物理学本科毕业论文

量子力学中微扰理论的简单论述

摘要:在量子力学中,由于体系的哈密顿函数算符往往比较复杂,薛定谔方程能够

严格求解的情况寥寥可数。因此,引入各种近似方法以求解薛定谔方程的问题就什么重要。常用的近似方法有微扰法、变分法、半经典近似和绝热近似等,不同的近似方法有不同的实用范围,在下文中将讨论分立谱的微扰理论。对于体系的不含时的哈密顿函数的分立谱的的微扰理论可以分为非简并定态微扰理论和简并定态微扰理论。

关键词:近似方法;非简并定态微扰理论;简并定态微扰理论

目 录

1 非简并定态微扰论...................................................................................................... 1 1.1 理论简述 .............................................................................................................. 1 1.2 一级微扰 .............................................................................................................. 3 1.3 二级修正 .............................................................................................................. 4 1.4 非简并定态微扰的讨论 ....................................................................................... 6 1.5 海曼—费曼定理 . .................................................................................................. 7 2 简并定态微扰论 . ......................................................................................................... 8 2.1理论简述: . ........................................................................................................... 8 2.2简并定态微扰论的讨论 ...................................................................................... 10 3 结束语 ....................................................................................................................... 11 致谢 ................................................................................................ 错误!未定义书签。 参考文献 ....................................................................................................................... 11

0 引言

微扰理论是量子力学的重要的理论。对于中等复杂度的哈密顿量,很难找到其薛定谔方程的精确解。我们所知道的就只有几个量子模型有精确解,像氢原子、量子谐振子、与箱归一化粒子。这些量子模型都太过理想化,无法适当地描述大多数的量子系统。应用微扰理论,可以将这些理想的量子模型的精确解,用来生成一系列更复杂的量子系统的解答。

量子力学的微扰理论引用一些数学的微扰理论的近似方法。当遇到比较复杂的量子系统时,这些方法试着将复杂的量子系统简单化或理想化,变成为有精确解的量子系统,再应用理想化的量子系统的精确解,来解析复杂的量子系统。基本的方法是,从一个简单的量子系统开始,这简单的系统必须有精确解,在这简单系统的哈密顿量里,加上一个很弱的微扰,变成了较复杂系统的哈密顿量。假若这微扰不是很大,复杂系统的许多物理性质(例如,能级,量子态,波函数)可以表达为简单系统的物理性质加上一些修正。这样,从研究比较简单的量子系统所得到的知识,可以进而研究比较复杂的量子系统。

微扰理论可以分为两类,不含时微扰理论与含时微扰理论。不含时微扰理论的微扰哈密顿量不含时间;而含时微扰理论的微扰哈密顿量含时间。

1 非简并定态微扰论 1.1 理论简述

近似方法的精神是从已知的较简单的问题准确解出发,近似地求较复杂的一些问题的解,当然,还希望了解这些求解方法的近似程度,估算出近似解和准确解之间的最大偏离。下面我们将讨论体系在受到外界与时间无关的微小扰动时,它的能级和波函数所发生的变化。[1]

假设体系的哈密顿量H 不显含t ,定态的薛定谔方程

H ϕ=E ϕ

满足下述条件:

(1)H 可分解为H 0和H '两部分H 0厄米,而且H '远小于H 0:

H =H '+H 0

H ' H 0

上式表示,H 与H '的差别很小,H '可视为加与H 0上的微扰。由于H 不显含t ,因此,无论H 0或是H '均不显含t 。

(2)H 0的本征值和已经求出,即在H 0的本征方程

H 0ϕn (0)=E n (0)ϕn (0)

(0)

中,能级E n (0)及波函数ϕn 都是已知的。微扰论的任务就是从H 0的本

征值和本征函数出发,近似求出经过微扰H '后,H 的本征值和本征函数。

(3)H 0的能级无简并,严格来说,是要求通过微扰论来计算它的修正的那个能级无简并。例如,要通过微扰论计算H '对H 0的第n 个能级E n (0) 的

(0)

修正,就要求无简并,它相应的波函数ϕn 只有一个。其他能级既可以是简

并的,也可以不是简并的。[2]

(4)H 0的能级组成分立谱,或者严格点说,至少必须要求通过微扰来计算它的修正的那个能级E n (0)处于分立谱内,E n (0)是束缚态。

在满足上述条件下,可利用定态非简并微扰论从已知的H 0的本征值和本征函数近似求出H 的本征值和本征函数。为表征微扰的近似程度,通常可引进一个小的参数λ,将H '写成λH ',将的微小程度通过λ反映出来。体系经微扰后的薛定谔方程是:

H ϕn =(H 0+λH ') ϕn =E n ϕn

将能级E n 和波函数ϕn 按λ展开:

(0)(1)(2)

E n =E n +λE n +λ2E n + (0)(1)(2)ϕn =ϕn +λϕn +λ2ϕn +

(1)(2)(1)(2)E n ,E n ,…ϕn ,ϕn ,…分别表示能级E n 和波函数ϕn 的一级,二级…

修正。

将上两式代入薛定谔方程中得:

(0)(1)(2)

+λϕn +λ2ϕn + ) (H 0+λH ') (ϕn

(0)(1)(2)(0)(1)(2)

+λE n +λ2E n + ) (ϕn +λϕn +λ2ϕn + ) =(E n

然后比较上式两端的λ的同次幂,可得出各级近似下的方程式:

λ0: H 0ϕn (0)=E n (0)ϕn (0)

(1)(1)

) ϕn (0) λ1: (H 0-E n (0)) ϕn =-(H '-E n

(2)(1)(1)(2)(0)

ϕn (H '-E n ) ϕn λ2: (H 0-E n (0)) =-ϕn +E n

……

零级近似显然是无微扰时的定态薛定谔方程式,同样还可以列出准确到

λ3,λ4……等各级的近似方程式。[3]

1.2 一级微扰

(1)(1)

) ϕn (0)。 求一级微扰修正只需要求解(H 0-E n (0)) ϕn =-(H '-E n

由于H 0厄米,H 0的本征函数系

{}

l

(0)

系展开 ϕn

(1)

ϕn =∑a l (1)ϕl (0)

将此式代入λ1的近似薛定谔方程中的

(0)*

为求出展开系数a l (1),以ϕk 左乘上式并对全空间积分,利用

{}

(0)

系的正ϕn

交归一性后,得

当n =k 时,得

当n ≠k 时,得

(1)

那么接下来计算a n ,利用ϕn 的归一条件,在准确到O (λ) 数量级后,

(0) (0)

ϕn (0=1得: 又因波函数ϕn 归一,n

(1)

将ϕn

=∑a l (1)ϕl (0)代入上式得

l

(1)a n 必为纯虚数,即

λ为实数。准确到λ的一级近似,微扰后体系的波函数是

(1)上式表明,a n 的贡献无非是使波函数增加了一个无关紧要的常数相位因

子,那么,不失普遍性,可取

因此,准确到一级近似,体系的能级和波函数是

上式表明,准确到一级近似,H '在无微扰能量表象中的对角元给出能量的一级修正,非对角元给出波函数的一级修正。[4]

1.3 二级修正

(1)(1)

) ϕ

n (0) 求二级修正需要求解(H 0-E n (0)) ϕn =-(H '-E n

与求一级修正的步骤相似,将二级修正波函数按

{ϕ}展开

(0)n

将此式代入上式得

:

(0)*以ϕk 左乘上式,并对全空间进行积分后得:

(1)当n =k 时,得,考虑到a n

=0,由上式得:

当n ≠k 时,由上式得:

(2)

至于a n ,同样可以由波函数的归一条件算出,由

(2)同样,若取a n 为实数,那么由上式得:

综合上述,准确到二级近似吗,体系的能级和波函数是:

同理,其他各级近似也可用类似的方法算出。[5]

1.4 非简并定态微扰的讨论

(1)由微扰后的能级可知,微扰实用的条件是

只有满足该式,才能满足微扰级数的收敛性,保证微扰级数中最后一项小于前一项。这就是H ' H 0的明确表示,微扰方法能否应用,不仅决定于微扰的大小,而且决定于微扰的大小,而且还决定于无微扰体系两个能级之间的间距。只有当微扰算符H '在两个无微扰体系波函数之间的矩阵元

(0)(0)

H kn '的绝对值远小于五微扰体系相应的两能级间隔E n 时,才能用微-E k

扰论来计算。这就是为什么必须要求作微扰计算的能级处于分立谱,因为如果能级E n 是连续谱,它和相邻的能级的能级间距趋于零,对于除能E n 外的其他所有能级, 是不可能都被满足的。[6]

(2)如何在H 中划分H 0和H '十分重要,H 0和H '取得好,上式不

仅可以满足,而且可以使级数收敛的很快,避免了繁长的微扰计算。一般,除了要求的H 0本征值和本征函数必须已知外,还可以从体系的对称性及微扰矩阵元是否满足一定的选择定则来考虑划分H 0和H '。

(3)能量本征函数和本征值的二级修正由相应的一级修正给出,这样我们可以说,微扰论其实也是一种逐步逼近法。

(4)关于λ的讨论:由H =H 0+λH '得出,若设我们将λ看成一个可变化的参数,则显然当λ当λ

=0

时,H =H 0,这时体系未受到微扰的影响;

=1时,H =H 0+H ',微扰全部加进去了。因此、可以想象体系当从

λ

=0缓慢变化到λ=1的过程,也就是体系从无微扰的状态逐步变成有微

扰的状态的过程。[7]

1.5海曼—费曼定理

设H 是λ的函数,因此他的本征方程和归一条件为:

由上式得:

上式就是费曼—海曼定理,它通过对微扰参数λ的积分给出了含微扰的能量和无微扰能量之差。

2 简并定态微扰论 2.1 理论简述:

除一维束缚态外,一般情况下均有简并,因此简并微扰比非简并微扰更具有普遍性,可以说,简并微扰是非简并微扰的特例。

(0)(0)

假定H 0的第n 个能级E n 有f n 度简并,即对应于E n 有f n 个本征函数(0)ϕnv (ν=1,2,3……. f n )。与简并微扰不同,现在由于不知道在这f n 个

本征函数中应该取哪一个作为无微扰本征函数。因此,简并微扰要解决的第一个问题就是:如何适当选择零级波函数进行微扰计算。

设H 0的本征方程是: 归一化条件是:

H 的本征方程是: 由于

{}

(0)(0)

是完备系,将ϕ按ϕnv 展开后,得: ϕnv

{}

将此式代入上式得:

(0)*

以ϕm μ左乘上式两端,对全空间进行积分后有:

其中:

按微扰的精神,将H 的本征值E 和在H 0表象中的本征函数C nv 按的幂级数作微扰展开:

再将这两式代入

后得:

比较上式给出的两端λ的同次幂,给出:

λ1:

λ2:

如果讨论的能级是第n 个能级,即E 0=E n (0),由λ的0次幂方程式得:

即:

a μ是个待定的常数。再由一级近似下的薛定谔方程得:

在上式中,当m =n ,得能级的一级修正E (1)为:

为方便书写起见,略去指标n ,记同一能级E n 中,不同简并态μ,ν之间的矩阵元H n 'μ, n ν为H μ', ν。因此,上式可改写为:

上式是一个以系数a ν为未知数的线性齐次方程组,它有非零解的条件是其系数行列式为零,即:

(1) 这是个f n 次的久期方程。由这个久期方程可以解出E (1)的f n 个根E na

(a=1,2,3……f n )将这f n 个根分别代入上个齐次线性方程组式后,可得出相应的f n 组解{a a ν}(a=1,2,3……f n ),将它们代入

(1)后,得出与E na 相应的零级波函数的系数。从而给出零级波函数和能量本征

值的一级修正。它们分别是:

那么,由上式可知,新的零级波函数实际上是原来相应于第n 个能级的各个简并本征函数的线性组合,其组合系数由久期方程决定。一般地,如果久期

(1)方程无重根,将求得的E na 代入:

原则上可以求出f n 组不同的解{a a ν},那么可以求出f n 个零级近似的波函数。[8]

2.2 简并定态微扰论的讨论

(1) 简并来自对守恒量的不完全测量。每一个守恒量对应于一种对

(1)称性。若由这个f n 次的久期方程解出的E na (a=1,2,3……f n )无重根,那

(0)(0)么,无微扰能级E n 经微扰后分裂为f n 条,它们的波函数由各自对应的φna

(a=1,2,3……f n )表示。这时,简并将完全消除,原来带来简并的对称性

(0)或守恒量将发生或缺。同理,若E na 有重根,只要不是f n 重根,都将部分

地消除简并,引起部分对称或缺。[9]

(0)(2) 经过重新组合后的零级波函数φa (a=1,2,3……f n )彼此互相正

交,满足 。

0(3) 在属于E n 的f n 维子空间中,若经过非简并微扰方法重新组合后

(0)的φna (a=1,2,3……f n )为基矢,则有:

由上式可知,H '在经过非简并微扰方法处理后的简并态构成的子空间中,对应对角矩阵。因此,简并微扰方法的主要精神在于:重新组合简并态的零级波函数,使得H '在简并态子空间中对角化。在经过这样的处理后,能量

(1)的一级修正E na (0)H φ0,与非简并微扰的公式完全相同。简并微扰φna '

na

的核心问题在于对简并子空间的基底的选择,在于重新选择零级波函数以使得H '在简并子空间对角化,则对角线上的元素就是能量的本征值。若最初的零级的简并波函数本身就能使得H '对角化,即

则,由:

(1)将得出E n '。无须再去重新组合零级波函数。简并微扰可类似于非简μ=H μμ

并微扰的方法处理。[10]

3 结束语

在量子力学中,由于体系的哈密顿函数比较复杂,往往不能求得准确的解,而只能求得近似解。因此用来求问题的近似解的方法,就显得很重要。那么,在上文,我们分别讨论了非简并定态微扰论和简并定态微扰论,并简单论述了它的理论推导。由此,我们可以得知,近似方法的精神就是从简单问题的精确解出发来求比较复杂的问题的近似解。近似方法除了上文介绍的非简并定态微扰理论和简并定态微扰理论外,还有含时微扰理论和变分法等等。

参考文献

[] 苏如铿.量子力学.高等教育出版社.2002.12

[2] 周世勋.量子力学教程.高等教育出版社.2009.06

[3] 曾谨言.量子力学卷(2)第4版.科学出版社.2007.08

[4] 钱伯初.量子力学.高等教育出版社.2006.01

[5] Gennaro Auletta,Fountations and Interpretation of Quantum Mechanics,World Scientific Publishing Co.Pte.Ltd,2000.

[6] 刘觉平. 普通高等教育" 十一五" 国家级规划教材:量子力学.高等教育出版社.2012.08

[7] 张永德. 量子力学. 科学出版社(普通高等教育“十五”国家级规划教材).2002.06

[8] 曾谨言. 量子力学导论. 北京大学出版社出版. 1992.06

[9] 钱伯初,曾谨言. 量子力学习题精选与剖析. 科学出版社出版,1999年第二版。

[10] J. W. S. Rayleigh, Theory of Sound, 2nd edition Vol. I, pp 115-118, Macmillan, London (1894)

A simple discussion of perturbation

theory in quantum mechanics

Abstract :In quantum mechanics, because the system's Hamiltonian operatorare is complicated, the situation that Schrodinger's equation can be solved isexactly few. Therefore, the introduction of various.approximation methods for solving Schrodinger equation problem is something important. Approximate methods commonly are perturbation method, variational method, the semiclassical approximation and the adiabatic approximation and so on. Different approximation methods have different application scope, we willdiscuss the perturbation theory of discrete spectrum below. For Hamiltonian system of not containing time of discrete spectral of perturbation theory and degenerate stationary perturbation theory.

Key Words :non degenerate stationary perturbation theory 、 degenerate stationary perturbation theory.

量子力学中微扰理论的简单论述

摘要:在量子力学中,由于体系的哈密顿函数算符往往比较复杂,薛定谔方程能够

严格求解的情况寥寥可数。因此,引入各种近似方法以求解薛定谔方程的问题就什么重要。常用的近似方法有微扰法、变分法、半经典近似和绝热近似等,不同的近似方法有不同的实用范围,在下文中将讨论分立谱的微扰理论。对于体系的不含时的哈密顿函数的分立谱的的微扰理论可以分为非简并定态微扰理论和简并定态微扰理论。

关键词:近似方法;非简并定态微扰理论;简并定态微扰理论

目 录

1 非简并定态微扰论...................................................................................................... 1 1.1 理论简述 .............................................................................................................. 1 1.2 一级微扰 .............................................................................................................. 3 1.3 二级修正 .............................................................................................................. 4 1.4 非简并定态微扰的讨论 ....................................................................................... 6 1.5 海曼—费曼定理 . .................................................................................................. 7 2 简并定态微扰论 . ......................................................................................................... 8 2.1理论简述: . ........................................................................................................... 8 2.2简并定态微扰论的讨论 ...................................................................................... 10 3 结束语 ....................................................................................................................... 11 致谢 ................................................................................................ 错误!未定义书签。 参考文献 ....................................................................................................................... 11

0 引言

微扰理论是量子力学的重要的理论。对于中等复杂度的哈密顿量,很难找到其薛定谔方程的精确解。我们所知道的就只有几个量子模型有精确解,像氢原子、量子谐振子、与箱归一化粒子。这些量子模型都太过理想化,无法适当地描述大多数的量子系统。应用微扰理论,可以将这些理想的量子模型的精确解,用来生成一系列更复杂的量子系统的解答。

量子力学的微扰理论引用一些数学的微扰理论的近似方法。当遇到比较复杂的量子系统时,这些方法试着将复杂的量子系统简单化或理想化,变成为有精确解的量子系统,再应用理想化的量子系统的精确解,来解析复杂的量子系统。基本的方法是,从一个简单的量子系统开始,这简单的系统必须有精确解,在这简单系统的哈密顿量里,加上一个很弱的微扰,变成了较复杂系统的哈密顿量。假若这微扰不是很大,复杂系统的许多物理性质(例如,能级,量子态,波函数)可以表达为简单系统的物理性质加上一些修正。这样,从研究比较简单的量子系统所得到的知识,可以进而研究比较复杂的量子系统。

微扰理论可以分为两类,不含时微扰理论与含时微扰理论。不含时微扰理论的微扰哈密顿量不含时间;而含时微扰理论的微扰哈密顿量含时间。

1 非简并定态微扰论 1.1 理论简述

近似方法的精神是从已知的较简单的问题准确解出发,近似地求较复杂的一些问题的解,当然,还希望了解这些求解方法的近似程度,估算出近似解和准确解之间的最大偏离。下面我们将讨论体系在受到外界与时间无关的微小扰动时,它的能级和波函数所发生的变化。[1]

假设体系的哈密顿量H 不显含t ,定态的薛定谔方程

H ϕ=E ϕ

满足下述条件:

(1)H 可分解为H 0和H '两部分H 0厄米,而且H '远小于H 0:

H =H '+H 0

H ' H 0

上式表示,H 与H '的差别很小,H '可视为加与H 0上的微扰。由于H 不显含t ,因此,无论H 0或是H '均不显含t 。

(2)H 0的本征值和已经求出,即在H 0的本征方程

H 0ϕn (0)=E n (0)ϕn (0)

(0)

中,能级E n (0)及波函数ϕn 都是已知的。微扰论的任务就是从H 0的本

征值和本征函数出发,近似求出经过微扰H '后,H 的本征值和本征函数。

(3)H 0的能级无简并,严格来说,是要求通过微扰论来计算它的修正的那个能级无简并。例如,要通过微扰论计算H '对H 0的第n 个能级E n (0) 的

(0)

修正,就要求无简并,它相应的波函数ϕn 只有一个。其他能级既可以是简

并的,也可以不是简并的。[2]

(4)H 0的能级组成分立谱,或者严格点说,至少必须要求通过微扰来计算它的修正的那个能级E n (0)处于分立谱内,E n (0)是束缚态。

在满足上述条件下,可利用定态非简并微扰论从已知的H 0的本征值和本征函数近似求出H 的本征值和本征函数。为表征微扰的近似程度,通常可引进一个小的参数λ,将H '写成λH ',将的微小程度通过λ反映出来。体系经微扰后的薛定谔方程是:

H ϕn =(H 0+λH ') ϕn =E n ϕn

将能级E n 和波函数ϕn 按λ展开:

(0)(1)(2)

E n =E n +λE n +λ2E n + (0)(1)(2)ϕn =ϕn +λϕn +λ2ϕn +

(1)(2)(1)(2)E n ,E n ,…ϕn ,ϕn ,…分别表示能级E n 和波函数ϕn 的一级,二级…

修正。

将上两式代入薛定谔方程中得:

(0)(1)(2)

+λϕn +λ2ϕn + ) (H 0+λH ') (ϕn

(0)(1)(2)(0)(1)(2)

+λE n +λ2E n + ) (ϕn +λϕn +λ2ϕn + ) =(E n

然后比较上式两端的λ的同次幂,可得出各级近似下的方程式:

λ0: H 0ϕn (0)=E n (0)ϕn (0)

(1)(1)

) ϕn (0) λ1: (H 0-E n (0)) ϕn =-(H '-E n

(2)(1)(1)(2)(0)

ϕn (H '-E n ) ϕn λ2: (H 0-E n (0)) =-ϕn +E n

……

零级近似显然是无微扰时的定态薛定谔方程式,同样还可以列出准确到

λ3,λ4……等各级的近似方程式。[3]

1.2 一级微扰

(1)(1)

) ϕn (0)。 求一级微扰修正只需要求解(H 0-E n (0)) ϕn =-(H '-E n

由于H 0厄米,H 0的本征函数系

{}

l

(0)

系展开 ϕn

(1)

ϕn =∑a l (1)ϕl (0)

将此式代入λ1的近似薛定谔方程中的

(0)*

为求出展开系数a l (1),以ϕk 左乘上式并对全空间积分,利用

{}

(0)

系的正ϕn

交归一性后,得

当n =k 时,得

当n ≠k 时,得

(1)

那么接下来计算a n ,利用ϕn 的归一条件,在准确到O (λ) 数量级后,

(0) (0)

ϕn (0=1得: 又因波函数ϕn 归一,n

(1)

将ϕn

=∑a l (1)ϕl (0)代入上式得

l

(1)a n 必为纯虚数,即

λ为实数。准确到λ的一级近似,微扰后体系的波函数是

(1)上式表明,a n 的贡献无非是使波函数增加了一个无关紧要的常数相位因

子,那么,不失普遍性,可取

因此,准确到一级近似,体系的能级和波函数是

上式表明,准确到一级近似,H '在无微扰能量表象中的对角元给出能量的一级修正,非对角元给出波函数的一级修正。[4]

1.3 二级修正

(1)(1)

) ϕ

n (0) 求二级修正需要求解(H 0-E n (0)) ϕn =-(H '-E n

与求一级修正的步骤相似,将二级修正波函数按

{ϕ}展开

(0)n

将此式代入上式得

:

(0)*以ϕk 左乘上式,并对全空间进行积分后得:

(1)当n =k 时,得,考虑到a n

=0,由上式得:

当n ≠k 时,由上式得:

(2)

至于a n ,同样可以由波函数的归一条件算出,由

(2)同样,若取a n 为实数,那么由上式得:

综合上述,准确到二级近似吗,体系的能级和波函数是:

同理,其他各级近似也可用类似的方法算出。[5]

1.4 非简并定态微扰的讨论

(1)由微扰后的能级可知,微扰实用的条件是

只有满足该式,才能满足微扰级数的收敛性,保证微扰级数中最后一项小于前一项。这就是H ' H 0的明确表示,微扰方法能否应用,不仅决定于微扰的大小,而且决定于微扰的大小,而且还决定于无微扰体系两个能级之间的间距。只有当微扰算符H '在两个无微扰体系波函数之间的矩阵元

(0)(0)

H kn '的绝对值远小于五微扰体系相应的两能级间隔E n 时,才能用微-E k

扰论来计算。这就是为什么必须要求作微扰计算的能级处于分立谱,因为如果能级E n 是连续谱,它和相邻的能级的能级间距趋于零,对于除能E n 外的其他所有能级, 是不可能都被满足的。[6]

(2)如何在H 中划分H 0和H '十分重要,H 0和H '取得好,上式不

仅可以满足,而且可以使级数收敛的很快,避免了繁长的微扰计算。一般,除了要求的H 0本征值和本征函数必须已知外,还可以从体系的对称性及微扰矩阵元是否满足一定的选择定则来考虑划分H 0和H '。

(3)能量本征函数和本征值的二级修正由相应的一级修正给出,这样我们可以说,微扰论其实也是一种逐步逼近法。

(4)关于λ的讨论:由H =H 0+λH '得出,若设我们将λ看成一个可变化的参数,则显然当λ当λ

=0

时,H =H 0,这时体系未受到微扰的影响;

=1时,H =H 0+H ',微扰全部加进去了。因此、可以想象体系当从

λ

=0缓慢变化到λ=1的过程,也就是体系从无微扰的状态逐步变成有微

扰的状态的过程。[7]

1.5海曼—费曼定理

设H 是λ的函数,因此他的本征方程和归一条件为:

由上式得:

上式就是费曼—海曼定理,它通过对微扰参数λ的积分给出了含微扰的能量和无微扰能量之差。

2 简并定态微扰论 2.1 理论简述:

除一维束缚态外,一般情况下均有简并,因此简并微扰比非简并微扰更具有普遍性,可以说,简并微扰是非简并微扰的特例。

(0)(0)

假定H 0的第n 个能级E n 有f n 度简并,即对应于E n 有f n 个本征函数(0)ϕnv (ν=1,2,3……. f n )。与简并微扰不同,现在由于不知道在这f n 个

本征函数中应该取哪一个作为无微扰本征函数。因此,简并微扰要解决的第一个问题就是:如何适当选择零级波函数进行微扰计算。

设H 0的本征方程是: 归一化条件是:

H 的本征方程是: 由于

{}

(0)(0)

是完备系,将ϕ按ϕnv 展开后,得: ϕnv

{}

将此式代入上式得:

(0)*

以ϕm μ左乘上式两端,对全空间进行积分后有:

其中:

按微扰的精神,将H 的本征值E 和在H 0表象中的本征函数C nv 按的幂级数作微扰展开:

再将这两式代入

后得:

比较上式给出的两端λ的同次幂,给出:

λ1:

λ2:

如果讨论的能级是第n 个能级,即E 0=E n (0),由λ的0次幂方程式得:

即:

a μ是个待定的常数。再由一级近似下的薛定谔方程得:

在上式中,当m =n ,得能级的一级修正E (1)为:

为方便书写起见,略去指标n ,记同一能级E n 中,不同简并态μ,ν之间的矩阵元H n 'μ, n ν为H μ', ν。因此,上式可改写为:

上式是一个以系数a ν为未知数的线性齐次方程组,它有非零解的条件是其系数行列式为零,即:

(1) 这是个f n 次的久期方程。由这个久期方程可以解出E (1)的f n 个根E na

(a=1,2,3……f n )将这f n 个根分别代入上个齐次线性方程组式后,可得出相应的f n 组解{a a ν}(a=1,2,3……f n ),将它们代入

(1)后,得出与E na 相应的零级波函数的系数。从而给出零级波函数和能量本征

值的一级修正。它们分别是:

那么,由上式可知,新的零级波函数实际上是原来相应于第n 个能级的各个简并本征函数的线性组合,其组合系数由久期方程决定。一般地,如果久期

(1)方程无重根,将求得的E na 代入:

原则上可以求出f n 组不同的解{a a ν},那么可以求出f n 个零级近似的波函数。[8]

2.2 简并定态微扰论的讨论

(1) 简并来自对守恒量的不完全测量。每一个守恒量对应于一种对

(1)称性。若由这个f n 次的久期方程解出的E na (a=1,2,3……f n )无重根,那

(0)(0)么,无微扰能级E n 经微扰后分裂为f n 条,它们的波函数由各自对应的φna

(a=1,2,3……f n )表示。这时,简并将完全消除,原来带来简并的对称性

(0)或守恒量将发生或缺。同理,若E na 有重根,只要不是f n 重根,都将部分

地消除简并,引起部分对称或缺。[9]

(0)(2) 经过重新组合后的零级波函数φa (a=1,2,3……f n )彼此互相正

交,满足 。

0(3) 在属于E n 的f n 维子空间中,若经过非简并微扰方法重新组合后

(0)的φna (a=1,2,3……f n )为基矢,则有:

由上式可知,H '在经过非简并微扰方法处理后的简并态构成的子空间中,对应对角矩阵。因此,简并微扰方法的主要精神在于:重新组合简并态的零级波函数,使得H '在简并态子空间中对角化。在经过这样的处理后,能量

(1)的一级修正E na (0)H φ0,与非简并微扰的公式完全相同。简并微扰φna '

na

的核心问题在于对简并子空间的基底的选择,在于重新选择零级波函数以使得H '在简并子空间对角化,则对角线上的元素就是能量的本征值。若最初的零级的简并波函数本身就能使得H '对角化,即

则,由:

(1)将得出E n '。无须再去重新组合零级波函数。简并微扰可类似于非简μ=H μμ

并微扰的方法处理。[10]

3 结束语

在量子力学中,由于体系的哈密顿函数比较复杂,往往不能求得准确的解,而只能求得近似解。因此用来求问题的近似解的方法,就显得很重要。那么,在上文,我们分别讨论了非简并定态微扰论和简并定态微扰论,并简单论述了它的理论推导。由此,我们可以得知,近似方法的精神就是从简单问题的精确解出发来求比较复杂的问题的近似解。近似方法除了上文介绍的非简并定态微扰理论和简并定态微扰理论外,还有含时微扰理论和变分法等等。

参考文献

[] 苏如铿.量子力学.高等教育出版社.2002.12

[2] 周世勋.量子力学教程.高等教育出版社.2009.06

[3] 曾谨言.量子力学卷(2)第4版.科学出版社.2007.08

[4] 钱伯初.量子力学.高等教育出版社.2006.01

[5] Gennaro Auletta,Fountations and Interpretation of Quantum Mechanics,World Scientific Publishing Co.Pte.Ltd,2000.

[6] 刘觉平. 普通高等教育" 十一五" 国家级规划教材:量子力学.高等教育出版社.2012.08

[7] 张永德. 量子力学. 科学出版社(普通高等教育“十五”国家级规划教材).2002.06

[8] 曾谨言. 量子力学导论. 北京大学出版社出版. 1992.06

[9] 钱伯初,曾谨言. 量子力学习题精选与剖析. 科学出版社出版,1999年第二版。

[10] J. W. S. Rayleigh, Theory of Sound, 2nd edition Vol. I, pp 115-118, Macmillan, London (1894)

A simple discussion of perturbation

theory in quantum mechanics

Abstract :In quantum mechanics, because the system's Hamiltonian operatorare is complicated, the situation that Schrodinger's equation can be solved isexactly few. Therefore, the introduction of various.approximation methods for solving Schrodinger equation problem is something important. Approximate methods commonly are perturbation method, variational method, the semiclassical approximation and the adiabatic approximation and so on. Different approximation methods have different application scope, we willdiscuss the perturbation theory of discrete spectrum below. For Hamiltonian system of not containing time of discrete spectral of perturbation theory and degenerate stationary perturbation theory.

Key Words :non degenerate stationary perturbation theory 、 degenerate stationary perturbation theory.


相关文章

  • 中医护理学本科论文开题报告
  • 我国护理学本科培育的是有科研能力与临床能力的综合型护理人才.教育重在培养质量 ,既要关注护理学本科生科学素养的培养,又要强调其科研实践能力.毕业论文是本科生培养计划的重要组成部分,也是护理学本科生培养质量的一个重要标志.开题报告是护理学本科 ...查看


  • [2015年心理学考研]之同等学力报考条件.pdf
  • 大家好,我是心理学考研 小时,心理学考研的条件相对比较宽松,大部分的学校 都是放开的,跨考也成为心理学考研大军非常多的一批,把心理学考研的条件放 在下面,大家可以参考. 其中限制最多的无外乎是同等学力考 生的限制,这边有一份同等学 力考生可 ...查看


  • 本硕博连读有多爽?这几个专业出来你就是博士哥(姐)了!
  • 临床医学(本博连读)北京大学(医学部) 2015年调档线:662(理科) 北大医学部医学部只招收理科考生,其临床医学下面的内科学.儿科学.精神病与精神卫生学.皮肤病与性病学.外科学.妇产科学.眼科学.肿瘤学.运动医学都属于国家重点二级学科. ...查看


  • 2016招生简章
  • 一.学校概况 沧州师范学院始建于1958年,是经教育部批准设立的全日制普通本科院校.学校以"明德博学,知行日新"为校训,秉持"质量立校.人才强校.特色兴校.学科领校.开放活校"的发展战略和" ...查看


  • 山东自考科目一览
  • 一.商务英语(本科) 专业代码050218 主考院校:山东财政学院.曲阜师范大学 本专业共设置12门课程和毕业论文. 1.中国近现代史纲要(2学分) 2.马克思主义基本原理概论(4学分) 3.日语(6学分) 4.高级英语(12学分) 5.英 ...查看


  • 山东省自考免考细则
  • 山东自学考试课程免考实施细则 第一条根据<高等教育自学考试暂行条例>第二十二条的规定及全国高等教育自学考试指导委员会颁发的<关于高等教育自学考试免考课程的试行规定>,结合我省的实际情况,特制定本实施细则. 第二条国家 ...查看


  • 中央电大护理本科专业毕业实践环节实施方案(201106)
  • 中央广播电视大学 护理学本科专业毕业实践环节基本要求 (2011年6月) 护理专业毕业实践环节是专业教育的最后一个教学阶段,是培养学生理论联系实际,综合应用所学知识解决护理工作中的实际问题和进行科学研究训练的重要教学环节.护理学本科毕业实践 ...查看


  • 吉林大学网教1
  • 吉林大学网络教育2015年招生简章 吉林大学坐落在吉林省省会长春市,是教育部直属的全国重点综合性大学,1995年首批通过国家教委"211工程"审批,2001年被列入"985工程"国家重点建设的大学之一 ...查看


  • 安徽自考本科类专业及课程详情
  • B082208计算机信息管理(独立本科段)考试计划 中国科学技术大学 .................... 1 C050201英语(本科段)考试计划 安徽大学 . .................................... ...查看


  • 文山学院本科生毕业论文(设计)手册70
  • 本科生毕业论文(设计)手册 论文(设计)题目:论中学物理教学过程中实施合作学习策略 学 院: 信息科学学院 专 业: 物理学 年 级: 2010级 姓 名: 张孟旭 学 号: 2012070201ZB104 导师及职称: 孙天河 副教授 日 ...查看


热门内容