脂肪酸的β氧化

脂肪酸的β-氧化 肝和肌肉是进行脂肪酸氧化最活跃的组织,其最主要的氧化形式是β-氧化。此过程可分为活化,转移,β-氧化共三个阶段。 1活化 脂肪酸活化和葡萄糖一样,脂肪酸参加代谢前也先要活化。其活化形式是硫酯——脂肪酰CoA,

催化脂肪酸活化的酶是脂酰CoA合成酶(acyl CoA synthetase)。活化后生成的脂酰CoA极性增强,易溶于水;分子中有高能键、性质活泼;是酶的特异底物,与酶的亲和力大,因此更容易参加反应。

( 脂酰CoA合成酶:又称硫激酶,分布在胞浆中、线粒体膜和内质网膜上。胞浆中的硫激酶催化中短链脂肪酸活化;内质网膜上的酶活化长链脂肪酸,生成脂酰CoA,然后进入内质网用于甘油三酯合成;而线粒体膜上的酶活化的长链脂酰CoA,进入线粒体进入β-氧化 )

2脂酰CoA进入线粒体 催化脂肪酸β-氧化的酶系在线粒体基质中,但活化生成的长链脂酰CoA不能自由通过线粒体内膜,要进入线粒体基质就需要载体( 肉毒碱(carnitine),即3-羟-4-三甲氨基丁酸 ) 转运。

脂酰CoA转运过程:长链脂肪酰CoA和肉毒碱反应,脂肪酰基与肉毒碱的3-羟基通过酯键相连接,生成辅酶A和脂酰肉毒碱。催化此反应的酶为肉毒碱脂酰转移酶(carnitine acyl transferase)。线粒体内膜的内外两侧均有此酶,系同工酶,分别称为肉毒碱脂酰转移酶I和肉毒碱脂酰转移酶Ⅱ。酶Ⅰ使胞浆的脂酰CoA转化为辅酶A和脂肪酰肉毒碱,后者进入线粒体内膜。位于线粒体内膜内侧的酶Ⅱ又使脂肪酰肉毒碱转化成肉毒碱和脂酰CoA,肉毒碱重新发挥其载体功能,脂酰CoA最终由线粒体外进入线粒体基质,成为脂肪酸β-氧化酶系的底物。

长链脂酰CoA进入线粒体的速度受到肉毒碱脂酰转移酶Ⅰ和酶Ⅱ的调节,酶Ⅰ受丙二酰CoA抑制,酶Ⅱ受胰岛素抑制。丙二酰CoA是合成脂肪酸的原料,胰岛素通过诱导乙酰CoA羧化酶的合成使丙二酰CoA浓度增加,进而抑制酶Ⅰ。可以看出胰岛素对肉毒碱脂酰转移酶Ⅰ和酶Ⅱ有间接或直接抑制作用。饥饿或禁食时胰岛素分泌减少,肉毒碱脂酰转移酶Ⅰ和酶Ⅱ活性增高,转移的长链脂肪酸进入线粒体氧化供能。

3 脂肪酸反应过程(脂酰CoA的β-氧化) 脂酰CoA在线粒体基质中进入β氧化要经过四步反应,即脱氢、加水、再脱氢和硫解,生成一分子乙酰CoA和一个少两个碳的新的脂酰CoA。

第一步脱氢(dehydrogenation)反应:由脂酰CoA脱氢酶活化,辅基为FAD,脂酰CoA在α和β碳原子上各脱去一个氢原子生成具有反式双键的α,β-烯脂肪酰辅酶A。

第二步加水(hydration)反应:由烯酰CoA水合酶催化,生成具有L-构型的β-羟脂酰CoA。

第三步脱氢反应:在β-羟脂肪酰CoA脱饴酶(辅酶为NAD+)催化下,β-羟脂肪酰CoA脱氢生成β酮脂酰CoA。

第四步硫解(thiolysis)反应:由β-酮硫解酶催化,β-酮酯酰CoA在α和β碳原子之间断链,加上一分子辅酶A生成乙酰CoA和一个少两个碳原子的脂酰CoA。

上述四步反应与TCA循环中由琥珀酸经延胡索酸、苹果酸生成草酰乙酸的过程相似,只是β-氧化的第四步反应是硫解,而草酰乙酸的下一步反应是与乙酰CoA缩合生成柠檬酸。长链脂酰CoA经上面一次循环,碳链减少两个碳原子,生成一分子乙酰CoA,多次重复上面的循环,就会逐步生成乙酰CoA。

从上述可以看出脂肪酸的β-氧化过程具有以下特点:

首先要将脂肪酸活化生成脂酰CoA,这是一个耗能过程。中、短链脂肪酸不需载体可直接进入线粒体,而长链脂酰CoA需要肉毒碱转运。

β-氧化反应在线粒体内进行,因此没有线粒体的红细胞不能氧化脂肪酸供能。β-氧化过程中有FADH2和NADH+H+生成,这些氢要经呼吸链传递给氧生成水,需要氧参加,乙酰CoA的氧化也需要氧。因此,β-氧化是绝对需氧的过程。

脂肪酸生理意义

1 脂肪酸β-氧化是体内脂肪酸分解的主要途径,脂肪酸氧化可以供应机体所需要的大量能量,以十六个碳原子的饱和脂肪酸软脂酸为例,其β-氧化的总反应为:

CH3(CH2)14COSCoA+7NAD++7FAD+HSCoA+7H2O——→8CH3COSCoA+7FADH2+7NADH+7H+??

7分子FADH2提供7×2=14分子ATP,7分子NADH+H+提供7×3=21分子ATP,8分子乙酰CoA完全氧化提供8×12=96个分子ATP,因此一克分子软脂酸完全氧化生成CO2和H2O,共提供131克分子ATP。软脂酸的活化过程消耗2克分子ATP,所以一克分子软脂酸完全氧化可净生成129克分子ATP。脂肪酸氧化时释放出来的能量约有40%为机体利用合成高能化合物,其余60%以热的形式释出,热效率为40%,说明机体能很有效地利用脂肪酸氧化所提供的能量。

2 脂肪酸β-氧化也是脂肪酸的改造过程,机体所需要的脂肪酸链的长短不同,通过β-氧化可将长链脂肪酸改造成长度适宜的脂肪酸,供机体代谢所需。脂肪酸β-氧化过程中生成的乙酰CoA是一种十分重要的中间化合物,乙酰CoA除能进入三羧酸循环氧化供能外,还是许多重要化合物合成的原料,如酮体、胆固醇和类固醇化合物。

脂肪酸的β-氧化 肝和肌肉是进行脂肪酸氧化最活跃的组织,其最主要的氧化形式是β-氧化。此过程可分为活化,转移,β-氧化共三个阶段。 1活化 脂肪酸活化和葡萄糖一样,脂肪酸参加代谢前也先要活化。其活化形式是硫酯——脂肪酰CoA,

催化脂肪酸活化的酶是脂酰CoA合成酶(acyl CoA synthetase)。活化后生成的脂酰CoA极性增强,易溶于水;分子中有高能键、性质活泼;是酶的特异底物,与酶的亲和力大,因此更容易参加反应。

( 脂酰CoA合成酶:又称硫激酶,分布在胞浆中、线粒体膜和内质网膜上。胞浆中的硫激酶催化中短链脂肪酸活化;内质网膜上的酶活化长链脂肪酸,生成脂酰CoA,然后进入内质网用于甘油三酯合成;而线粒体膜上的酶活化的长链脂酰CoA,进入线粒体进入β-氧化 )

2脂酰CoA进入线粒体 催化脂肪酸β-氧化的酶系在线粒体基质中,但活化生成的长链脂酰CoA不能自由通过线粒体内膜,要进入线粒体基质就需要载体( 肉毒碱(carnitine),即3-羟-4-三甲氨基丁酸 ) 转运。

脂酰CoA转运过程:长链脂肪酰CoA和肉毒碱反应,脂肪酰基与肉毒碱的3-羟基通过酯键相连接,生成辅酶A和脂酰肉毒碱。催化此反应的酶为肉毒碱脂酰转移酶(carnitine acyl transferase)。线粒体内膜的内外两侧均有此酶,系同工酶,分别称为肉毒碱脂酰转移酶I和肉毒碱脂酰转移酶Ⅱ。酶Ⅰ使胞浆的脂酰CoA转化为辅酶A和脂肪酰肉毒碱,后者进入线粒体内膜。位于线粒体内膜内侧的酶Ⅱ又使脂肪酰肉毒碱转化成肉毒碱和脂酰CoA,肉毒碱重新发挥其载体功能,脂酰CoA最终由线粒体外进入线粒体基质,成为脂肪酸β-氧化酶系的底物。

长链脂酰CoA进入线粒体的速度受到肉毒碱脂酰转移酶Ⅰ和酶Ⅱ的调节,酶Ⅰ受丙二酰CoA抑制,酶Ⅱ受胰岛素抑制。丙二酰CoA是合成脂肪酸的原料,胰岛素通过诱导乙酰CoA羧化酶的合成使丙二酰CoA浓度增加,进而抑制酶Ⅰ。可以看出胰岛素对肉毒碱脂酰转移酶Ⅰ和酶Ⅱ有间接或直接抑制作用。饥饿或禁食时胰岛素分泌减少,肉毒碱脂酰转移酶Ⅰ和酶Ⅱ活性增高,转移的长链脂肪酸进入线粒体氧化供能。

3 脂肪酸反应过程(脂酰CoA的β-氧化) 脂酰CoA在线粒体基质中进入β氧化要经过四步反应,即脱氢、加水、再脱氢和硫解,生成一分子乙酰CoA和一个少两个碳的新的脂酰CoA。

第一步脱氢(dehydrogenation)反应:由脂酰CoA脱氢酶活化,辅基为FAD,脂酰CoA在α和β碳原子上各脱去一个氢原子生成具有反式双键的α,β-烯脂肪酰辅酶A。

第二步加水(hydration)反应:由烯酰CoA水合酶催化,生成具有L-构型的β-羟脂酰CoA。

第三步脱氢反应:在β-羟脂肪酰CoA脱饴酶(辅酶为NAD+)催化下,β-羟脂肪酰CoA脱氢生成β酮脂酰CoA。

第四步硫解(thiolysis)反应:由β-酮硫解酶催化,β-酮酯酰CoA在α和β碳原子之间断链,加上一分子辅酶A生成乙酰CoA和一个少两个碳原子的脂酰CoA。

上述四步反应与TCA循环中由琥珀酸经延胡索酸、苹果酸生成草酰乙酸的过程相似,只是β-氧化的第四步反应是硫解,而草酰乙酸的下一步反应是与乙酰CoA缩合生成柠檬酸。长链脂酰CoA经上面一次循环,碳链减少两个碳原子,生成一分子乙酰CoA,多次重复上面的循环,就会逐步生成乙酰CoA。

从上述可以看出脂肪酸的β-氧化过程具有以下特点:

首先要将脂肪酸活化生成脂酰CoA,这是一个耗能过程。中、短链脂肪酸不需载体可直接进入线粒体,而长链脂酰CoA需要肉毒碱转运。

β-氧化反应在线粒体内进行,因此没有线粒体的红细胞不能氧化脂肪酸供能。β-氧化过程中有FADH2和NADH+H+生成,这些氢要经呼吸链传递给氧生成水,需要氧参加,乙酰CoA的氧化也需要氧。因此,β-氧化是绝对需氧的过程。

脂肪酸生理意义

1 脂肪酸β-氧化是体内脂肪酸分解的主要途径,脂肪酸氧化可以供应机体所需要的大量能量,以十六个碳原子的饱和脂肪酸软脂酸为例,其β-氧化的总反应为:

CH3(CH2)14COSCoA+7NAD++7FAD+HSCoA+7H2O——→8CH3COSCoA+7FADH2+7NADH+7H+??

7分子FADH2提供7×2=14分子ATP,7分子NADH+H+提供7×3=21分子ATP,8分子乙酰CoA完全氧化提供8×12=96个分子ATP,因此一克分子软脂酸完全氧化生成CO2和H2O,共提供131克分子ATP。软脂酸的活化过程消耗2克分子ATP,所以一克分子软脂酸完全氧化可净生成129克分子ATP。脂肪酸氧化时释放出来的能量约有40%为机体利用合成高能化合物,其余60%以热的形式释出,热效率为40%,说明机体能很有效地利用脂肪酸氧化所提供的能量。

2 脂肪酸β-氧化也是脂肪酸的改造过程,机体所需要的脂肪酸链的长短不同,通过β-氧化可将长链脂肪酸改造成长度适宜的脂肪酸,供机体代谢所需。脂肪酸β-氧化过程中生成的乙酰CoA是一种十分重要的中间化合物,乙酰CoA除能进入三羧酸循环氧化供能外,还是许多重要化合物合成的原料,如酮体、胆固醇和类固醇化合物。


相关文章

  • 油脂的氧化机理及天然抗氧化物的简介
  • ※专题论述 食品科学 2004,V ol.25.No. 增刊 241 油脂的氧化机理及天然 抗氧化物的简介 112 穆同娜,张 惠,景全荣 (中国农业大学食品科学与营养工程学院,北京 100083) (中国农业机械化科学研究院,北京 100 ...查看


  • 彻底消除花生奶等食品饮料的油脂氧化
  • 彻底消除花生奶等食品饮料的油脂氧化(哈喇味) 王健[1**********],(010)69409663,E-mail: [email protected] 植物蛋白饮料是指以富含蛋白质的植物果仁.果肉或种子为原料经加工.调配再经杀菌或无 ...查看


  • 油脂氧化相关资料
  • 油是不饱和高级脂肪酸甘油酯,脂肪是饱和高级脂肪酸甘油酯,都是高级脂肪酸甘油酯,是一种有机物.植物油在常温常压下一般为液态,称为油,而动物脂肪在常温常压下为固态,称为脂,二者合称为油脂.油脂均为混合物,无固定的熔沸点.油脂不但是人类的主要营养 ...查看


  • 油脂氧化及其氧化稳定性测定方法_邓鹏
  • 油脂氧化及其氧化稳定性测定方法 邓 鹏,程永强,薛文通 (中国农业大学食品科学与营养工程学院,北京 100083) 摘 要:论述了油脂氧化的机理和油脂氧化稳定性的测定原理,按测定参数的不同对油脂氧化稳定性的常用测定方法进行了分类和介绍,旨在 ...查看


  • 脂肪乳剂与脂质过氧化
  • DOI :10. 16151/j . 1007-810x . 2003. 01. 023 ·60· 第10卷 第1期 2003年1月·讲 座· 肠外与肠内营养 Parenteral &Enteral Nutrition Vol . ...查看


  • 脂肪酸的分解代谢
  • 脂肪酸的分解代谢 填空题 1.一个碳原子数为n(n为偶数)的脂肪酸在β-氧化中需经 次β-氧化循环,生成 个乙酰 CoA,个FADH2和个 NADH+H+. 选择题 1. 下列哪项叙述符合脂肪酸的β氧化: A.仅在线粒体中进行 B.产生的N ...查看


  • 仔猪脂肪代谢特点及其影响因素
  • 仔猪脂肪代谢特点及其影响因素 (顾宪红) 仔猪存活的最关键时期是出生0~3d.新生仔猪糖原贮备很低,糖异生不足,故糖原很快被耗竭,引发低血糖症.除糖原能量供应有限外,新生仔猪体脂贮备也很低,约为体重1%~2%,且由于代谢功能不全,脂肪酸氧化 ...查看


  • 花生种子脂肪氧化酶同工酶鉴定研究
  • 山东农业科学 数粒仪http://www.agri50.cn/ 2007年 第6期 花生种子脂肪氧化酶同工酶鉴定研究 陈 静, 苗华荣, 石运庆, 宋丽花, 禹山林 1 1 1 2 1 (11山东省花生研究所, 山东青岛 266100; 2 ...查看


  • 甘油三酯的分解代谢-临床助理医师辅导
  • 甘油三酯的分解代谢-临床助理医师辅导 (一)甘油三酯的水解 脂肪动员:脂肪细胞中储存的甘油三酯经一系列脂肪酶催化,逐步水解释放出甘油和游离脂肪酸,运送到全身各组织利用,此过程称为脂肪动员. ◇部位:胞液. ◇关键酶:甘油三酯脂肪酶,又称为激 ...查看


热门内容