"射电望远镜"的工作原理

1997年朱迪·福斯特主演的科幻片《接触未来》给我们讲述了人类对外星生命的探索:聪慧的伊莉除了喜欢问一些有关星星的问题外,还不时地使用短波收音机,希望能听到来自宇宙的声音。她的父亲过世后,无助的伊莉开始全心投入科学,通过巨大的射电望远镜群,致力于接收外星讯号的研究。某天清晨,伊莉如往常般一人在沙漠中的基地聆听天外之音,一个强大而又清晰的讯息从天而降,她发现了外星生命……这一切已不是科幻,美国行星学会近日发表一项公告,呼吁因特网上的天文爱好者参与寻找地球外文明的科学实验。这个项目是美国加州大学伯克利分校(UC Berkeley,UCB)有关“搜寻地球以外智能”(Search Extraterres-trial Intelligent简称 SETI)四个研究项目中的一项,其全称是“在家中搜寻地球以外的智能”,缩写为SETI@home。SETI@home简单地说是一项旨在利用连入因特网的成千上万台计算机的闲置能力“搜寻外星文明(SETI)”的巨大试验。 每一个参加者可以用下载并运行SETI@home屏幕保护程序的方式以自己的计算机参与检测外星文明信号的活动。

SETI@home 的工作原理

SETI@home 的工作由数据收集——>数据传送——>数据分析及回收——>数据后处理——>信息发布组成的。

1.数据收集是通过波多黎哥国家天文和电离层中心建立在群山森林环抱中的、直径为305米(其面积相当于26个足球场大小)的巨型Arecibo射电望远镜进行的。Arecibo将每天观测到的大约35 GB的数据记录在海量数字磁带上,并通过卫星传回UCB。整个 SETI@home项目的太空观测约需要1100盒数字磁带以记录39 TB(terabytes,1TB=1000GB)的数据。

2.SETI@home把从Arecibo收集到的数据,经过计算分析之后根据客户的需要和电脑的情况,划分为小的工作单元即数据块。工作单元通过因特网传送到全球成千上万个客户端以进行数据处理。

3.SETI@home传送数据结束后将自动切断连接,客户电脑便在 SETI@home屏幕保护运行时开始对数据进行处理;SETI@home应用程序对工作单元中的数据完成快速傅立叶变换的计算,其中大约要进行1750亿次运算,当一个工作单元分析完毕,闪烁的小图标便会提示客户回送并下载新的数据。

4.所有客户端所获得的有价值的信号都将送回到SETI@home。绝大多数客户端软件所找到的信号都是来自于地球的无线电频率干扰(RFI),SETI@home使用一大批算法和已知电信频率干扰资源的大数据库(SERENDIP IV 数据库)的数据来对比,从而排除所有可能的RFI。 对于极少数(可能只有

5.一旦信号被确认,SETI@home 将按照国际天文学联合会(International Astronomical Union,IAU)的电报发表公告,这是天文学界取得重大发现时公之于众的一种标准方式。而用其屏幕保护程序找到该信号的人(人们),并将和SETI@home队伍中的其他成员一起被赋予“合作发现者”的称号。

Join Now!马上参加SETI@home!

你要参与这一项目,首先可到 SETI@home设在UCB的英文主页:http://setiathome.ssl.berkeley.edu下载SETI@home 软件包,其Windows 版大小为704 KB,运行环境要求至少32MB内存和800×600显示分辨

率,在联网时运行该软件包即可按照安装向导进行安装,其间需提交简单个人信息,以便在SETI@home服务器建立一个账户(主要用于系统辨识和进行统计,若未联网时安装,也可以后在SETI@home应用程序窗口的Setting菜单下再提交),设定选项(可取默认值),安装完毕将在任务栏右端出现一个天文望远镜绿色小图标。

SETI@home软件包含两个部分:“应用程序”和“屏幕保护”。应用程序完成通过因特网下载数据块、数据处理、返回结果、取回其他数据块等所有工作。可双击绿色小图标(单击鼠标右键选maximize项)打开应用程序窗口。SETI@home屏幕保护程序启动时,将以彩色画面显示数据处理的过程,通常情况下,应用程序只在屏幕保护程序运行时处理数据。但你也可让应用程序不停地处理数据(这时需要占用15MB以上内存和较大的CPU资源,因而要求机器要有更大的内存和更高的主频)。

SETI@home屏幕保护程序是由五个区域组成的画面。上方横条是SETI@home的网页页标和网址;往下左边是数据分析区(Data analysis),在程序分析你的数据块时,随着电脑工作而不断更新包括快速傅立叶变换、多普勒漂移率、频率分辨率、最强信号强度、CPU 使用时间和总体完成进度等动态实时信息;右边是数据信息和用户信息区,前者显示当前所处理数据在太空中的方位( 用天球中赤经度RA和赤纬度DEC表示)、数据采集时间和来源(射电天文台名称)以及数据的基频;后者则显示用户名,当前已完成的数据单元数及电脑用于分析数据的总时数,这两个区域基本是不变动的;最下方的大区域是用于说明不同频率下,快速傅立叶变换计算结果的频率-时间-强度三维图形实时表示。

SETI@home的正式运行使普通的电脑用户也有可能参与重要科学实验——一次前所未有过的、通过因特网实施的、最大的并行计算技术应用的实践;并且给每一位参与者提供了使其电脑成为侦测银河系中其他文明过程中,机会微小但却可能具有开创意义的工具。根据SETI@home 5月21日的统计,已有256475人正在参与这一项目,其中使用家中电脑的用户为173068人,总计所用的CPU时间约为621年。

通过SETI@home了解并行计算

实际上,SETI@home是一次借助于因特网开展的大范围并行计算技术应用,那么什么是因特网上的并行或分布式计算呢?并行计算或分布式计算技术,一般是指用由成百上千个微处理器组成的大规模并行计算机系统或者用分布式计算机网络系统进行大任务数据处理的技术。并行和分布计算技术自60年代中期及70年代后期分别出现以来,一方面其并行处理方式已从阵列机(SIMD)、向量机及向量并行机、共享存储的对称多处理器系统(SMP)、以及近年来较热门的分布存储的大规模并行处理系统(MPP)逐步转向可伸缩并行机(Scalable Parallel Computers)和各种类型的计算机机群系统(Clusters)。另一方面,在用通信线路连接的多计算机组成的分布式计算机网络系统中,并行和分布计算的应用也在日益增加。因特网属于分布式计算机网络系统之一,它是集计算机、计算机网络、数据库、多媒体以及分布计算模式于一体的一个网络综合体。因特网打破了时域和地域的局限,可以较低的费用充分调用散布于全球任何一个角落的可提供的CPU和内存资源。

在因特网上进行并行或分布式计算,一般是将任务的数据由安装了大型数据库的服务器使用根据特定算法编制的软件进行分割,然后分发到参与任务的多个客户机,客户机用户应用数据处理和分析软件去进行局部的数据处理;每一个客户机完成整个任务的一部分或多个任务中的相关部分,(这里客户机用户可以不用知道数据处理或分析的原理和过程),任务完成后回送到服务器,再由服务器进行归并和进行更进一步的计算和综合分析以探求所需要的结果。

目前,在因特网上使用并行或分布式计算技术已经取得了明显的成果,其中较为成功和活跃的有:“梅森素

数大寻找”(GIMPS)、“破解密码密锁”(RC5-xx),“最优Golomb尺问题”(OGR-xx)等。此次刚刚正式启动的SETI@home项目,则是继前述多个项目之后,又一次充分发挥因特网在并行或分布计算方面所具有的巨大潜力和无可比拟的作用,以克服对天文数字海量计算在人力、物力和时间上的困难的又一次壮举。

1997年朱迪·福斯特主演的科幻片《接触未来》给我们讲述了人类对外星生命的探索:聪慧的伊莉除了喜欢问一些有关星星的问题外,还不时地使用短波收音机,希望能听到来自宇宙的声音。她的父亲过世后,无助的伊莉开始全心投入科学,通过巨大的射电望远镜群,致力于接收外星讯号的研究。某天清晨,伊莉如往常般一人在沙漠中的基地聆听天外之音,一个强大而又清晰的讯息从天而降,她发现了外星生命……这一切已不是科幻,美国行星学会近日发表一项公告,呼吁因特网上的天文爱好者参与寻找地球外文明的科学实验。这个项目是美国加州大学伯克利分校(UC Berkeley,UCB)有关“搜寻地球以外智能”(Search Extraterres-trial Intelligent简称 SETI)四个研究项目中的一项,其全称是“在家中搜寻地球以外的智能”,缩写为SETI@home。SETI@home简单地说是一项旨在利用连入因特网的成千上万台计算机的闲置能力“搜寻外星文明(SETI)”的巨大试验。 每一个参加者可以用下载并运行SETI@home屏幕保护程序的方式以自己的计算机参与检测外星文明信号的活动。

SETI@home 的工作原理

SETI@home 的工作由数据收集——>数据传送——>数据分析及回收——>数据后处理——>信息发布组成的。

1.数据收集是通过波多黎哥国家天文和电离层中心建立在群山森林环抱中的、直径为305米(其面积相当于26个足球场大小)的巨型Arecibo射电望远镜进行的。Arecibo将每天观测到的大约35 GB的数据记录在海量数字磁带上,并通过卫星传回UCB。整个 SETI@home项目的太空观测约需要1100盒数字磁带以记录39 TB(terabytes,1TB=1000GB)的数据。

2.SETI@home把从Arecibo收集到的数据,经过计算分析之后根据客户的需要和电脑的情况,划分为小的工作单元即数据块。工作单元通过因特网传送到全球成千上万个客户端以进行数据处理。

3.SETI@home传送数据结束后将自动切断连接,客户电脑便在 SETI@home屏幕保护运行时开始对数据进行处理;SETI@home应用程序对工作单元中的数据完成快速傅立叶变换的计算,其中大约要进行1750亿次运算,当一个工作单元分析完毕,闪烁的小图标便会提示客户回送并下载新的数据。

4.所有客户端所获得的有价值的信号都将送回到SETI@home。绝大多数客户端软件所找到的信号都是来自于地球的无线电频率干扰(RFI),SETI@home使用一大批算法和已知电信频率干扰资源的大数据库(SERENDIP IV 数据库)的数据来对比,从而排除所有可能的RFI。 对于极少数(可能只有

5.一旦信号被确认,SETI@home 将按照国际天文学联合会(International Astronomical Union,IAU)的电报发表公告,这是天文学界取得重大发现时公之于众的一种标准方式。而用其屏幕保护程序找到该信号的人(人们),并将和SETI@home队伍中的其他成员一起被赋予“合作发现者”的称号。

Join Now!马上参加SETI@home!

你要参与这一项目,首先可到 SETI@home设在UCB的英文主页:http://setiathome.ssl.berkeley.edu下载SETI@home 软件包,其Windows 版大小为704 KB,运行环境要求至少32MB内存和800×600显示分辨

率,在联网时运行该软件包即可按照安装向导进行安装,其间需提交简单个人信息,以便在SETI@home服务器建立一个账户(主要用于系统辨识和进行统计,若未联网时安装,也可以后在SETI@home应用程序窗口的Setting菜单下再提交),设定选项(可取默认值),安装完毕将在任务栏右端出现一个天文望远镜绿色小图标。

SETI@home软件包含两个部分:“应用程序”和“屏幕保护”。应用程序完成通过因特网下载数据块、数据处理、返回结果、取回其他数据块等所有工作。可双击绿色小图标(单击鼠标右键选maximize项)打开应用程序窗口。SETI@home屏幕保护程序启动时,将以彩色画面显示数据处理的过程,通常情况下,应用程序只在屏幕保护程序运行时处理数据。但你也可让应用程序不停地处理数据(这时需要占用15MB以上内存和较大的CPU资源,因而要求机器要有更大的内存和更高的主频)。

SETI@home屏幕保护程序是由五个区域组成的画面。上方横条是SETI@home的网页页标和网址;往下左边是数据分析区(Data analysis),在程序分析你的数据块时,随着电脑工作而不断更新包括快速傅立叶变换、多普勒漂移率、频率分辨率、最强信号强度、CPU 使用时间和总体完成进度等动态实时信息;右边是数据信息和用户信息区,前者显示当前所处理数据在太空中的方位( 用天球中赤经度RA和赤纬度DEC表示)、数据采集时间和来源(射电天文台名称)以及数据的基频;后者则显示用户名,当前已完成的数据单元数及电脑用于分析数据的总时数,这两个区域基本是不变动的;最下方的大区域是用于说明不同频率下,快速傅立叶变换计算结果的频率-时间-强度三维图形实时表示。

SETI@home的正式运行使普通的电脑用户也有可能参与重要科学实验——一次前所未有过的、通过因特网实施的、最大的并行计算技术应用的实践;并且给每一位参与者提供了使其电脑成为侦测银河系中其他文明过程中,机会微小但却可能具有开创意义的工具。根据SETI@home 5月21日的统计,已有256475人正在参与这一项目,其中使用家中电脑的用户为173068人,总计所用的CPU时间约为621年。

通过SETI@home了解并行计算

实际上,SETI@home是一次借助于因特网开展的大范围并行计算技术应用,那么什么是因特网上的并行或分布式计算呢?并行计算或分布式计算技术,一般是指用由成百上千个微处理器组成的大规模并行计算机系统或者用分布式计算机网络系统进行大任务数据处理的技术。并行和分布计算技术自60年代中期及70年代后期分别出现以来,一方面其并行处理方式已从阵列机(SIMD)、向量机及向量并行机、共享存储的对称多处理器系统(SMP)、以及近年来较热门的分布存储的大规模并行处理系统(MPP)逐步转向可伸缩并行机(Scalable Parallel Computers)和各种类型的计算机机群系统(Clusters)。另一方面,在用通信线路连接的多计算机组成的分布式计算机网络系统中,并行和分布计算的应用也在日益增加。因特网属于分布式计算机网络系统之一,它是集计算机、计算机网络、数据库、多媒体以及分布计算模式于一体的一个网络综合体。因特网打破了时域和地域的局限,可以较低的费用充分调用散布于全球任何一个角落的可提供的CPU和内存资源。

在因特网上进行并行或分布式计算,一般是将任务的数据由安装了大型数据库的服务器使用根据特定算法编制的软件进行分割,然后分发到参与任务的多个客户机,客户机用户应用数据处理和分析软件去进行局部的数据处理;每一个客户机完成整个任务的一部分或多个任务中的相关部分,(这里客户机用户可以不用知道数据处理或分析的原理和过程),任务完成后回送到服务器,再由服务器进行归并和进行更进一步的计算和综合分析以探求所需要的结果。

目前,在因特网上使用并行或分布式计算技术已经取得了明显的成果,其中较为成功和活跃的有:“梅森素

数大寻找”(GIMPS)、“破解密码密锁”(RC5-xx),“最优Golomb尺问题”(OGR-xx)等。此次刚刚正式启动的SETI@home项目,则是继前述多个项目之后,又一次充分发挥因特网在并行或分布计算方面所具有的巨大潜力和无可比拟的作用,以克服对天文数字海量计算在人力、物力和时间上的困难的又一次壮举。


相关文章

  • 几何光学实验预习要求
  • 实验51<几何光学设计实验>预习要求: (一)通过认真阅读讲义及查阅相关资料,达到下列目标: 了解透镜的成像规律及凸透镜焦距的几种测量方法,掌握共轭法测凸透镜焦距的原理: 掌握显微镜的工作原理,及显微镜放大率的影响因素: 掌握开 ...查看


  • 分光计的调节与使用
  • 实验简介 分光计是精确测定光线偏转角的仪器,可以用于测量材料的折射率.光源的光谱,在光谱学.材料特性.偏振光的研究.棱镜特性.光栅特性的研究中都有广泛的应用.  实验原理 分光计主要由三部分:望远镜,平行光管和主体(底座.度盘和载物台)组 ...查看


  • 光学基础实验实验报告
  • 基础光学实验 一.实验仪器 从基础光学轨道系统,红光激光器及光圈支架,光传感器与转动传感器,科学工作室500 或750接口,datastudio软件系统 二.实验简介 利用传感器扫描激光衍射斑点,可标度各个衍射单缝之间光强与距离变化的具体规 ...查看


  • 四年级下自然常识1~4单元
  • 第一单元 望远镜里的天空 单元概述 本单元的设计思路是:依据<上海市小学自然课程标准>的课程内容,即要求学生"了解光通过凸透镜发生会聚.通过凹透镜则会发散"."了解常用的光学仪器(如望远镜)的主要结 ...查看


  • 光学课程设计望远镜系统结构设计
  • 光学课程设计 --望远镜系统结构设计 姓名: 学号: 班级: 指导老师: 一.设计题目:光学课程设计 二.设计目的: 运用应用光学知识,了解望远镜工作原理的基础上,完成望远镜的外形尺寸.物镜组.目镜组及转像系统的简易或原理设计.了解光学设计 ...查看


  • 4.7神奇的眼睛沪科八年级物理教学设计
  • 第七节 神奇的眼睛(1课时) 教学目标 1.知识与技能:了解放大镜.显微镜.望远镜.照相机和投影仪等光学仪器的用途. 2.过程与方法:经历放大镜.显微镜.望远镜.观察物体的过程能够,体验他们的作用. 3.情感.态度与价值观:通过对光学仪器的 ...查看


  • 显微镜和望远镜教案
  • 天津市蓟县燕山中学教案 ____八___年级____物理__学科 课题 授课时间 第 课时 教师 年_____月_____日 显微镜和望远镜 知识与技能: 了解显微镜和望远镜的基本结构. 过程与方法: 教 学 目 的 1.通过观察引导学生发 ...查看


  • 探究天文望远镜原理与制作
  • 探究天文望远镜原理与制作 深圳中学 高二(4)班 研究性学习论文报告 组长:刘锦泰 组员:吴学阳 王腾翔 吴耀宏 宋昊 刘洪元 余伟航 内容摘要:小组成员通过收集学习探讨研究总结,深入了 解天文望远镜的内外结构及光学成像原理,并利用学习得到 ...查看


  • 自组望远镜
  • 望远镜的设计与组装 一.实验目的 望远镜的原理及特性,并在此基础上通过自组望远镜来提高学生的动手能力以进一步加深对望远系统的理解. 二.实验装置 实验工作平台.望远物镜(焦距大约为 300mm ).目镜(焦距大约为 300mm ).平行光管 ...查看


热门内容