复旦大学出版社 ,高等数学上 ,第四版,教材习题答案
第四章,一元函数积分学,
习题 第四小题,利用换元法,求下列不定积分。案
东风冷雪
有些换元我省略了,因为多此一举,自己体会。
本答案,只是为了赚点经验,如果喜欢,给好评,
那么我将继续提供。
(4)
(8)
下面一题是第九题,序号标错了
⎰
, x =a sin t a cos t *a cos t
=⎰=⎰a -x a -a sin t (1-sin 2t ) dt =a ⎰=a ⎰(1+sin t ) dt =a (t -cos t )
1-sin t a a
=a arcsin -=a arcsin -
x x
+c
dx x
,e ⎰e x +e -x =t e x dx de x
=⎰2x =⎰2x =
e +1e +1
24题
⎰
dt x
=arctan t =arctan e +c 2
t +1
12
=⎰lnxdlnx =ln x +c
25题
lnx ⎰
23
sin x cos xdx ,sinx =t ⎰
==
131411
t -t =sin 3x -sin 4x +c 22sin x(1-sin x)dsinx =⎰22
t (1-t )dt ⎰
sec 2t dt cos 3t 1-sin 2t =⎰=⎰=⎰=⎰-3sin t 111
=⎰(sin-4t -sin -2t)dt =-+sin -1t =-*+
3
+x 2) +3x (2x2-==+c ⎰,x =sint
1
=⎰=⎰(1-)dt =t -ln |t +1|=-ln |+1|+c ++
28题
⎰=t
⎰,x =3sec t 3tant *3sec t tant =⎰=⎰3tan 2tdt =3⎰(sec2t -1)dt
3=3tant -3t =-3arccos +c
29题
⎰
, x =tant
sec 2t =⎰=
30题
⎰cos tdt =sint =
+c
1cost -sint +sint +cost 1d(sint+cost) 1=⎰=⎰=⎰+t +++1111=ln |sint +cost |+t =ln |x +|+arcsinx +c ,x =sint
技术不高,只能做成这样,留下图片链接,比这清楚。
复旦大学出版社 ,高等数学上 ,第四版,教材习题答案
第四章,一元函数积分学,
习题 第四小题,利用换元法,求下列不定积分。案
东风冷雪
有些换元我省略了,因为多此一举,自己体会。
本答案,只是为了赚点经验,如果喜欢,给好评,
那么我将继续提供。
(4)
(8)
下面一题是第九题,序号标错了
⎰
, x =a sin t a cos t *a cos t
=⎰=⎰a -x a -a sin t (1-sin 2t ) dt =a ⎰=a ⎰(1+sin t ) dt =a (t -cos t )
1-sin t a a
=a arcsin -=a arcsin -
x x
+c
dx x
,e ⎰e x +e -x =t e x dx de x
=⎰2x =⎰2x =
e +1e +1
24题
⎰
dt x
=arctan t =arctan e +c 2
t +1
12
=⎰lnxdlnx =ln x +c
25题
lnx ⎰
23
sin x cos xdx ,sinx =t ⎰
==
131411
t -t =sin 3x -sin 4x +c 22sin x(1-sin x)dsinx =⎰22
t (1-t )dt ⎰
sec 2t dt cos 3t 1-sin 2t =⎰=⎰=⎰=⎰-3sin t 111
=⎰(sin-4t -sin -2t)dt =-+sin -1t =-*+
3
+x 2) +3x (2x2-==+c ⎰,x =sint
1
=⎰=⎰(1-)dt =t -ln |t +1|=-ln |+1|+c ++
28题
⎰=t
⎰,x =3sec t 3tant *3sec t tant =⎰=⎰3tan 2tdt =3⎰(sec2t -1)dt
3=3tant -3t =-3arccos +c
29题
⎰
, x =tant
sec 2t =⎰=
30题
⎰cos tdt =sint =
+c
1cost -sint +sint +cost 1d(sint+cost) 1=⎰=⎰=⎰+t +++1111=ln |sint +cost |+t =ln |x +|+arcsinx +c ,x =sint
技术不高,只能做成这样,留下图片链接,比这清楚。