遗传算法实例

遗传算法实例

% 下面举例说明遗传算法 %

% 求下列函数的最大值 %

% f(x)=10*sin(5x)+7*cos(4x) x∈[0,10] %

% 将 x 的值用一个10位的二值形式表示为二值问题,一个10位的二值数(参数的编码长度)提供的分辨率是每为 (10-0)/(2^10-1)≈0.01 。 %

% 将变量域 [0,10] 离散化为二值域 [0,1023], x=0+10*b/1023, 其中 b 是 [0,1023] 中的一个二值数。 % 1023= 2^10-1

% 编程

%-----------------------------------------------

% 2.1初始化(编码)

% initpop.m函数的功能是实现群体的初始化,popsize表示群体的大小,chromlength表示染色体的长度(二值数的长度,也即参数的编码长度),

% 长度大小取决于变量的二进制编码的长度(在本例中取10位)。

%遗传算法子程序

%Name: initpop.m

%初始化

function pop=initpop(popsize,chromlength)

pop=round(rand(popsize,chromlength)); % rand随机产生每个单元为 {0,1} 行数为popsize,列数为chromlength的矩阵,

% roud对矩阵的每个单元进行圆整。这样产生的初始种群。

% 2.2 计算目标函数值

% 2.2.1 将二进制数转化为十进制数(1)

%遗传算法子程序

%Name: decodebinary.m

%产生 [2^n 2^(n-1) ... 1] 的行向量,然后求和,将二进制转化为十进制

function pop2=decodebinary(pop)

[px,py]=size(pop); %求pop行和列数

for i=1:py

pop1(:,i)=2.^(py-i).*pop(:,i);

end

pop2=sum(pop1,2); %求pop1的每行之和

% 2.2.2 将二进制编码转化为十进制数(2)

% decodechrom.m函数的功能是将染色体(或二进制编码)转换为十进制,参数spoint表示待解码的二进制串的起始位置

% (对于多个变量而言,如有两个变量,采用20位表示,每个变量10位,则第一个变量从1开始,另一个变量从11开始。本例为1),

% 参数1ength表示所截取的长度(本例为10)。

%遗传算法子程序

%Name: decodechrom.m

%将二进制编码转换成十进制

function pop2=decodechrom(pop,spoint,length)

pop1=pop(:,spoint:spoint+length-1);

pop2=decodebinary(pop1);

% 2.2.3 计算目标函数值

% calobjvalue.m函数的功能是实现目标函数的计算,其公式采用本文示例仿真,可根据不同优化问题予以修改。

%遗传算法子程序

%Name: calobjvalue.m

%实现目标函数的计算

function [objvalue]=calobjvalue(pop)

temp1=decodechrom(pop,1,10); %将pop每行转化成十进制数

x=temp1*10/1023; %将二值域 中的数转化为变量域 的数

objvalue=10*sin(5*x)+7*cos(4*x); %计算目标函数值

% 2.3 计算个体的适应值

%遗传算法子程序

%Name:calfitvalue.m

%计算个体的适应值

function fitvalue=calfitvalue(objvalue)

global Cmin;

Cmin=0;

[px,py]=size(objvalue);

for i=1:px

if objvalue(i)+Cmin>0

temp=Cmin+objvalue(i);

else

temp=0.0;

end

fitvalue(i)=temp;

end

fitvalue=fitvalue';

% 2.4 选择复制

% 选择或复制操作是决定哪些个体可以进入下一代。程序中采用赌轮盘选择法选择,这种方法较易实现。

% 根据方程 pi=fi/∑fi=fi/fsum ,选择步骤:

% 1) 在第 t 代,由(1)式计算 fsum 和 pi

% 2) 产生 {0,1} 的随机数 rand( .),求 s=rand( .)*fsum

% 3) 求 ∑fi≥s 中最小的 k ,则第 k 个个体被选中

% 4) 进行 N 次2)、3)操作,得到 N 个个体,成为第 t=t+1 代种群

%遗传算法子程序

%Name: selection.m

%选择复制

function [newpop]=selection(pop,fitvalue)

totalfit=sum(fitvalue); %求适应值之和

fitvalue=fitvalue/totalfit; %单个个体被选择的概率

fitvalue=cumsum(fitvalue); %如 fitvalue=[1 2 3 4],则 cumsum(fitvalue)=[1 3 6 10]

[px,py]=size(pop);

ms=sort(rand(px,1)); %从小到大排列

fitin=1;

newin=1;

while newin

if(ms(newin))

newpop(newin)=pop(fitin);

newin=newin+1;

else

fitin=fitin+1;

end

end

% 2.5 交叉

% 交叉(crossover),群体中的每个个体之间都以一定的概率 pc 交叉,即两个个体从各自字符串的某一位置

% (一般是随机确定)开始互相交换,这类似生物进化过程中的基因分裂与重组。例如,假设2个父代个体x1,x2为:

% x1=0100110

% x2=1010001

% 从每个个体的第3位开始交叉,交叉后得到2个新的子代个体y1,y2分别为: % y1=0100001

% y2=1010110

% 这样2个子代个体就分别具有了2个父代个体的某些特征。利用交叉我们有可能由父代个体在子代组合成具有更高适合度的个体。

% 事实上交叉是遗传算法区别于其它传统优化方法的主要特点之一。

%遗传算法子程序

%Name: crossover.m

%交叉

function [newpop]=crossover(pop,pc)

[px,py]=size(pop);

newpop=ones(size(pop));

for i=1:2:px-1

if(rand

cpoint=round(rand*py);

newpop(i,:)=[pop(i,1:cpoint),pop(i+1,cpoint+1:py)];

newpop(i+1,:)=[pop(i+1,1:cpoint),pop(i,cpoint+1:py)];

else

newpop(i,:)=pop(i);

newpop(i+1,:)=pop(i+1);

end

end

% 2.6 变异

% 变异(mutation),基因的突变普遍存在于生物的进化过程中。变异是指父代中的每个个体的每一位都以概率 pm 翻转,即由“1”变为“0”,

% 或由“0”变为“1”。遗传算法的变异特性可以使求解过程随机地搜索到解可能存在的整个空间,因此可以在一定程度上求得全局最优解。

%遗传算法子程序

%Name: mutation.m

%变异

function [newpop]=mutation(pop,pm)

[px,py]=size(pop);

newpop=ones(size(pop));

for i=1:px

if(rand

mpoint=round(rand*py);

if mpoint

mpoint=1;

end

newpop(i)=pop(i);

if any(newpop(i,mpoint))==0

newpop(i,mpoint)=1;

else

newpop(i,mpoint)=0;

end

else

newpop(i)=pop(i);

end

end

% 2.7 求出群体中最大得适应值及其个体

%遗传算法子程序

%Name: best.m

%求出群体中适应值最大的值

function [bestindividual,bestfit]=best(pop,fitvalue)

[px,py]=size(pop);

bestindividual=pop(1,:);

bestfit=fitvalue(1);

for i=2:px

if fitvalue(i)>bestfit

bestindividual=pop(i,:);

bestfit=fitvalue(i);

end

end

% 2.8 主程序

%遗传算法主程序

%Name:genmain05.m

clear

clf

popsize=20; %群体大小

chromlength=10; %字符串长度(个体长度)

pc=0.6; %交叉概率

pm=0.001; %变异概率

pop=initpop(popsize,chromlength); %随机产生初始群体

for i=1:20 %20为迭代次数

[objvalue]=calobjvalue(pop); %计算目标函数

fitvalue=calfitvalue(objvalue); %计算群体中每个个体的适应度

[newpop]=selection(pop,fitvalue); %复制

[newpop]=crossover(pop,pc); %交叉

[newpop]=mutation(pop,pc); %变异

[bestindividual,bestfit]=best(pop,fitvalue); %求出群体中适应值最大的个体及其适应值 y(i)=max(bestfit);

n(i)=i;

pop5=bestindividual;

x(i)=decodechrom(pop5,1,chromlength)*10/1023;

pop=newpop;

end

fplot('10*sin(5*x)+7*cos(4*x)',[0 10])

hold on

plot(x,y,'r*')

hold off

[z index]=max(y); %计算最大值及其位置

x5=x(index)%计算最大值对应的x值

y=z

【问题】求f(x)=x+10*sin(5x) 7*cos(4x)的最大值,其中0

【分析】选择二进制编码,种群中的个体数目为10,二进制编码长度为20,交叉概率为0.95,变异概率为0.08

【程序清单】

%编写目标函数

function[sol,eval]=fitness(sol,options)

x=sol(1);

eval=x+10*sin(5*x) 7*cos(4*x);

%把上述函数存储为fitness.m文件并放在工作目录下

initPop=initializega(10,[0 9],'fitness');%生成初始种群,大小为10

[x endPop,bPop,trace]=ga([0 9],'fitness',[],initPop,[1e-6 1 1],'maxGenTerm',25,'normGeomSelect',...

[0.08],['arithXover'],[2],'nonUnifMutation',[2 25 3]) %25次遗传迭代

运算借过为:x =

7.8562 24.8553(当x为7.8562时,f(x)取最大值24.8553)

注:遗传算法一般用来取得近似最优解,而不是最优解。

遗传算法实例2

【问题】在-5

f(x1,x2)=-20*exp(-0.2*sqrt(0.5*(x1.^2 x2.^2)))-exp(0.5*(cos(2*pi*x1) cos(2*pi*x2)))+22.71282的最小值。

【分析】种群大小10,最大代数1000,变异率0.1,交叉率0.3

【程序清单】

%源函数的matlab代码

function [eval]=f(sol)

numv=size(sol,2);

x=sol(1:numv);

eval=-20*exp(-0.2*sqrt(sum(x.^2)/numv)))-exp(sum(cos(2*pi*x))/numv)+22.71282;

%适应度函数的matlab代码

function [sol,eval]=fitness(sol,options)

numv=size(sol,2)-1;

x=sol(1:numv);

eval=f(x);

eval=-eval;

%遗传算法的matlab代码

bounds=ones(2,1)*[-5 5];

[p,endPop,bestSols,trace]=ga(bounds,'fitness')

注:前两个文件存储为m文件并放在工作目录下,运行结果为

p =

0.0000 -0.0000 0.0055

大家可以直接绘出f(x)的图形来大概看看f(x)的最值是多少,也可是使用优化函数来验证。matlab命令行执行命令:

fplot('x+10*sin(5*x) 7*cos(4*x)',[0,9])

evalops是传递给适应度函数的参数,opts是二进制编码的精度,termops是选择maxGenTerm结束函数时传递个maxGenTerm的参数,即遗传代数。xoverops是传递给交叉函数的参数。mutops是传递给变异函数的参数。

【问题】求f(x)=x+10*sin(5x)+7*cos(4x)的最大值,其中0

【分析】选择二进制编码,种群中的个体数目为10,二进制编码长度为20,交叉概率为0.95,变异概率为0.08

【程序清单】

%编写目标函数

function[sol,eval]=fitness(sol,options)

x=sol(1);

eval=x+10*sin(5*x)+7*cos(4*x);

%把上述函数存储为fitness.m文件并放在工作目录下

initPop=initializega(10,[0 9],'fitness');%生成初始种群,大小为10

[x endPop,bPop,trace]=ga([0 9],'fitness',[],initPop,[1e-6 1 1],'maxGenTerm',25,'normGeomSelect',...

[0.08],['arithXover'],[2],'nonUnifMutation',[2 25 3]) %25次遗传迭代

运算借过为:x =

7.8562 24.8553(当x为7.8562时,f(x)取最大值24.8553)

注:遗传算法一般用来取得近似最优解,而不是最优解。

遗传算法实例2

【问题】在-5

f(x1,x2)=-20*exp(-0.2*sqrt(0.5*(x1.^2+x2.^2)))-exp(0.5*(cos(2*pi*x1)+cos(2*pi*x2)))+22.71282的最小值。

【分析】种群大小10,最大代数1000,变异率0.1,交叉率0.3

【程序清单】

%源函数的matlab代码

function [eval]=f(sol)

numv=size(sol,2);

x=sol(1:numv);

eval=-20*exp(-0.2*sqrt(sum(x.^2)/numv)))-exp(sum(cos(2*pi*x))/numv)+22.71282;

%适应度函数的matlab代码

function [sol,eval]=fitness(sol,options)

numv=size(sol,2)-1;

x=sol(1:numv);

eval=f(x);

eval=-eval;

%遗传算法的matlab代码

bounds=ones(2,1)*[-5 5];

[p,endPop,bestSols,trace]=ga(bounds,'fitness')

注:前两个文件存储为m文件并放在工作目录下,运行结果为

p =

0.0000 -0.0000 0.0055

大家可以直接绘出f(x)的图形来大概看看f(x)的最值是多少,也可是使用优化函数来验证。matlab命令行执行命令:

fplot('x+10*sin(5*x)+7*cos(4*x)',[0,9])

evalops是传递给适应度函数的参数,opts是二进制编码的精度,termops是选择maxGenTerm结束函数时传递个maxGenTerm的参数,即遗传代数。xoverops是传递给交叉函数的参数。mutops是传递给变异函数的参数。

遗传算法实例

% 下面举例说明遗传算法 %

% 求下列函数的最大值 %

% f(x)=10*sin(5x)+7*cos(4x) x∈[0,10] %

% 将 x 的值用一个10位的二值形式表示为二值问题,一个10位的二值数(参数的编码长度)提供的分辨率是每为 (10-0)/(2^10-1)≈0.01 。 %

% 将变量域 [0,10] 离散化为二值域 [0,1023], x=0+10*b/1023, 其中 b 是 [0,1023] 中的一个二值数。 % 1023= 2^10-1

% 编程

%-----------------------------------------------

% 2.1初始化(编码)

% initpop.m函数的功能是实现群体的初始化,popsize表示群体的大小,chromlength表示染色体的长度(二值数的长度,也即参数的编码长度),

% 长度大小取决于变量的二进制编码的长度(在本例中取10位)。

%遗传算法子程序

%Name: initpop.m

%初始化

function pop=initpop(popsize,chromlength)

pop=round(rand(popsize,chromlength)); % rand随机产生每个单元为 {0,1} 行数为popsize,列数为chromlength的矩阵,

% roud对矩阵的每个单元进行圆整。这样产生的初始种群。

% 2.2 计算目标函数值

% 2.2.1 将二进制数转化为十进制数(1)

%遗传算法子程序

%Name: decodebinary.m

%产生 [2^n 2^(n-1) ... 1] 的行向量,然后求和,将二进制转化为十进制

function pop2=decodebinary(pop)

[px,py]=size(pop); %求pop行和列数

for i=1:py

pop1(:,i)=2.^(py-i).*pop(:,i);

end

pop2=sum(pop1,2); %求pop1的每行之和

% 2.2.2 将二进制编码转化为十进制数(2)

% decodechrom.m函数的功能是将染色体(或二进制编码)转换为十进制,参数spoint表示待解码的二进制串的起始位置

% (对于多个变量而言,如有两个变量,采用20位表示,每个变量10位,则第一个变量从1开始,另一个变量从11开始。本例为1),

% 参数1ength表示所截取的长度(本例为10)。

%遗传算法子程序

%Name: decodechrom.m

%将二进制编码转换成十进制

function pop2=decodechrom(pop,spoint,length)

pop1=pop(:,spoint:spoint+length-1);

pop2=decodebinary(pop1);

% 2.2.3 计算目标函数值

% calobjvalue.m函数的功能是实现目标函数的计算,其公式采用本文示例仿真,可根据不同优化问题予以修改。

%遗传算法子程序

%Name: calobjvalue.m

%实现目标函数的计算

function [objvalue]=calobjvalue(pop)

temp1=decodechrom(pop,1,10); %将pop每行转化成十进制数

x=temp1*10/1023; %将二值域 中的数转化为变量域 的数

objvalue=10*sin(5*x)+7*cos(4*x); %计算目标函数值

% 2.3 计算个体的适应值

%遗传算法子程序

%Name:calfitvalue.m

%计算个体的适应值

function fitvalue=calfitvalue(objvalue)

global Cmin;

Cmin=0;

[px,py]=size(objvalue);

for i=1:px

if objvalue(i)+Cmin>0

temp=Cmin+objvalue(i);

else

temp=0.0;

end

fitvalue(i)=temp;

end

fitvalue=fitvalue';

% 2.4 选择复制

% 选择或复制操作是决定哪些个体可以进入下一代。程序中采用赌轮盘选择法选择,这种方法较易实现。

% 根据方程 pi=fi/∑fi=fi/fsum ,选择步骤:

% 1) 在第 t 代,由(1)式计算 fsum 和 pi

% 2) 产生 {0,1} 的随机数 rand( .),求 s=rand( .)*fsum

% 3) 求 ∑fi≥s 中最小的 k ,则第 k 个个体被选中

% 4) 进行 N 次2)、3)操作,得到 N 个个体,成为第 t=t+1 代种群

%遗传算法子程序

%Name: selection.m

%选择复制

function [newpop]=selection(pop,fitvalue)

totalfit=sum(fitvalue); %求适应值之和

fitvalue=fitvalue/totalfit; %单个个体被选择的概率

fitvalue=cumsum(fitvalue); %如 fitvalue=[1 2 3 4],则 cumsum(fitvalue)=[1 3 6 10]

[px,py]=size(pop);

ms=sort(rand(px,1)); %从小到大排列

fitin=1;

newin=1;

while newin

if(ms(newin))

newpop(newin)=pop(fitin);

newin=newin+1;

else

fitin=fitin+1;

end

end

% 2.5 交叉

% 交叉(crossover),群体中的每个个体之间都以一定的概率 pc 交叉,即两个个体从各自字符串的某一位置

% (一般是随机确定)开始互相交换,这类似生物进化过程中的基因分裂与重组。例如,假设2个父代个体x1,x2为:

% x1=0100110

% x2=1010001

% 从每个个体的第3位开始交叉,交叉后得到2个新的子代个体y1,y2分别为: % y1=0100001

% y2=1010110

% 这样2个子代个体就分别具有了2个父代个体的某些特征。利用交叉我们有可能由父代个体在子代组合成具有更高适合度的个体。

% 事实上交叉是遗传算法区别于其它传统优化方法的主要特点之一。

%遗传算法子程序

%Name: crossover.m

%交叉

function [newpop]=crossover(pop,pc)

[px,py]=size(pop);

newpop=ones(size(pop));

for i=1:2:px-1

if(rand

cpoint=round(rand*py);

newpop(i,:)=[pop(i,1:cpoint),pop(i+1,cpoint+1:py)];

newpop(i+1,:)=[pop(i+1,1:cpoint),pop(i,cpoint+1:py)];

else

newpop(i,:)=pop(i);

newpop(i+1,:)=pop(i+1);

end

end

% 2.6 变异

% 变异(mutation),基因的突变普遍存在于生物的进化过程中。变异是指父代中的每个个体的每一位都以概率 pm 翻转,即由“1”变为“0”,

% 或由“0”变为“1”。遗传算法的变异特性可以使求解过程随机地搜索到解可能存在的整个空间,因此可以在一定程度上求得全局最优解。

%遗传算法子程序

%Name: mutation.m

%变异

function [newpop]=mutation(pop,pm)

[px,py]=size(pop);

newpop=ones(size(pop));

for i=1:px

if(rand

mpoint=round(rand*py);

if mpoint

mpoint=1;

end

newpop(i)=pop(i);

if any(newpop(i,mpoint))==0

newpop(i,mpoint)=1;

else

newpop(i,mpoint)=0;

end

else

newpop(i)=pop(i);

end

end

% 2.7 求出群体中最大得适应值及其个体

%遗传算法子程序

%Name: best.m

%求出群体中适应值最大的值

function [bestindividual,bestfit]=best(pop,fitvalue)

[px,py]=size(pop);

bestindividual=pop(1,:);

bestfit=fitvalue(1);

for i=2:px

if fitvalue(i)>bestfit

bestindividual=pop(i,:);

bestfit=fitvalue(i);

end

end

% 2.8 主程序

%遗传算法主程序

%Name:genmain05.m

clear

clf

popsize=20; %群体大小

chromlength=10; %字符串长度(个体长度)

pc=0.6; %交叉概率

pm=0.001; %变异概率

pop=initpop(popsize,chromlength); %随机产生初始群体

for i=1:20 %20为迭代次数

[objvalue]=calobjvalue(pop); %计算目标函数

fitvalue=calfitvalue(objvalue); %计算群体中每个个体的适应度

[newpop]=selection(pop,fitvalue); %复制

[newpop]=crossover(pop,pc); %交叉

[newpop]=mutation(pop,pc); %变异

[bestindividual,bestfit]=best(pop,fitvalue); %求出群体中适应值最大的个体及其适应值 y(i)=max(bestfit);

n(i)=i;

pop5=bestindividual;

x(i)=decodechrom(pop5,1,chromlength)*10/1023;

pop=newpop;

end

fplot('10*sin(5*x)+7*cos(4*x)',[0 10])

hold on

plot(x,y,'r*')

hold off

[z index]=max(y); %计算最大值及其位置

x5=x(index)%计算最大值对应的x值

y=z

【问题】求f(x)=x+10*sin(5x) 7*cos(4x)的最大值,其中0

【分析】选择二进制编码,种群中的个体数目为10,二进制编码长度为20,交叉概率为0.95,变异概率为0.08

【程序清单】

%编写目标函数

function[sol,eval]=fitness(sol,options)

x=sol(1);

eval=x+10*sin(5*x) 7*cos(4*x);

%把上述函数存储为fitness.m文件并放在工作目录下

initPop=initializega(10,[0 9],'fitness');%生成初始种群,大小为10

[x endPop,bPop,trace]=ga([0 9],'fitness',[],initPop,[1e-6 1 1],'maxGenTerm',25,'normGeomSelect',...

[0.08],['arithXover'],[2],'nonUnifMutation',[2 25 3]) %25次遗传迭代

运算借过为:x =

7.8562 24.8553(当x为7.8562时,f(x)取最大值24.8553)

注:遗传算法一般用来取得近似最优解,而不是最优解。

遗传算法实例2

【问题】在-5

f(x1,x2)=-20*exp(-0.2*sqrt(0.5*(x1.^2 x2.^2)))-exp(0.5*(cos(2*pi*x1) cos(2*pi*x2)))+22.71282的最小值。

【分析】种群大小10,最大代数1000,变异率0.1,交叉率0.3

【程序清单】

%源函数的matlab代码

function [eval]=f(sol)

numv=size(sol,2);

x=sol(1:numv);

eval=-20*exp(-0.2*sqrt(sum(x.^2)/numv)))-exp(sum(cos(2*pi*x))/numv)+22.71282;

%适应度函数的matlab代码

function [sol,eval]=fitness(sol,options)

numv=size(sol,2)-1;

x=sol(1:numv);

eval=f(x);

eval=-eval;

%遗传算法的matlab代码

bounds=ones(2,1)*[-5 5];

[p,endPop,bestSols,trace]=ga(bounds,'fitness')

注:前两个文件存储为m文件并放在工作目录下,运行结果为

p =

0.0000 -0.0000 0.0055

大家可以直接绘出f(x)的图形来大概看看f(x)的最值是多少,也可是使用优化函数来验证。matlab命令行执行命令:

fplot('x+10*sin(5*x) 7*cos(4*x)',[0,9])

evalops是传递给适应度函数的参数,opts是二进制编码的精度,termops是选择maxGenTerm结束函数时传递个maxGenTerm的参数,即遗传代数。xoverops是传递给交叉函数的参数。mutops是传递给变异函数的参数。

【问题】求f(x)=x+10*sin(5x)+7*cos(4x)的最大值,其中0

【分析】选择二进制编码,种群中的个体数目为10,二进制编码长度为20,交叉概率为0.95,变异概率为0.08

【程序清单】

%编写目标函数

function[sol,eval]=fitness(sol,options)

x=sol(1);

eval=x+10*sin(5*x)+7*cos(4*x);

%把上述函数存储为fitness.m文件并放在工作目录下

initPop=initializega(10,[0 9],'fitness');%生成初始种群,大小为10

[x endPop,bPop,trace]=ga([0 9],'fitness',[],initPop,[1e-6 1 1],'maxGenTerm',25,'normGeomSelect',...

[0.08],['arithXover'],[2],'nonUnifMutation',[2 25 3]) %25次遗传迭代

运算借过为:x =

7.8562 24.8553(当x为7.8562时,f(x)取最大值24.8553)

注:遗传算法一般用来取得近似最优解,而不是最优解。

遗传算法实例2

【问题】在-5

f(x1,x2)=-20*exp(-0.2*sqrt(0.5*(x1.^2+x2.^2)))-exp(0.5*(cos(2*pi*x1)+cos(2*pi*x2)))+22.71282的最小值。

【分析】种群大小10,最大代数1000,变异率0.1,交叉率0.3

【程序清单】

%源函数的matlab代码

function [eval]=f(sol)

numv=size(sol,2);

x=sol(1:numv);

eval=-20*exp(-0.2*sqrt(sum(x.^2)/numv)))-exp(sum(cos(2*pi*x))/numv)+22.71282;

%适应度函数的matlab代码

function [sol,eval]=fitness(sol,options)

numv=size(sol,2)-1;

x=sol(1:numv);

eval=f(x);

eval=-eval;

%遗传算法的matlab代码

bounds=ones(2,1)*[-5 5];

[p,endPop,bestSols,trace]=ga(bounds,'fitness')

注:前两个文件存储为m文件并放在工作目录下,运行结果为

p =

0.0000 -0.0000 0.0055

大家可以直接绘出f(x)的图形来大概看看f(x)的最值是多少,也可是使用优化函数来验证。matlab命令行执行命令:

fplot('x+10*sin(5*x)+7*cos(4*x)',[0,9])

evalops是传递给适应度函数的参数,opts是二进制编码的精度,termops是选择maxGenTerm结束函数时传递个maxGenTerm的参数,即遗传代数。xoverops是传递给交叉函数的参数。mutops是传递给变异函数的参数。


相关文章

  • MATLAB遗传算法工具箱及应用
  • 作 者:雷英杰 张善文 李续武 周创明 出版社:西安电子科技大学出版社 本书系统介绍MATLAB遗传算法和直接搜索工具箱的功能特点.编程原理及使用方法.全书共分为9章.第一章至第四章介绍遗传算法的基础知识,包括遗传算法的基本原理,编码.选择 ...查看


  • 约束优化问题的遗传算法求解
  • 第33卷 第1期2005年1月西北农林科技大学学报(自然科学版) Jo ur. of N or thw est Sci-T ech U niv. o f A gr i. and Fo r. (N at. Sci. Ed. ) V ol. 3 ...查看


  • matlab学习入门及资料
  • matlab学习入门及资料 2009-09-06 21:23 matlab博大精深,说到底我也只不过是个初学者,只是学的时间比新手长了一点,现在写几句给新手,希望能给你们有点帮助 1 学Matlab并不难,难的是学会怎么用. 2不要试图掌握 ...查看


  • 遗传算法原理及在结构优化设计中的应用
  • 第24卷第3期2004年6月 辽宁工学院学报 JOURNALOFLIAONINGINSTITUTEOFTECHNOLOGY Vol.24 No.3Jun. 2004 遗传算法原理及在结构优化设计中的应用 李金鹏1,韩英仕1,李基波2 (1. ...查看


  • 遗传算法_matlab
  • 4.2遗传算法MATLAB程序设计 4.2.1程序设计流程及参数选取 4.2.1.1遗传算法程序设计伪代码 BEGIN t = 0 ; %Generations NO. 初始化P(t) ; %Initial Population or Ch ...查看


  • 二元函数极值充分条件的简单证法
  • 2008 NO.24 教育教学方法 China Education Innovation Herald 中国科教创新导刊 二元函数极值充分条件 关键词:二元函数 极值 充分条件 简单证法 中图分类号:G632 文献标识码:A 文章编号:16 ...查看


  • 基于遗传算法的松质骨支架孔隙空间分布控制
  • 第2*卷 第*期 201*年*月 计算机辅助设计与图形学学报 Journal of Computer-Aided Design & Computer Graphics Vol. 2* No.* ***. 201* 基于遗传算法的松质 ...查看


  • 基于多目标遗传算法的复合式盾构刀盘刀具布置优化
  • ? 基于多目标遗传算法的复合式盾构刀盘刀具布置优化 基于多目标遗传算法的复合式盾构刀盘刀具布置优化 郭京波, 王旭东, 郑丽堃, 李 杰 (石家庄铁道大学机械工程学院, 河北 石家庄 050043) 摘要:为了提高复合式盾构刀盘掘进的稳定性 ...查看


  • 基于蚁群算法求解最大团问题
  • 第27卷第10期2010年10月 计算机应用与软件 ComputerApplicationsandSoftware V01.27No.10 Oct.2010 基于蚁群算法求解最大团问题 王会颖耿家礼 (安徽财贸职业学院计算机系安微合肥230 ...查看


热门内容