这是由于试件的45斜截面上作用有最大切应力,这些斜纹是由于材料沿最大切应力作用面产生滑移所造成的,故称为滑移线。

(3)硬化阶段(ce段)

经过屈服阶段后,应力应变曲线呈现曲线上升趋势,这说明材料的抗变形能力又增强了,这种现象称为应变硬化。

若在此阶段卸载,则卸载过程的应力应变曲线为一条斜线(如d-d'斜线),其斜率与比例阶段的直线段斜率大致相等。当载荷卸载到零时,变形并未完全消失,应力减小至零时残留的应变称为塑性应变或残余应变,相应地应力减小至零时消失的应变称为弹性应变。卸载完之后,立即再加载,则加载时的应力应变关系基本上沿卸载时的直线变化。因此,如果将卸载后已有塑性变形的试样重新进行拉伸实验,其比例极限或弹性极限将得到提高,这一现象称为冷作硬化。

在硬化阶段应力应变曲线存在一最高点,该最高点对应的应力称为材料的强度极限(σb),强度极限所对应的载荷为试件所能承受的最大载荷Fb。

(4)颈缩阶段(ef段)

试样拉伸达到强度极限σb之前,在标距范围内的变形是均匀的。当应力增大至强度极限σb之后,试样出现局部显著收缩,这一现象称为颈缩。颈缩出现后,使试件继续变形所需载荷减小,故应力应变曲线呈现下降趋势,直至最后在f点断裂。试样的断裂位置处于颈缩处,断口形状呈杯状,这说明引起试样破坏的原因不仅有拉应力还有切应力。

(二)铸铁的拉伸实验

铸铁的拉伸实验方法与低碳钢的拉伸实验相同,但是铸铁在拉伸时的力学性能明显不同于低碳钢,其应力应变曲线如图2-5所示。铸铁从开始受力直至断裂,变形始终很小,既不存在屈服阶段,也无颈缩现象。断口垂直于试样轴线,这说明引起试样破坏的原因是最大拉应力。

(三)低碳钢和铸铁的压缩实验

低碳钢试件在压缩过程中,在加载开始段,从应力应变曲线图2-6可以看出,应力与应变成正比,即满足胡克定理。当载荷达到一定程度时,低碳钢试件发生明显的屈服现象。过了屈服阶段后,试件越压越扁,最终被压成腰鼓形,而不会发生断裂破坏。

铸铁试件在压缩过程中,没有明显的线性阶段,也没有明显的屈服阶段(如图七所示)。铸铁的压缩强度极限约为拉伸强度极限的3-4倍。铸铁试件断裂时,断口方向与试件轴线约成55。一般认为是切应力和摩擦力共同作用的结果。

图2-6

图2-7

5 实验步骤

(一)低碳钢的拉伸实验

1、依次打开计算机、变压器,并按下主机外罩上的“复位”按钮启动试验机。 2、双击桌面上的图标WinWdw-PCI ,进入软件操作系统。

3、点击“试验操作”,打开实验操作界面,做拉伸试验时,在软件操作系统的“控制面

板”上选取“拉向”。

4、用游标卡尺测量试样的直径和标距,并记录。

在试件的标距范围内测量试件三个横截面处的截面直径,在每个截面上分别取两个相互垂直的方向各测量一次直径。取六次测量的平均值做为原始直径d0,并据此计算试件的横截面面积A0。测量标距时,要用游标卡尺测量三次,并取三次测量结果的平均值作为试件的原始长度l0。

5、做实验

⑴ 装夹拉伸试样。通过试验机的“上升”、“下降”按钮把横梁调整到方便装试件的位置,再把上钳口松开,夹紧试样的上端; ⑵ 使横梁下降,当试样能够夹在下钳口时,停止;

⑶ 在实验操作界面上把负荷、峰值、变形、位移、时间清零,夹紧下钳口; ⑷ 在“控制面板”上选择“位移控制”,采用0.2mm/min的速度使横梁下降,消除预紧力,使负荷变为零;

⑸ 装夹引伸计,并检查引伸计是否已正确连接到计算机主机的端口上;加载速度选0.5mm/min;

⑹ 单击“新建试样”按钮,输入试件的有关信息,包括直径(或长、宽)、标距,然后点击“新建试样” 按钮,再点击“确认”。

⑺ 再次把负荷、峰值、变形、位移、时间等各项分别清零。

⑻ 单击“位移方式”,切换为“取引伸计”模式。在取引伸计模式下,点击“开始”按钮,开始实验。当试件即将进入屈服阶段时,屏幕会弹出对话框提示取下引伸计,此时要迅速取下引伸计。因为此后试件将进入屈服阶段,在载荷—变形图上将看到一个很长的波泿形曲线(表明试件处于流塑阶段),应力变化不大,但应变大大增加。如果不取下引伸计,引伸计将被拉坏。接着材料进入强化阶段,可将加载速度调至5mm/min,继续实验直至试样拉断。

在实验过程中,注意观察屈服(流动)、强化,卸载规律、颈缩、断裂等现象。

⑼ 试样拉断后,立即按“停止”按钮。然后点取“保存数据” 按钮,保存试验数据。取下试样,先将两段试件沿断口整齐地对拢,量取并记录拉断后两标距点之间的长度l1,及断口处最小的直径d1,并计算断后面积。

⑽ 数据处理。单击菜单栏中的“试验分析”,并在相应的对话中选择需要计算的项目。然后单击“自动计算”。需要打印时单击“试验报告”按钮,把需要输出的选项移到右侧的空白框内,在曲线类型栏中选择应力---应变曲线,单击“确定”铵钮后打印试验报告。

(二)铸铁的拉伸实验

操作步骤与低碳钢试验基本相同,不同之处有: (1)无须装夹引伸计。

(2)速度选择置于2mm/min直至断裂。 (3)在实验中注意读取荷载极限值。

(三)低碳钢压缩实验

其操作步骤与拉伸时基本相同,不同之处有:

(1)试件放于下压头的中心处,移动横梁使上压头逐渐接近试样。但不能接触试样。 (2)用速度2mm/min加压,使上压头接触试样(荷载单元可显2~3kN的预压力)。 (3)试验速度在屈服前用2mm/min,屈服后用5mm/min。

(4)试样不会断裂,曲线画到一定程度即可结束试验;在实验中注意读取屈服时的荷

载值。

(四)铸铁压缩实验

操作步骤与低碳钢压缩相同,不同的是试件破断后停机。

全部实验完毕后,关闭软件和试验机,并检查机器和仪器的各开关按键是否置于原始位置,然后关掉电源。

6 试验结果处理

(一)低碳钢的拉伸实验

记录试件的屈服抗力Fs和最大抗力Fb。试件断裂后,测量断口处的最小直径d1和标距间的距离l1。依据测得的实验数据,计算低碳钢材料的强度指标和塑性指标。

强度指标:

Fsπd02

,其中A= 屈服极限 σs= A04

强度极限 σb= 塑性指标:

延伸率 δ10= 断面收缩率 ψ=

Fb

A0

l1-l0

⨯100% l0

A0-A1

⨯100% A0

(二)低碳钢的压缩实验

实验前,测量试件的直径d0和高度h0。实验时,观察低碳钢试件压缩过程中的现象,测定试件屈服时的抗力Fs,从而计算出低碳钢的屈服极限:

(三)灰口铸铁的拉伸实验

σs=

FsA0

实验前测定试件的直径d0,试件在拉伸过程中注意观察与低碳钢拉伸试验中不同的现象(如变形小、无屈服、无颈缩、断口平齐等);记录断裂时的最大抗力Fb,从而计算出灰口铸铁的拉伸强度极限:σb=

Fb

。 A0

(四)灰口铸铁的压缩实验

实验前测定试件的直径d0和高度h0。实验时观察灰口铸铁试件在压缩过程中的现象,尤其是断口形状;记录压缩破坏时的最大抗力Fb,计算灰口铸铁压缩强度极限。即

σb=

Fb

A0

7 预习思考题

1.试比较低碳钢和铸铁在拉伸时的力学性能。

2.压缩时为什么必须将试件对准试验机压头的中心位置,如没有对中会产生什么影响?

3.说明铸铁和低碳钢断口的特点。

4.低碳钢和铸铁在拉伸、压缩中,各要测得哪些数据?观察哪些现象?

低碳钢和灰口铸铁的拉伸、压缩实验

1 实验目的

⑴.观察低碳钢在拉伸时的各种现象,并测定低碳钢在拉伸时的屈服极限σs,强度极限

σb,延伸率δ10和断面收缩率ψ。

⑵.观察铸铁在轴向拉伸时的各种现象。

⑶.观察低碳钢和铸铁在轴向压缩过程中的各种现象。

⑷.观察试样受力和变形两者间的相互关系,并注意观察材料的弹性、屈服、强化、颈缩、断裂等物理现象。测定该试样所代表材料的FS、Fb和∆l等值。

⑸.对典型的塑性材料和脆性材料进行受力变形现象比较,对其强度指标和塑性指标进行比较。

⑹.学习、掌握电子万能试验机的使用方法及其工作原理。

2 仪器设备和量具

50KN电子万能试验机,单向引伸计,钢板尺,游标卡尺。

3 试件

实验证明,试件尺寸和形状对实验结果有影响。为了便于比较各种材料的机械性能,

国家标准中对试件的尺寸和形状有统一规定。根据国家标准,(GB6397-86),将金属拉伸比例试件的尺寸列表如下:

本实验的拉伸试件采用国家标准中规定的长比例试件(图2-1),实验段直径d0=10mm,标距l0=100mm。本实验的压缩试件采用国家标准(GB7314-87)中规定的圆柱形试件

h/d0=2,d0=15mm(图2-2)。

图2-2 压缩试件

4 实验原理和方法

(一)低碳钢的拉伸实验

在拉伸实验前,测定低碳钢试件的直径d0和标距l0。实验时,首先将试件安装在实验机的上、下夹头内,并在实验段的标记处安装引伸仪,以测量实验段的变形。然后开动实验机,缓慢加载,与实验机相联的微机会自动绘制出载荷-变形曲线(F-∆l曲线,见图2-3)或应力-应变曲线(σ-ε曲线,见图2-4),随着载荷的逐渐增大,材料呈现出不同的力学性能:

Δl

图2-4

图2-3

(1)弹性阶段(Ob段)

在拉伸的初始阶段,σ-ε曲线(Oa段)为一直线,说明应力与应变成正比,即满足胡克定理,此阶段称为线形阶段。线性段的最高点称为材料的比例极限(σP),线性段的直线斜率即为材料的弹性摸量E。

线性阶段后,σ-ε曲线不为直线(ab段),应力应变不再成正比,但若在整个弹性阶段卸载,应力应变曲线会沿原曲线返回,载荷卸到零时,变形也完全消失。卸载后变形能完全消失的应力最大点称为材料的弹性极限(σe),一般对于钢等许多材料,其弹性极限与比例极限非常接近。

(2)屈服阶段(bc段)

超过弹性阶段后,应力几乎不变,只是在某一微小范围内上下波动,而应变却急剧增长,这种现象成为屈服。使材料发生屈服的应力称为屈服应力或屈服极限(σs)。

当材料屈服时,如果用砂纸将试件表面打磨,会发现试件表面呈现出与轴线成45斜纹。这是由于试件的45斜截面上作用有最大切应力,这些斜纹是由于材料沿最大切应力作用面产生滑移所造成的,故称为滑移线。

(3)硬化阶段(ce段)

经过屈服阶段后,应力应变曲线呈现曲线上升趋势,这说明材料的抗变形能力又增强了,这种现象称为应变硬化。

若在此阶段卸载,则卸载过程的应力应变曲线为一条斜线(如d-d'斜线),其斜率与比例阶段的直线段斜率大致相等。当载荷卸载到零时,变形并未完全消失,应力减小至零时残留的应变称为塑性应变或残余应变,相应地应力减小至零时消失的应变称为弹性应变。卸载完之后,立即再加载,则加载时的应力应变关系基本上沿卸载时的直线变化。因此,如果将卸载后已有塑性变形的试样重新进行拉伸实验,其比例极限或弹性极限将得到提高,这一现象称为冷作硬化。

在硬化阶段应力应变曲线存在一最高点,该最高点对应的应力称为材料的强度极限(σb),强度极限所对应的载荷为试件所能承受的最大载荷Fb。

(4)颈缩阶段(ef段)

试样拉伸达到强度极限σb之前,在标距范围内的变形是均匀的。当应力增大至强度极限σb之后,试样出现局部显著收缩,这一现象称为颈缩。颈缩出现后,使试件继续变形所需载荷减小,故应力应变曲线呈现下降趋势,直至最后在f点断裂。试样的断裂位置处于颈缩处,断口形状呈杯状,这说明引起试样破坏的原因不仅有拉应力还有切应力。

(二)铸铁的拉伸实验

铸铁的拉伸实验方法与低碳钢的拉伸实验相同,但是铸铁在拉伸时的力学性能明显不同于低碳钢,其应力应变曲线如图2-5所示。铸铁从开始受力直至断裂,变形始终很小,既不存在屈服阶段,也无颈缩现象。断口垂直于试样轴线,这说明引起试样破坏的原因是最大拉应力。

(三)低碳钢和铸铁的压缩实验

低碳钢试件在压缩过程中,在加载开始段,从应力应变曲线图2-6可以看出,应力与应变成正比,即满足胡克定理。当载荷达到一定程度时,低碳钢试件发生明显的屈服现象。过了屈服阶段后,试件越压越扁,最终被压成腰鼓形,而不会发生断裂破坏。

铸铁试件在压缩过程中,没有明显的线性阶段,也没有明显的屈服阶段(如图七所示)。铸铁的压缩强度极限约为拉伸强度极限的3-4倍。铸铁试件断裂时,断口方向与试件轴线约成55。一般认为是切应力和摩擦力共同作用的结果。

图2-6

图2-7

5 实验步骤

(一)低碳钢的拉伸实验

1、依次打开计算机、变压器,并按下主机外罩上的“复位”按钮启动试验机。 2、双击桌面上的图标WinWdw-PCI ,进入软件操作系统。

3、点击“试验操作”,打开实验操作界面,做拉伸试验时,在软件操作系统的“控制面

板”上选取“拉向”。

4、用游标卡尺测量试样的直径和标距,并记录。

在试件的标距范围内测量试件三个横截面处的截面直径,在每个截面上分别取两个相互垂直的方向各测量一次直径。取六次测量的平均值做为原始直径d0,并据此计算试件的横截面面积A0。测量标距时,要用游标卡尺测量三次,并取三次测量结果的平均值作为试件的原始长度l0。

5、做实验

⑴ 装夹拉伸试样。通过试验机的“上升”、“下降”按钮把横梁调整到方便装试件的位置,再把上钳口松开,夹紧试样的上端; ⑵ 使横梁下降,当试样能够夹在下钳口时,停止;

⑶ 在实验操作界面上把负荷、峰值、变形、位移、时间清零,夹紧下钳口; ⑷ 在“控制面板”上选择“位移控制”,采用0.2mm/min的速度使横梁下降,消除预紧力,使负荷变为零;

⑸ 装夹引伸计,并检查引伸计是否已正确连接到计算机主机的端口上;加载速度选0.5mm/min;

⑹ 单击“新建试样”按钮,输入试件的有关信息,包括直径(或长、宽)、标距,然后点击“新建试样” 按钮,再点击“确认”。

⑺ 再次把负荷、峰值、变形、位移、时间等各项分别清零。

⑻ 单击“位移方式”,切换为“取引伸计”模式。在取引伸计模式下,点击“开始”按钮,开始实验。当试件即将进入屈服阶段时,屏幕会弹出对话框提示取下引伸计,此时要迅速取下引伸计。因为此后试件将进入屈服阶段,在载荷—变形图上将看到一个很长的波泿形曲线(表明试件处于流塑阶段),应力变化不大,但应变大大增加。如果不取下引伸计,引伸计将被拉坏。接着材料进入强化阶段,可将加载速度调至5mm/min,继续实验直至试样拉断。

在实验过程中,注意观察屈服(流动)、强化,卸载规律、颈缩、断裂等现象。

⑼ 试样拉断后,立即按“停止”按钮。然后点取“保存数据” 按钮,保存试验数据。取下试样,先将两段试件沿断口整齐地对拢,量取并记录拉断后两标距点之间的长度l1,及断口处最小的直径d1,并计算断后面积。

⑽ 数据处理。单击菜单栏中的“试验分析”,并在相应的对话中选择需要计算的项目。然后单击“自动计算”。需要打印时单击“试验报告”按钮,把需要输出的选项移到右侧的空白框内,在曲线类型栏中选择应力---应变曲线,单击“确定”铵钮后打印试验报告。

(二)铸铁的拉伸实验

操作步骤与低碳钢试验基本相同,不同之处有: (1)无须装夹引伸计。

(2)速度选择置于2mm/min直至断裂。 (3)在实验中注意读取荷载极限值。

(三)低碳钢压缩实验

其操作步骤与拉伸时基本相同,不同之处有:

(1)试件放于下压头的中心处,移动横梁使上压头逐渐接近试样。但不能接触试样。 (2)用速度2mm/min加压,使上压头接触试样(荷载单元可显2~3kN的预压力)。 (3)试验速度在屈服前用2mm/min,屈服后用5mm/min。

(4)试样不会断裂,曲线画到一定程度即可结束试验;在实验中注意读取屈服时的荷

载值。

(四)铸铁压缩实验

操作步骤与低碳钢压缩相同,不同的是试件破断后停机。

全部实验完毕后,关闭软件和试验机,并检查机器和仪器的各开关按键是否置于原始位置,然后关掉电源。

6 试验结果处理

(一)低碳钢的拉伸实验

记录试件的屈服抗力Fs和最大抗力Fb。试件断裂后,测量断口处的最小直径d1和标距间的距离l1。依据测得的实验数据,计算低碳钢材料的强度指标和塑性指标。

强度指标:

Fsπd02

,其中A= 屈服极限 σs= A04

强度极限 σb= 塑性指标:

延伸率 δ10= 断面收缩率 ψ=

Fb

A0

l1-l0

⨯100% l0

A0-A1

⨯100% A0

(二)低碳钢的压缩实验

实验前,测量试件的直径d0和高度h0。实验时,观察低碳钢试件压缩过程中的现象,测定试件屈服时的抗力Fs,从而计算出低碳钢的屈服极限:

(三)灰口铸铁的拉伸实验

σs=

FsA0

实验前测定试件的直径d0,试件在拉伸过程中注意观察与低碳钢拉伸试验中不同的现象(如变形小、无屈服、无颈缩、断口平齐等);记录断裂时的最大抗力Fb,从而计算出灰口铸铁的拉伸强度极限:σb=

Fb

。 A0

(四)灰口铸铁的压缩实验

实验前测定试件的直径d0和高度h0。实验时观察灰口铸铁试件在压缩过程中的现象,尤其是断口形状;记录压缩破坏时的最大抗力Fb,计算灰口铸铁压缩强度极限。即

σb=

Fb

A0

7 预习思考题

1.试比较低碳钢和铸铁在拉伸时的力学性能。

2.压缩时为什么必须将试件对准试验机压头的中心位置,如没有对中会产生什么影响?

3.说明铸铁和低碳钢断口的特点。

4.低碳钢和铸铁在拉伸、压缩中,各要测得哪些数据?观察哪些现象?


相关文章

  • 实验一 拉伸实验
  • 实验一 拉伸实验 一.实验目的 1. 测定低碳钢拉伸时的屈服极限σsl ,强度极限σb ,断后伸长率δ和断面收缩率χ: 2. 测定铸铁拉伸时的强度极限σb : 3. 观察低碳钢拉伸过程中的各种现象(包括屈服.强化和颈缩等),并绘出拉伸曲 线 ...查看


  • 碳钢与铸铁的拉伸.压缩实验
  • 碳钢与铸铁的拉伸.压缩实验 一.目的 1.测定碳钢在拉伸时的屈服极限ζS,强度极限ζb,延伸率δ和断面收缩率Ψ,测 定铸铁拉伸时的强度极限ζb. 2.观察碳钢.铸铁在拉伸过程中的变形规律及破坏现象,并进行比较,使用绘图装 置绘制拉伸图(P- ...查看


  • 万能试验机测量材料的拉伸力学性能实验
  • 万能试验机测量材料的 拉伸力学性能实验 一.实验目的 1.了解试验设备――万能材料试验机的构造和工作原理,掌握其操作规程及使用注意事项. 2.测定低碳钢的屈服极限σs .强度极限σb .伸长率δ和断面收缩率ψ: 3.测定铸铁的强度极限σb ...查看


  • 低碳钢拉伸
  • 实验二 低碳钢的拉伸试验 一.实验目的 1) 2) 测定低碳钢的屈服强度s,抗拉强度b.断后伸长率δ和断面收缩率ψ 观察低碳钢在拉伸过程中所出现的屈服.强化和缩颈现象,分析力与变形之间的关系,并绘制拉伸图. 3) 二.实验设备 (1) ...查看


  • 实验 拉伸与压缩实验
  • 实验五 拉伸与压缩实验 一.实验目的 1.观察低碳钢和铸铁的拉伸过程,测定其主要机械性能指标屈服极限σs .强度极限σb .延伸率δ和断面收缩率ϕ,比较破坏情况. 2.观察.比较低碳钢和铸铁在压缩时的变形和破坏现象,测定低碳钢压缩时屈服极限 ...查看


  • 力学性能实验
  • 专业实验(1) 八:金属材料拉伸实验讲义 一. 金属拉伸实验目的 金属力学性能是承受外载荷而不发生失效的能力,力学性能的判据是表征和判定金属力学性能所用的指标和依据,而其高低表征材料抵抗外力作用的能力水平,是评定金属测量质量的重要依据.金属 ...查看


  • 4-1低碳钢的拉伸试验
  • 4-1低碳钢的拉伸试验 材料的机械性质(或力学性质)是指材料从开始受力直至破坏的全过程中所呈现的受力和变形间的各种特征,它们是材料固有的属性,可以通过试验进行测定.变形体力学的三大基本关系中的物理关系就是这样得到的.常温(室温).静荷下的拉 ...查看


  • 工程力学实验指导书
  • 实验一: 低碳钢和灰口铸铁的拉伸.压缩实验 一.实验目的 1.试样在拉伸或压缩实验过程中,观察试样受力和变形两者间的相互关系,并注意观察材料的弹性.屈服.强化.颈缩.断裂等物理现象. 2.测定该试样所代表材料的σs.σb.ψ.δ等值. 3. ...查看


  • 材料力学实验报告册-2010版-力学中心
  • 实验日期_____________ 教师签字_____________ 同 组 者_____________ 审批日期_____________ 实验名称: 拉 伸 和 压 缩 试 验 一.试验目的 1. 测定低碳钢材料拉伸的屈服极限σs ...查看


热门内容