带有新型偏置电路的X波段低噪声放大器设计

带有新型偏置电路的X波段低噪声放大器设计

摘 要: 针对温度等因素会改变三极管的静态工作点进而影响放大器性能的问题,采用一种直流偏置反馈控制技术,设计了一个X波段的低噪声放大器。同时,采用等资用功率增益圆和等噪声系数圆相结合的方法,以加快LNA的设计过程。对成品的实际测试和调试表明,此放大器达到了预定的技术要求,性能良好,其工作频率范围为10.2 GHz~10.8 GHz,噪声系数小于2 dB,增益达到34.5 dB,S参数S11优于-10 dB。关键词: 温度;直流偏置反馈控制技术;低噪声放大器;噪声系数;增益

低噪声放大器(LNA)是现代雷达、射频通信、测试仪器、电子战系统中的重要部分。在接收系统中,它总是处于前端的位置,其主要作用是放大天线接收到的微弱信号,并以足够高的增益克服后续各级(如混频器)的噪声,制约着整个接收系统的性能。随着通信、雷达技术的发展,对微波LNA的要求越来越高,因此研制合适的宽频带、高增益、更低噪声系数的放大器,已经成为微波系统设计中的核心技术之一[1]。1 低噪声放大器的设计理论 LNA的性能指标主要是噪声系数、增益、工作频率、电压驻波比和带内平坦度等,其中噪声系数和增益对整机性能影响较大。要实现最小噪声系数传输,必须使负载阻抗与源阻抗相匹配,这就需要插入匹配网络。放大管存在最佳源阻抗Zopt,LNA的输入端应按Zopt进行匹配,此时放大器的噪声系数最小。为了获得较高的功率增益和较好的输出驻波比,输出端采用共轭匹配方式。如果增益不够,则需要采用多级放大器。 式中,Nf为放大器整机噪声系数,Nfn和Gn分别是第n级放大器的噪声系数和功率增益。由式(1)可知,在多级网络级联时,放大器的噪声系数主要由第一级决定。因此,要获得好的噪声性能,必须按最佳噪声匹配设计输入匹配电路。 低噪声放大器要有一定的增益,其大小要适中。太大会使后面的混频器由于输入太大而产生非线性失真;而为了抑制后面各级对系统噪声系数的影响,增益又不能太小[3]。 需要特别注意的是,微波放大器由于器件内部S12的作用会产生内部反馈,可能使放大器工作不稳定而导致放大器的自激,因此在做端口匹配前,先要判断放大器的稳定性。判断放大器绝对稳定的条件[4]为: 结合表1数据和式(2)可知,FHX13是绝对稳定的,而FHX35存在潜在不稳定性,因此需要注意后两级匹配电路的设计。2.4 匹配网络的设计 为了同时满足增益和噪声这两大主要指标,本文采用双向设计法,利用等资用功率增益圆和等噪声系数圆相结合的方法来实现既能满足噪声系数

要求,又能满足增益要求的低噪声放大器[5]。 首先在ADS中画出等资用功率增益圆和等噪声系数圆[6],取频率点为10.5 GHz,经过仿真后的结果。其中,细线是等增益圆,m1点是最大增益点;粗线是等噪声系数圆,m2点是最小噪声系数点。为了兼顾噪声系数和增益,选用m3点作为匹配设计点,图中显示了该点处呈现在放大器输入端的源反射系数ГS为0.692/139.959,利用Smith圆图对输入网络进行匹配设计。

2.5 直流偏置电路的设计 偏置电路至关重要,合理的偏置能让放大器工作在最佳状态下。由于单电源自给偏压偏置缺乏灵活性,且源极不能直接到地,影响增益和噪声系数,还容易产生自激,所以本文采用双电源设计直流偏置电路,。

为了使直流偏置电路与射频电路之间互不影响,在电源与晶体管之间加入了中心频率的四分之一波长微带线;为了实现更宽频率范围的良好滤波特性,采用了扇形开路块作为偏置滤波电路;为了减小直流偏置电路所引入的噪声,还在电源处添加了电容去耦。 此外,本设计的直流偏置电路的最大特点是采用了直流偏置反馈控制技术,可以避免因温度等因素的变化而对电路性能造成影响,提高了该电路的稳定性。,当温度变化导致Ids增大时,由于三极管发射极的电流很小,可忽略不计,从而导致电阻R4上分压增大,发射极电压变小,基极与发射极之间的电压变小,进而使得集电极电流变小,Vgs变小。根据微波放大管的特性曲线,当Vgs变小时会引起Ids变小,因而可以维持之前的静态工作点,保持电路的稳定工作。3 测试结果及分析 根据仿真结果得到的尺寸和结构,采用介电常数较为稳定的Rogers的RO4350B(介电常数为3.66,厚度为0.508 mm,铜箔厚度为0.035 mm,损耗角为0.003)作为微带电路的材料基片。 对实体电路进行测试时,需要加上放大器的盖板并涂上吸波材料,以降低腔体效应的影响。使用Agilent公司的E8363A矢量网络分析仪测试增益和输入回波损耗,测试结果。图4显示,在频率为10.5 GHz时的增益为34.54 dB,输入回波损耗优于-10 dB,并且在10.2 GHz~10.8 GHz的频带内,增益和输入回波损耗都达到了设计指标。

其中,ENR使用R&S公司的FSP-40频谱分析仪进行测试,测试结果。由图5可知,输出噪声功率谱密度在噪声源开启和关闭时的时差为12.07 dB。在频率为10.5 dB时,从ENR头读出的NF值为13.71 dB。根据式(4)得到噪声系数为1.92 dB(小于2 dB),因此满足设计的要求。

图6显示了在不同温度条件下对电路进行测试的情况:图6(a)显示在温度为80 ℃时测得的在10.2 GHz~10.8 GHz的频带内的增益(虚线所示)以及输入回波损耗(实

线所示);图6(b)显示在温度为120 ℃时测得的在10.2 GHz~10.8 GHz的频带内的增益(虚线所示)以及输入回波损耗(实线所示)。经过测试,在温度为80℃时,该LNA的噪声系数为1.93;在温度为120 ℃时,该LNA的噪声系数为1.93。通过上述对比发现,在温度发生变化时,所设计的低噪声放大器的性能没有明显变化,能够满足工程设计的需要。 本文利用等资用功率增益圆和等噪声系数圆相结合的方法,设计了一个工作在X波段、不受温度变化影响、高增益的低噪声放大器。该放大器具有调试简单、稳定可靠、成本低廉、体积小的特点,大小仅为43.6 mm×34 mm×15 mm,使得小型化模块系列产品更加完善,进一步拓宽了低噪声放大器的应用领域。

带有新型偏置电路的X波段低噪声放大器设计

摘 要: 针对温度等因素会改变三极管的静态工作点进而影响放大器性能的问题,采用一种直流偏置反馈控制技术,设计了一个X波段的低噪声放大器。同时,采用等资用功率增益圆和等噪声系数圆相结合的方法,以加快LNA的设计过程。对成品的实际测试和调试表明,此放大器达到了预定的技术要求,性能良好,其工作频率范围为10.2 GHz~10.8 GHz,噪声系数小于2 dB,增益达到34.5 dB,S参数S11优于-10 dB。关键词: 温度;直流偏置反馈控制技术;低噪声放大器;噪声系数;增益

低噪声放大器(LNA)是现代雷达、射频通信、测试仪器、电子战系统中的重要部分。在接收系统中,它总是处于前端的位置,其主要作用是放大天线接收到的微弱信号,并以足够高的增益克服后续各级(如混频器)的噪声,制约着整个接收系统的性能。随着通信、雷达技术的发展,对微波LNA的要求越来越高,因此研制合适的宽频带、高增益、更低噪声系数的放大器,已经成为微波系统设计中的核心技术之一[1]。1 低噪声放大器的设计理论 LNA的性能指标主要是噪声系数、增益、工作频率、电压驻波比和带内平坦度等,其中噪声系数和增益对整机性能影响较大。要实现最小噪声系数传输,必须使负载阻抗与源阻抗相匹配,这就需要插入匹配网络。放大管存在最佳源阻抗Zopt,LNA的输入端应按Zopt进行匹配,此时放大器的噪声系数最小。为了获得较高的功率增益和较好的输出驻波比,输出端采用共轭匹配方式。如果增益不够,则需要采用多级放大器。 式中,Nf为放大器整机噪声系数,Nfn和Gn分别是第n级放大器的噪声系数和功率增益。由式(1)可知,在多级网络级联时,放大器的噪声系数主要由第一级决定。因此,要获得好的噪声性能,必须按最佳噪声匹配设计输入匹配电路。 低噪声放大器要有一定的增益,其大小要适中。太大会使后面的混频器由于输入太大而产生非线性失真;而为了抑制后面各级对系统噪声系数的影响,增益又不能太小[3]。 需要特别注意的是,微波放大器由于器件内部S12的作用会产生内部反馈,可能使放大器工作不稳定而导致放大器的自激,因此在做端口匹配前,先要判断放大器的稳定性。判断放大器绝对稳定的条件[4]为: 结合表1数据和式(2)可知,FHX13是绝对稳定的,而FHX35存在潜在不稳定性,因此需要注意后两级匹配电路的设计。2.4 匹配网络的设计 为了同时满足增益和噪声这两大主要指标,本文采用双向设计法,利用等资用功率增益圆和等噪声系数圆相结合的方法来实现既能满足噪声系数

要求,又能满足增益要求的低噪声放大器[5]。 首先在ADS中画出等资用功率增益圆和等噪声系数圆[6],取频率点为10.5 GHz,经过仿真后的结果。其中,细线是等增益圆,m1点是最大增益点;粗线是等噪声系数圆,m2点是最小噪声系数点。为了兼顾噪声系数和增益,选用m3点作为匹配设计点,图中显示了该点处呈现在放大器输入端的源反射系数ГS为0.692/139.959,利用Smith圆图对输入网络进行匹配设计。

2.5 直流偏置电路的设计 偏置电路至关重要,合理的偏置能让放大器工作在最佳状态下。由于单电源自给偏压偏置缺乏灵活性,且源极不能直接到地,影响增益和噪声系数,还容易产生自激,所以本文采用双电源设计直流偏置电路,。

为了使直流偏置电路与射频电路之间互不影响,在电源与晶体管之间加入了中心频率的四分之一波长微带线;为了实现更宽频率范围的良好滤波特性,采用了扇形开路块作为偏置滤波电路;为了减小直流偏置电路所引入的噪声,还在电源处添加了电容去耦。 此外,本设计的直流偏置电路的最大特点是采用了直流偏置反馈控制技术,可以避免因温度等因素的变化而对电路性能造成影响,提高了该电路的稳定性。,当温度变化导致Ids增大时,由于三极管发射极的电流很小,可忽略不计,从而导致电阻R4上分压增大,发射极电压变小,基极与发射极之间的电压变小,进而使得集电极电流变小,Vgs变小。根据微波放大管的特性曲线,当Vgs变小时会引起Ids变小,因而可以维持之前的静态工作点,保持电路的稳定工作。3 测试结果及分析 根据仿真结果得到的尺寸和结构,采用介电常数较为稳定的Rogers的RO4350B(介电常数为3.66,厚度为0.508 mm,铜箔厚度为0.035 mm,损耗角为0.003)作为微带电路的材料基片。 对实体电路进行测试时,需要加上放大器的盖板并涂上吸波材料,以降低腔体效应的影响。使用Agilent公司的E8363A矢量网络分析仪测试增益和输入回波损耗,测试结果。图4显示,在频率为10.5 GHz时的增益为34.54 dB,输入回波损耗优于-10 dB,并且在10.2 GHz~10.8 GHz的频带内,增益和输入回波损耗都达到了设计指标。

其中,ENR使用R&S公司的FSP-40频谱分析仪进行测试,测试结果。由图5可知,输出噪声功率谱密度在噪声源开启和关闭时的时差为12.07 dB。在频率为10.5 dB时,从ENR头读出的NF值为13.71 dB。根据式(4)得到噪声系数为1.92 dB(小于2 dB),因此满足设计的要求。

图6显示了在不同温度条件下对电路进行测试的情况:图6(a)显示在温度为80 ℃时测得的在10.2 GHz~10.8 GHz的频带内的增益(虚线所示)以及输入回波损耗(实

线所示);图6(b)显示在温度为120 ℃时测得的在10.2 GHz~10.8 GHz的频带内的增益(虚线所示)以及输入回波损耗(实线所示)。经过测试,在温度为80℃时,该LNA的噪声系数为1.93;在温度为120 ℃时,该LNA的噪声系数为1.93。通过上述对比发现,在温度发生变化时,所设计的低噪声放大器的性能没有明显变化,能够满足工程设计的需要。 本文利用等资用功率增益圆和等噪声系数圆相结合的方法,设计了一个工作在X波段、不受温度变化影响、高增益的低噪声放大器。该放大器具有调试简单、稳定可靠、成本低廉、体积小的特点,大小仅为43.6 mm×34 mm×15 mm,使得小型化模块系列产品更加完善,进一步拓宽了低噪声放大器的应用领域。


相关文章

  • 3G压控振荡器的设计
  • 压控振荡器的设计与仿真 摘要:介绍了S波段压控振荡器的设计方法,并使用微波仿真软件ADS对振荡器进行仿真分析,给出了仿真和实际电路的结果. 关键词:压控振荡器,谐振电路,仿真设计,优化 一. 振荡器原理介绍 一定电路组态下的微波晶体管,可视 ...查看


  • 5W射频宽带功率放大器的设计
  • 182007年第3期 巫丛平 刘静霞:5W射频宽带功率放大器的设计 5W射频宽带功率放大器的设计 巫丛平 刘静霞 (成都电子机械高等专科学校 四川 成都 610031) 摘 要:在宽带放大电路的设计中,往往是以牺牲功率增益来换取宽频带的功率 ...查看


  • Ku波段固态高速脉冲功率放大器的设计与实现
  • 第31卷 第6期 2008年12月 电子器件 Chinese J ournal Of Elect ron Devices Vol. 31 No. 6Dec. 2008 Design and Implementation of a K u 2 ...查看


  • 运算放大器电路的误差分析
  • 1. 共模抑制比KCMR为有限值的情况 集成运放的共模抑制比为有限值时,以下图为例讨论. VP=Vi VN=Vo 共模输入电压为: 差摸输入电压为: 运算放大器的总输出电压为:vo=AVDvID+AVCvIC 闭环电压增益为: 可以看出,A ...查看


  • S波段超宽带固态功率放大器的研制
  • S波段超宽带固态功率放大器的研制 摘要: 本文结合一款新研制的S波段超宽带固态功率放大器,介绍了超宽带固态功率放大器的设计理论和方法,根据砷化镓场效应晶体管的小信号S参数和I2V曲线,用微波仿真软件对功率管的输入.输出阻抗匹配电路及其偏置电 ...查看


  • 光电二极管教程
  • 光电二极管教程 工作原理 结光电二极管是一种基本器件,其功能类似于一个普通的信号二极管,但在结半导体的耗尽区吸收光时,它会产生光电流.光电二极管是一种快速,高线性度的器件,在应用中具有高量子效率,可应用于各种不同的场合. 根据入射光确定期望 ...查看


  • 2013全国大学生电子设计大赛a
  • 题目名称:红外通信装置(F题) 摘要:红外通信的实质就是将音频信号经音频插孔输入电路,音频信号经三极管放大后推动红外发射管,接收端经音频放大集成电路LM386放大后经C1耦合至IC进行放大,由于IC具有功率放大能力,可供耳机收听.红外通信装 ...查看


  • 低噪声功率放大器
  • 射频低噪声放大器的ADS 设计 孟林,杨勇,牛磊,邓龙江 电子科技大学电子薄膜与集成器件国家重点实验室,成都(610054) 摘 要:本文首先简要介绍了低噪声放大器设计的理论基础,并以2.1-2.4Ghz 低噪声放大器为例,详细阐述了如何利 ...查看


  • 基于应变式传感器的血压计的设计
  • 基于应变式传感器的血压计的设计 The design of the sphygmomanometer based on strain sensor 摘要:介绍了德利康公司的BP01型应变式压力传感器的主要性能和参数给出了一个用BP01作传感 ...查看


热门内容