工程热力学复习重点2012

工程热力学复习重点2012.3

绪 论

[1] 理解和掌握工程热力学的研究对象、主要研究内容和研究方法 [2] 理解热能利用的两种主要方式及其特点 [3] 了解常用的热能动力转换装臵的工作过程

1.什么是工程热力学

从工程技术观点出发,研究物质的热力学性质,热能转换为机械能的规律和方法,以及有效、合理地利用热能的途径。

2.能源的地位与作用及我国能源面临的主要问题 3. 热能及其利用

[1] 热能:能量的一种形式

[2] 来源:一次能源:以自然形式存在,可利用的能源。 如风能,水力能,太阳能、地热能、化学能和核能等。

二次能源:由一次能源转换而来的能源,如机械能、机械能等。 [3] 利用形式:

直接利用:将热能利用来直接加热物体。如烘干、采暖、熔炼(能源消耗比例大) 间接利用:各种热能动力装臵,将热能转换成机械能或者再转换成电能,

4..热能动力转换装臵的工作过程 5.热能利用的方向性及能量的两种属性

[1] 过程的方向性:如:由高温传向低温

[2] 能量属性:数量属性、,质量属性 (即做功能力) [3] 数量守衡、质量不守衡

[4] 提高热能利用率:能源消耗量与国民生产总值成正比。

第1章 基本概念及定义

1. 1 热力系统 一、热力系统

系统:用界面从周围的环境中分割出来的研究对象,或空间内物体的总和。 外界:与系统相互作用的环境。

界面:假想的、实际的、固定的、运动的、变形的。

依据:系统与外界的关系

系统与外界的作用:热交换、功交换、质交换。

二、闭口系统和开口系统

闭口系统:系统内外无物质交换,称控制质量。 开口系统:系统内外有物质交换,称控制体积。

三、绝热系统与孤立系统

绝热系统:系统内外无热量交换 (系统传递的热量可忽略不计时,可认为绝热) 孤立系统:系统与外界既无能量传递也无物质交换

=系统+相关外界=各相互作用的子系统之和= 一切热力系统连同相互作用的外界

四、根据系统内部状况划分

可压缩系统:由可压缩流体组成的系统。

简单可压缩系统:与外界只有热量及准静态容积变化

均匀系统:内部各部分化学成分和物理'性质都均匀一致的系统,是由单相组成的。 非均匀系统:由两个或两个以上的相所组成的系统。 单元系统:一种均匀的和化学成分不变的物质组成的系统。 多元系统:由两种或两种以上物质组成的系统。

单相系:系统中工质的物理、化学性质都均匀一致的系统称为单相系。 复相系:由两个相以上组成的系统称为复相系,如固、液、气组成的三相系统。

思考题:

孤立系统一定是闭口系统吗?反之怎样? 孤立系统一定不是开口的吗、 孤立系统是否一定绝热?

1.2 工质的热力状态与状态参数 一、状态与状态参数

状态:热力系统中某瞬间表现的工质热力性质的总状况。 状态参数:描述工质状态特性的各种状态的宏观物理量。

如:温度(T)、压力(P)、比容(υ)或密度(ρ)、内能(u)、焓(h)、熵(s)、自由能(f)、自由焓(g)等。

状态参数的数学特性:

1. ⎰dx=x2-x1

12

表明:状态的路径积分仅与初、终状态有关,而与状态变化的途径无关。

2.dx=0

表明:状态参数的循环积分为零

基本状态参数:可直接或间接地用仪表测量出来的状态参数:温度、压力、比容或密度

温度:宏观上,是描述系统热力平衡状况时冷热程度的物理量。 微观上,是大量分子热运动强烈程度的量度

2.压力:

垂直作用于器壁单位面积上的力,称为压力,也称压强。

F

p= 式中:F—整个容器壁受到的力,单位为牛顿(N);

f

f—容器壁的总面积(m2)。 微观上:分子热运动产生的垂直作用于容器壁上单位面积的力。 压力测量依据:力平衡原理 压力单位:MPa

相对压力:相对于大气环境所测得的压力。工程上常用测压仪表测定的压力。 以大气压力为计算起点,也称表压力。

p=B+pg

(P>B) (P

p=B-H

式中

B—当地大气压力

Pg—高于当地大气压力时的相对压力,称表压力;

H —低于当地大气压力时的相对压力,称为真空值。

注意:只有绝对压力才能代表工质的状态参数 3.比容:

比容:单位质量工质所具有的容积。 密度:单位容积的工质所具有的质量。

v=

V m

m3/kg

关系:ρv=1

式中:ρ—工质的密度

kg/m3 ,v—工质的比容

m3/kg

例:表压力或真空度为什么不能当作工质的压力?工质的压力不变化,测量它的压力表或真空表的读数是否会变化?

解:作为工质状态参数的压力是绝对压力,测得的表压力或真空度都是工质的绝对压力与大气压力的相对值,因此不能作为工质的压力;因为测得的是工质绝对压力与大气压力的相对值,即使工质的压力不变,当大气压力改变时也会引起压力表或真空表读数的变化。

1.3准静态过程与可逆过程

热力过程:系统状态的连续变化称系统经历了一个热力过程。

一、准静过程:如果造成系统状态改变的不平衡势差无限小,以致该系统在任意时刻均无限接近于某个平衡态,这样的过程称为准静态过程。

注意:准静态过程是一种理想化的过程,实际过程只能接近准静态过程。

二、可逆过程:系统经历一个过程后,如令过程逆行而使系统与外界同时恢复到初始状态,而不留下任何痕迹,则此过程称为可逆过程。

实现可逆过程的条件:

过程无势差 (传热无温差,作功无力差) 过程无耗散效应。

三、可逆过程的膨胀功 (容积功)

系统容积发生变化而通过界面向外传递的机械功。

2

w=⎰pdv J/kg

1

规定: 系统对外做功为正,外界对系统作功为负。 问题: 比较不可逆过程的膨胀功与可逆过程膨胀功 四、可逆过程的热量:

系统与外界之间依靠温差传递的能量称为热量。

2

可逆过程传热量:q=Tdsq J/kg

1

规定:系统吸热为正,放热为负。

1.4 热力循环:

定义:工质从某一初态开始,经历一系列状态变化,最后由回复到初态的过程。, 一、正循环

正循环中的热转换功的经济性指标用循环热效率:

ηt=

式中

w0q1-q2q

==1-2 q1q1q1

w0—循环所作的净功。

q1—工质从热源吸热;q2—工质向冷源放热;

二、逆循环

以获取制冷量为目的。 制冷系数: ε1=

q2q2

= w0q1-q2q1q1

= w0q1-q2

式中:q1—工质向热源放出热量;q2—工质从冷源吸取热量;w0—循环所作的净功。 供热系数: ε2=

式中:q1—工质向热源放出热量,q2—工质从冷源吸取热量,w0—循环所作的净功

思考题:

1.温度为100℃的热源,非常缓慢地把热量加给处于平衡状态下的0℃的冰水混合物,试问:1、冰水混合物经历的是准静态过程吗?2、加热过程是否可逆?

2.平衡态与稳态(稳态即系统内各点的状态参数均不随时间而变)有何异同?热力学中讨论平衡态有什么意义?

3.外界条件变化时系统有无达到平衡的可能?在外界条件不变时,系统是否一定处于平衡态?

4.判断下列过程是否为可逆过程:

1)对刚性容器内的水加热使其在恒温下蒸发。 2)对刚性容器内的水作功使其在恒温下蒸发。

3)对刚性容器中的空气缓慢加热使其从50℃升温到100℃ 4)定质量的空气在无摩擦、不导热的气缸和活塞中被慢慢压缩 5)100℃的蒸汽流与25℃的水流绝热混合。

6)锅炉中的水蒸汽定压发生过程(温度、压力保持不变)。 7)高压气体突然膨胀至低压。

8)摩托车发动机气缸中的热燃气随活塞迅速移动而膨胀。

9)气缸中充有水,水上面有无摩擦的活塞,缓慢地对水加热使之蒸发。

第2章 热力学第一定律

2.1系统的储存能

系统的储存能的构成:内部储存能+外部储存能

一.内能

热力系处于宏观静止状态时系统内所有微观粒子所具有的能量之和,单位质量工质所具有

的内能,称为比内能,简称内能。U=mu

内能=分子动能+分子位能 分子动能包括:

1.分子的移动动能 2.分子的转动动能 3.分子内部原子振动动能和位能 分子位能:克服分子间的作用力所形成

u=f (T,V) 或u=f (T,P) u=f (P,V)

注意: 内能是状态参数. 特别的: 对理想气体u=f (T) 问题思考: 为什么?

二 外储存能:

系统工质与外力场的相互作用(如重力位能)及以外界为参考坐标的系统宏观运动所具有的能量(宏观动能)。 宏观动能:Ek=

12

mc 2

重力位能:Ep=mgz 式中

g—重力加速度。

三 系统总储存能:

E=U+Ek+Ep

或E=U+mc2+mgz 2.2 系统与外界传递的能量

12

e=u+

12

c+gz 2

与外界热源,功源,质源之间进行的能量传递

一、热量

在温差作用下,系统与外界通过界面传递的能量。 系统吸热热量为正,系统放热热量为负。 单位:kJ kcal l kcal=4.1868kJ

特点: 热量是传递过程中能量的一种形式,热量与热力过程有关,或与过程的路径有关.

二、功

除温差以外的其它不平衡势差所引起的系统与外界传递的能量.

1.膨胀功W:在力差作用下,通过系统容积变化与外界传递的能量。 单位:l J=l Nm

规定: 系统对外作功为正,外界对系统作功为负。 膨胀功是热变功的源泉 2 轴功Ws:

通过轴系统与外界传递的机械功

注意: 刚性闭口系统轴功不可能为正,轴功来源于能量转换

三、随物质传递的能量

1.流动工质本身具有的能量

E=U+

12

mc+mgz 2

2. 流动功(或推动功):

维持流体正常流动所必须传递量,是为推动流体通过控制体界面而传递的机械功. 推动1kg工质进、出控制体所必须的功

wf=p2v2-p1v1

注意: 流动功仅取决于控制体进出口界面工质的热力状态。流动功是由泵风机等提供 思考:与其它功区别

四、焓的定义:

焓=内能+流动功 对于m千克工质:

H=U+pV

对于1千克工质:h=u+ p v

五、焓的物理意义:

对流动工质(开口系统),表示沿流动方向传递的总能量中,取决于热力状态的那部分能量. 对不流动工质(闭口系统),焓只是一个复合状态参数 思考为什么:特别的对理想气体 h= f (T)

2.3 闭口系统能量方程 一、能量方程表达式

∆U=Q-W 适用于mkg质量工质 ∆u=q-w 1kg质量工质

注意: 该方程适用于闭口系统、任何工质、任何过程。

由于反映的是热量、内能、膨胀功三者关系,因而该方程也适用于开口系统、任何工质、任何过程.

特别的: 对可逆过程 ∆u=q-⎰pdv

12

思考为什么?

二、.循环过程第一定律表达式

δq=δw

结论: 第一类永动机不可能制造出来 思考:为什么

三、理想气体内能变化计算

由δqv=duv=cvdT得:

du=cvdT,∆u=⎰cvdT

12

适用于理想气体一切过程或者实际气体定容过程

或: ∆u=cv(T2-T1)

用定值比热计算

t2t1

t20

t10

∆u=⎰cvdt=⎰cvdt-⎰cvdt=cvm

用平均比热计算

t20

⋅t2-cvm

t10⋅t1

cv=f(T)的经验公式代入∆u=⎰cvdT积分。

1

2

理想气体组成的混合气体的内能: U=U1+U2+ +Un=∑Ui=∑miui

i=1

i=1

nn

2.4 开口系统能量方程

由质量守恒原理:

进入控制体的质量一离开控制体的质量=控制体中质量的增量 能量守恒原理:

进入控制体的能量一控制体输出的能量=控制体中储存能的增量 设控制体在dτ时间内:

12

c1+gz1)δm1 212

离开控制体的能量=δWS+(h2+c2+gz2)δm2

2

控制体储存能的变化dEcv=(E+dE)cv-Ecv

进入控制体的能量=δQ+(h1+

代入后得到:

2

+gz2)δm2-(h1+c12+gz1)δm1+dEcv δQ=δWS+(h2+c2

注意:本方程适用于任何工质,稳态稳流、不稳定流动的一切过程,也适用于闭口系统

1212

2.5 开口系统稳态稳流能量方程 一 稳态稳流工况

工质以恒定的流量连续不断地进出系统,系统内部及界面上各点工质的状态参数和宏观运动参数都保持一定,不随时间变化,称稳态稳流工况。

条件:1.符合连续性方程

2.系统与外界传递能量,收入=支出,且不随时间变化

δq=dh+dc2+gdz+δws

适用于任何工质,稳态稳流热力过程

12

二 技术功

在热力过程中可被直接利用来作功的能量,称为技术功。 技术功=膨胀功+流动功

wt=w+p1v1-p2v2

特别的:对可逆过程:

2

wt=-⎰vdp

1

思考:为什么?注意:技术功是过程量

公式:dh=δq-δws

适用于任何工质稳态稳流过程,忽略工质动能和位能的变化。

三、理想气体焓的计算

对于理想气体

h=u+RT=f(T)

21

dh=cpdT,∆h=⎰cpdT

适用于理想气体的一切热力过程或者实际气体的定压过程

∆h=cp(T2-T1)

适用于理想气体的一切热力过程或者实际气体的定压过程, 用定值比热计算

t2t1

t20

t10

∆h=⎰cpdt=⎰cpdt-⎰cpdt=cpm

用平均比热计算

t20

⋅t2-cpm

t10⋅t1

cp=f(T)的经验公式代入∆h=⎰cpdT积分。

1

2

思考题:

1.门窗紧闭的房间内有一台电冰箱正在运行,若敞开冰箱的大门就有一股凉气扑面,感到凉爽。于是有人就想通过敞开冰箱大门达到降低室内温度的目的,你认为这种想法可行吗?

2. 既然敞开冰箱大门不能降温,为什么在门窗紧闭的房间内安装空调器后却能使温度降低呢?

3.对工质加热,其温度反而降低,有否可能?

4.对空气边压缩边进行冷却,如空气的放热量为1kJ,对空气的压缩功为6kJ,则此过程中空气的温度是升高,还是降低。

5.空气边吸热边膨胀,如吸热量Q=膨胀功,则空气的温度如何变化。

6.讨论下列问题:

1) 气体吸热的过程是否一定是升温的过程。

2) 气体放热的过程是否一定是降温的过程。

3) 能否以气体温度的变化量来判断过程中气体是吸热还是放热。

7.试分析下列过程中气体是吸热还是放热(按理想气体可逆过程考虑)

1) 压力递降的定温过程。

2) 容积递减的定压过程。

3) 压力和容积均增大两倍的过程。

第3章 气体和蒸汽的性质

3.1 理想气体状态方程

一、理想气体与实际气体

定义:气体分子是一些弹性的,忽略分子相互作用力,不占有体积的质点,

注意:当实际气体p→0 v→∞的极限状态时,气体为理想气体。

二、理想气体状态方程的导出

状态方程的几种形式

1.pv=RT 适用于1千克理想气体。

式中:p—绝对压力

Pa v—比容 m3/kg, T—热力学温度 K

2.pV=mRT 适用于m千克理想气体。

式中V—质量为mkg气体所占的容积

3.pVM=R0T 适用于1千摩尔理想气体。

式中VM=Mv—气体的摩尔容积,m3/kmol;

4.R0=MR—通用气体常数, J/kmol〃K pV=nR0T 适用于n千摩尔理想气体。

式中V—nKmol气体所占有的容积,m3;n—气体的摩尔数,n=

5.

6. m,kmol MP1v1P2v2 =T1T2P1V1P2V2= 仅适用于闭口系统 T1T2

3.2 理想气体的比热

一、比热的定义与单位

定义:单位物量的物体,温度升高或降低1K(1℃)所吸收或放出的热量,称为该物体比热。

c=δq

dT

单位:式中 c—质量比热,kJ/Kg〃k

c'—容积比热,kJ/m3〃k Mc—摩尔比热,kJ/Kmol〃k

换算关系:c'=Mc=cρ022.4

注意:比热不仅取决于气体的性质,还于气体的热力过程及所处的状态有关。

二、定容比热和定压比热

定容比热:cv=δqv

dT=duv⎛∂u⎫= ⎪ dT⎝∂T⎭v

表示:明单位物量的气体在定容情况下升高或降低1K所吸收或放出的热量. 定压比热:cp=δqp

dT=dh dT

表示:单位物量的气体在定压情况下升高或降低1K所吸收或放出的热量。

迈耶公式:cp-cv=R c'p-c'v=ρ0R

Mcp-Mcv=MR=R0

比热比:

κ=cp

cv=c'pc'v=McpMcv cv=nRκR cp= κ-1κ-1

三、定值比热、真实比热与平均比热

1、定值比热:凡分子中原子数目相同因而其运动自由度也相同的气体,它们的摩尔比热值都相等,称为定值比热。

2、真实比热:相应于每一温度下的比热值称为气体的真实比热。

常将比热与温度的函数关系表示为温度的三次多项式

Mcp=a0+a1T+a2T2+a3T3

3.平均比热

思考题:

1.某内径为15.24cm的金属球抽空后放后在一精密的天平上称重,当填充某种气体至7.6bar后又进行了称重,两次称重的重量差的2.25g,当时的室温为27℃,试确定这里何种理想气体。

2.通用气体常数和气体常数有何不同?

3.混合气体处于平衡状态时,各组成气体的温度是否相同,分压力是否相同。

4.混合气体中某组成气体的千摩尔质量小于混合气体的千摩尔质量,问该组成气体在混合气体中的质量成分是否一定小于容积成分,为什么。

第4章 气体和蒸汽的基本热力过程

一、定压过程

q=∆h=h2-h1

∆u=h2-h1-p(v2-v1)

w=q-∆u wt=-⎰vdp=0

二、定容过程

w=⎰pdv=0 q=∆u

∆u=h2-h1-v(p2-p1) wt=-⎰vdp=v(p1-p2)

三、定温过程

q=T(s2-s1) w=q-∆u

wt=q-∆h ∆u=h2-h1-(p2v2-p1v1)

四、绝热过程

q=0 w=-∆u wt=-∆h

∆u=h2-h1-(p2v2-p1v1)

第5章 热力学第二定律

5.1 自然过程的方向性

一、磨擦过程

功可以自发转为热,但热不能自发转为功

二、传热过程

热量只能自发从高温传向低温

三、自由膨胀过程

绝热自由膨胀为无阻膨胀,但压缩过程却不能自发进行

四、混合过程

两种气体混合为混合气体是常见的自发过程

五、燃烧过程

燃料燃烧变为燃烧产物(烟气等),只要达到燃烧条件即可自发进行

结论:自然的过程是不可逆的

5.2 热力学第二定律的实质

克劳修斯说法:热量不可能从低温物体传到高温物体而不引起其它变化

开尔文说法:不可能制造只从一个热源取热使之完全变为机械能,而不引起其它变化的循环发动机。

5.3 卡诺循环与卡诺定理

意义:解决了热变功最大限度的转换效率的问题

一.卡诺循环:

[一] 正循环

组成:两个可逆定温过程、两个可逆绝热过程

过程a-b:工质从热源(T1)可逆定温吸热

b-c:工质可逆绝热(定'熵)膨胀

c-d:工质向冷源(T2)可逆定温放热

d-a:工质可逆绝热(定熵)压缩回复到初始状态。

循环热效率:

ηt=w0q=1-2 q1q1

q1=T1(sb-sa)=面积abefa q2=T2(sc-sd)=面积cdfec

因为 (sb-sa)=(sc-sd) 得到

分析:

1、热效率取决于两热源温度,T1、T2,与工质性质无关。

2、由于T1≠∞, T2≠0,因此热效率不能为1

3、若T1=T2,热效率为零,即单一热源,热机不能实现。

[二] 逆循环:

包括:绝热压缩、定温放热。

定温吸热、绝热膨胀。

制冷系数:ε1c=ηt=1-T2 T1q2q2T2== w0q1-q2T1-T2

供热系数ε2c=q1q1T1 ==w0q1-q2T1-T2

关系:ε2c=ε1c+1

分析:通常T2>T1-T2 所以: ε1c>1

二 卡诺定理:

1、所有工作于同温热源、同温冷源之间的一切热机,以可逆热机的热效率为最高。

2.在同温热源与同温冷源之间的一切可逆热机,其热效率均相等.

思考题

1.自发过程为不可逆过程,那么非自发过程即为可逆过程。此说法对吗?为什么?

2.自然界中一切过程都是不可逆过程,那么研究可逆过程又有什么意义呢?

δQds①工质经历一不可逆循环过程,因T

②不可逆过程的熵变无法计算

③若从某一初态沿可逆和不可逆过程达到同一终态,则不可逆过程中的熵变必定大于可逆过程中的熵变。

4.某热力系统经历一熵增的可逆过程,问该热力系统能否经一绝热过程回复到初态。

5.若工质经历一可逆过程和一不可逆过程,均从同一初始状态出发,且两过程中工质的吸热量相同,问工质终态的熵是否相同?

6.绝热过程是否一定是定熵过程?定熵过程是否一定满足PvK=定值的方程?

答案:可逆绝热过程才是定熵。否,必须为理想气体,可逆绝热,定值比热容。

7.工质经历一个不可逆循环能否回复到初态?

8.用孤立系统熵增原理证明:热量从高温物体传向低温物体的过程是不可逆过程。

第8章 压气机的热力过程

8.1 压气机的理论压缩功

压气机: 用来压缩气体的设备

一、单机活塞式压气机工作过程

吸气过程、压缩过程、排气过程。理想化为可逆过程、无阻力损失.

1.定温压缩轴功的计算

wst=wt=-⎰vdp-p1v1ln

12p2 p1

按稳态稳流能量方程,压气机所消耗的功,一部分用于增加气体的焓,一部分转化为热能向外放出.

对理想气体定温压缩,表示消耗的轴功全部转化成热能向外放出.

wst=QT

2.定熵压缩轴功的计算,

k-1⎡⎤2kRT1⎢⎛p2⎫k⎥⎪wt=-⎰vdp=1- =kws ⎪⎢⎥1k-1⎝p1⎭⎥⎢⎣⎦

按稳态稳流能量方程,绝热压缩消耗的轴功全部用于增加气体的焓,使气体温度升高,该式也适用于不可逆过程

3.多变压缩轴功的计算

n-1⎡⎤n2⎛⎫nRTp⎥=nw 1⎢2⎪wt=-⎰vdp=1- s⎪⎥1n-1⎢ p⎝1⎭⎥⎢⎣⎦

按稳态稳流能量方程,多变压缩消耗的轴功部分用于增加气体的焓,部分对外放热,该式同样适用于不可逆过程

结论: -wstTsn>T2T

可见定温过程耗功最少,绝热过程耗功最多

8.2 多级压缩及中间冷却

由 T2⎛p2⎫⎪= T1⎝p1⎪⎭k-1k

即:压力比越大,其压缩终了温度越高,较高压缩气体常采用中间冷却设备,称多级压气机. 最佳增压比:使多级压缩中间冷却压气机耗功最小时,各级的增压比称为最佳增压比。 压气机的效率:在相同的初态及增压比条件下,可逆压缩过程中压气机所消耗的功与实际不可逆压缩过程中压气机所消耗的功之比,称为压气机的效率。

特点:

1.减小功的消耗,由p-v图可知

2.降低气体的排气温度,减少气体比容

3.每一级压缩比降低,压气机容积效率增高

中间压力的确定: 原则:消耗功最小。

以两级压缩为例,得到:p2/p1=p3/p2

结论:两级压力比相等,耗功最小。

推广为Z级压缩

β1=β2=....=.pz+1/p1

推理:

1.每级进口、出口温度相等.

2.各级压气机消耗功相等.

3.各级气缸及各中间冷却放出和吸收热量相等.

8.5 活塞式压气机余隙影响

一、余隙对排气量的影响

余隙:为了安臵进、排气阀以及避免活塞与汽缸端盖间的碰撞,在汽缸端盖与活塞行程终点间留有一定的余隙,称为余隙容积,简称余隙

活塞式压气机的容积效率:活塞式压气机的有效容积和活塞排量之比,

λv=1-V4-V3 V1-V3

结论:余隙使一部分汽缸容积不能被有效利用,压力比越大越不利。

二 余隙对理论压缩轴功的影响

n-1⎡⎤n⎛⎫n1p2⎥ ⎪wns=p(V1-V2)⎢1- ⎪⎢⎝p1⎭⎥n-1⎢⎥⎣⎦

式中:V=V1-V4为实际吸入的气体体积。

结论:不论压气机有无余隙,压缩每kg气体所需的理论压缩轴功都相同,所以应减少余隙容积。

思考题:

1.在p-v图上,T和s减小的方向分别在哪个方向,在T-s图上p和v减小的方向分别在哪个方向。

2.工质为空气,试在p-v和T-s图上画出n=1.5的膨胀过程和n=1.2的压缩过程的大概位臵,并分析二过程中q、w、∆u的正负。

3.如果气体按

却。

4.在多变过程中热量和功量之间的关系等于什么,即v=c/p规律膨胀,其中c为常数,则此过程中理想气体被加热还是被冷wn/qn =?

5.试在T-s图上用过程线和横坐标之间的面积来分析相同初态和相同终态压力下的定温、多变、绝热压缩中的能量转换关系,比较哪种压缩时耗功量最小。

6.如果气体压缩机在汽缸中采取各种冷却方法后,已能按定温过程进行压缩,这时是否还要采用分级压缩,为什么。

第9章 气体动力循环

9.2 活塞式内燃机实际循环的简化

开式循环(open cycle);

燃烧、传热、排气、膨胀、压缩均为不可逆;

各环节中工质质量、成分稍有变化。

9.3 活塞式内燃机的理想循环

一、混合加热理想循环

01 吸气

12 压缩

23 喷油、燃烧

34 燃烧

45 膨胀作功 50 排气

二、定压加热理想循环

三、定容加热理想循环

第10章 蒸汽动力装置循环

热机:将热能转换为机械能的设备叫做热力原动机。热机的工作循环称为动力循环。 动力循环可分:蒸汽动力循环和燃气动力循环两大类。

10.1蒸汽动力基本循环一朗肯循环

朗肯循环是最简单的蒸汽动力理想循环,热力发电厂的各种较复杂的蒸汽动力循环都是在朗肯循环的基础上予以改进而得到的。

一、装臵与流程

蒸汽动力装臵:锅炉、汽轮机、凝汽器和给水泵等四部分主要设备。

工作原理:p-v、T-s和h-s。

朗肯循环可理想化为:两个定压过程和两个定熵过程。

二、朗肯循环的能量分析及热效率

取汽轮机为控制体,建立能量方程:

η

=h1-h2 h1-h3

三、提高朗肯循环热效率的基本途径

依据:卡诺循环热效率

1、提高平均吸热温度

直接方法式提高蒸汽压力和温度。

2、降低排气温度

..

第11章 制冷循环

11.1 空气压缩制冷循环

空气压缩式制冷:将常温下较高压力的空气进行绝热膨胀,会获得低温低压的空气。 原则:实现逆卡诺循环

工作原理如图:

注意:空气的热物性决定了空气压缩致冷循环的致冷系数低和单位工质的致冷能力小。 ε1=1

T2-1T1=(1p2)p1kk-1 -1

T1 T2-T1或:ε1=

11.2 蒸汽压缩制冷循环

一、实际压缩式制冷循环

蒸气压缩致冷装臵:压缩机、冷凝器、膨胀阀及蒸发器组成。

原理:由蒸发器出来的致冷剂的干饱和蒸气被吸入压缩机,绝热压缩后成为过热蒸气(过程1-2),蒸气进入冷凝器,在定压下冷却(过程2-3),进一步在定压定温下凝结成饱和液体(过程3-4)。饱和液体继而通过一个膨胀阀(又称节流阀或减压阀)经绝热节流降压降温而变成低干度的湿蒸气。

注意:工业上,用节流阀取代膨胀机。

二、制冷剂的压焓图(lgp-h图)

原理:以致冷剂焓作为横坐标,以压力对数为纵坐标,共绘出致冷剂的六种状态参数线簇: 定焓(h)、定压力(p)、定温度(T)、定比容(v)、定熵(s)及定干度(x)线.

蒸气压缩式致冷循环各热力过程在lgp-h图上的表示:

1-2表示压缩机中的绝热压缩过程。2-3-4是冷凝器中的定压冷却过程

4-5为膨胀阀中的绝热节流过程。5-1表示蒸发器内的定压蒸发过程。

三、制冷循环能量分析及致冷系擞

实际蒸气压缩致冷循环整个装臵的能量分析。其致冷系数为

ε1=q2=收获/消耗 w0

制冷剂质量流量:m=

压缩机所需功率:p=Q2 q2mw0 3600冷凝器热负荷:Q1=M(h2-h1)

四、影响制冷系数的主要因素

降低制冷剂的冷凝温度 提高蒸发温度

五、蒸汽喷射制冷循环

工程热力学复习重点2012.3

绪 论

[1] 理解和掌握工程热力学的研究对象、主要研究内容和研究方法 [2] 理解热能利用的两种主要方式及其特点 [3] 了解常用的热能动力转换装臵的工作过程

1.什么是工程热力学

从工程技术观点出发,研究物质的热力学性质,热能转换为机械能的规律和方法,以及有效、合理地利用热能的途径。

2.能源的地位与作用及我国能源面临的主要问题 3. 热能及其利用

[1] 热能:能量的一种形式

[2] 来源:一次能源:以自然形式存在,可利用的能源。 如风能,水力能,太阳能、地热能、化学能和核能等。

二次能源:由一次能源转换而来的能源,如机械能、机械能等。 [3] 利用形式:

直接利用:将热能利用来直接加热物体。如烘干、采暖、熔炼(能源消耗比例大) 间接利用:各种热能动力装臵,将热能转换成机械能或者再转换成电能,

4..热能动力转换装臵的工作过程 5.热能利用的方向性及能量的两种属性

[1] 过程的方向性:如:由高温传向低温

[2] 能量属性:数量属性、,质量属性 (即做功能力) [3] 数量守衡、质量不守衡

[4] 提高热能利用率:能源消耗量与国民生产总值成正比。

第1章 基本概念及定义

1. 1 热力系统 一、热力系统

系统:用界面从周围的环境中分割出来的研究对象,或空间内物体的总和。 外界:与系统相互作用的环境。

界面:假想的、实际的、固定的、运动的、变形的。

依据:系统与外界的关系

系统与外界的作用:热交换、功交换、质交换。

二、闭口系统和开口系统

闭口系统:系统内外无物质交换,称控制质量。 开口系统:系统内外有物质交换,称控制体积。

三、绝热系统与孤立系统

绝热系统:系统内外无热量交换 (系统传递的热量可忽略不计时,可认为绝热) 孤立系统:系统与外界既无能量传递也无物质交换

=系统+相关外界=各相互作用的子系统之和= 一切热力系统连同相互作用的外界

四、根据系统内部状况划分

可压缩系统:由可压缩流体组成的系统。

简单可压缩系统:与外界只有热量及准静态容积变化

均匀系统:内部各部分化学成分和物理'性质都均匀一致的系统,是由单相组成的。 非均匀系统:由两个或两个以上的相所组成的系统。 单元系统:一种均匀的和化学成分不变的物质组成的系统。 多元系统:由两种或两种以上物质组成的系统。

单相系:系统中工质的物理、化学性质都均匀一致的系统称为单相系。 复相系:由两个相以上组成的系统称为复相系,如固、液、气组成的三相系统。

思考题:

孤立系统一定是闭口系统吗?反之怎样? 孤立系统一定不是开口的吗、 孤立系统是否一定绝热?

1.2 工质的热力状态与状态参数 一、状态与状态参数

状态:热力系统中某瞬间表现的工质热力性质的总状况。 状态参数:描述工质状态特性的各种状态的宏观物理量。

如:温度(T)、压力(P)、比容(υ)或密度(ρ)、内能(u)、焓(h)、熵(s)、自由能(f)、自由焓(g)等。

状态参数的数学特性:

1. ⎰dx=x2-x1

12

表明:状态的路径积分仅与初、终状态有关,而与状态变化的途径无关。

2.dx=0

表明:状态参数的循环积分为零

基本状态参数:可直接或间接地用仪表测量出来的状态参数:温度、压力、比容或密度

温度:宏观上,是描述系统热力平衡状况时冷热程度的物理量。 微观上,是大量分子热运动强烈程度的量度

2.压力:

垂直作用于器壁单位面积上的力,称为压力,也称压强。

F

p= 式中:F—整个容器壁受到的力,单位为牛顿(N);

f

f—容器壁的总面积(m2)。 微观上:分子热运动产生的垂直作用于容器壁上单位面积的力。 压力测量依据:力平衡原理 压力单位:MPa

相对压力:相对于大气环境所测得的压力。工程上常用测压仪表测定的压力。 以大气压力为计算起点,也称表压力。

p=B+pg

(P>B) (P

p=B-H

式中

B—当地大气压力

Pg—高于当地大气压力时的相对压力,称表压力;

H —低于当地大气压力时的相对压力,称为真空值。

注意:只有绝对压力才能代表工质的状态参数 3.比容:

比容:单位质量工质所具有的容积。 密度:单位容积的工质所具有的质量。

v=

V m

m3/kg

关系:ρv=1

式中:ρ—工质的密度

kg/m3 ,v—工质的比容

m3/kg

例:表压力或真空度为什么不能当作工质的压力?工质的压力不变化,测量它的压力表或真空表的读数是否会变化?

解:作为工质状态参数的压力是绝对压力,测得的表压力或真空度都是工质的绝对压力与大气压力的相对值,因此不能作为工质的压力;因为测得的是工质绝对压力与大气压力的相对值,即使工质的压力不变,当大气压力改变时也会引起压力表或真空表读数的变化。

1.3准静态过程与可逆过程

热力过程:系统状态的连续变化称系统经历了一个热力过程。

一、准静过程:如果造成系统状态改变的不平衡势差无限小,以致该系统在任意时刻均无限接近于某个平衡态,这样的过程称为准静态过程。

注意:准静态过程是一种理想化的过程,实际过程只能接近准静态过程。

二、可逆过程:系统经历一个过程后,如令过程逆行而使系统与外界同时恢复到初始状态,而不留下任何痕迹,则此过程称为可逆过程。

实现可逆过程的条件:

过程无势差 (传热无温差,作功无力差) 过程无耗散效应。

三、可逆过程的膨胀功 (容积功)

系统容积发生变化而通过界面向外传递的机械功。

2

w=⎰pdv J/kg

1

规定: 系统对外做功为正,外界对系统作功为负。 问题: 比较不可逆过程的膨胀功与可逆过程膨胀功 四、可逆过程的热量:

系统与外界之间依靠温差传递的能量称为热量。

2

可逆过程传热量:q=Tdsq J/kg

1

规定:系统吸热为正,放热为负。

1.4 热力循环:

定义:工质从某一初态开始,经历一系列状态变化,最后由回复到初态的过程。, 一、正循环

正循环中的热转换功的经济性指标用循环热效率:

ηt=

式中

w0q1-q2q

==1-2 q1q1q1

w0—循环所作的净功。

q1—工质从热源吸热;q2—工质向冷源放热;

二、逆循环

以获取制冷量为目的。 制冷系数: ε1=

q2q2

= w0q1-q2q1q1

= w0q1-q2

式中:q1—工质向热源放出热量;q2—工质从冷源吸取热量;w0—循环所作的净功。 供热系数: ε2=

式中:q1—工质向热源放出热量,q2—工质从冷源吸取热量,w0—循环所作的净功

思考题:

1.温度为100℃的热源,非常缓慢地把热量加给处于平衡状态下的0℃的冰水混合物,试问:1、冰水混合物经历的是准静态过程吗?2、加热过程是否可逆?

2.平衡态与稳态(稳态即系统内各点的状态参数均不随时间而变)有何异同?热力学中讨论平衡态有什么意义?

3.外界条件变化时系统有无达到平衡的可能?在外界条件不变时,系统是否一定处于平衡态?

4.判断下列过程是否为可逆过程:

1)对刚性容器内的水加热使其在恒温下蒸发。 2)对刚性容器内的水作功使其在恒温下蒸发。

3)对刚性容器中的空气缓慢加热使其从50℃升温到100℃ 4)定质量的空气在无摩擦、不导热的气缸和活塞中被慢慢压缩 5)100℃的蒸汽流与25℃的水流绝热混合。

6)锅炉中的水蒸汽定压发生过程(温度、压力保持不变)。 7)高压气体突然膨胀至低压。

8)摩托车发动机气缸中的热燃气随活塞迅速移动而膨胀。

9)气缸中充有水,水上面有无摩擦的活塞,缓慢地对水加热使之蒸发。

第2章 热力学第一定律

2.1系统的储存能

系统的储存能的构成:内部储存能+外部储存能

一.内能

热力系处于宏观静止状态时系统内所有微观粒子所具有的能量之和,单位质量工质所具有

的内能,称为比内能,简称内能。U=mu

内能=分子动能+分子位能 分子动能包括:

1.分子的移动动能 2.分子的转动动能 3.分子内部原子振动动能和位能 分子位能:克服分子间的作用力所形成

u=f (T,V) 或u=f (T,P) u=f (P,V)

注意: 内能是状态参数. 特别的: 对理想气体u=f (T) 问题思考: 为什么?

二 外储存能:

系统工质与外力场的相互作用(如重力位能)及以外界为参考坐标的系统宏观运动所具有的能量(宏观动能)。 宏观动能:Ek=

12

mc 2

重力位能:Ep=mgz 式中

g—重力加速度。

三 系统总储存能:

E=U+Ek+Ep

或E=U+mc2+mgz 2.2 系统与外界传递的能量

12

e=u+

12

c+gz 2

与外界热源,功源,质源之间进行的能量传递

一、热量

在温差作用下,系统与外界通过界面传递的能量。 系统吸热热量为正,系统放热热量为负。 单位:kJ kcal l kcal=4.1868kJ

特点: 热量是传递过程中能量的一种形式,热量与热力过程有关,或与过程的路径有关.

二、功

除温差以外的其它不平衡势差所引起的系统与外界传递的能量.

1.膨胀功W:在力差作用下,通过系统容积变化与外界传递的能量。 单位:l J=l Nm

规定: 系统对外作功为正,外界对系统作功为负。 膨胀功是热变功的源泉 2 轴功Ws:

通过轴系统与外界传递的机械功

注意: 刚性闭口系统轴功不可能为正,轴功来源于能量转换

三、随物质传递的能量

1.流动工质本身具有的能量

E=U+

12

mc+mgz 2

2. 流动功(或推动功):

维持流体正常流动所必须传递量,是为推动流体通过控制体界面而传递的机械功. 推动1kg工质进、出控制体所必须的功

wf=p2v2-p1v1

注意: 流动功仅取决于控制体进出口界面工质的热力状态。流动功是由泵风机等提供 思考:与其它功区别

四、焓的定义:

焓=内能+流动功 对于m千克工质:

H=U+pV

对于1千克工质:h=u+ p v

五、焓的物理意义:

对流动工质(开口系统),表示沿流动方向传递的总能量中,取决于热力状态的那部分能量. 对不流动工质(闭口系统),焓只是一个复合状态参数 思考为什么:特别的对理想气体 h= f (T)

2.3 闭口系统能量方程 一、能量方程表达式

∆U=Q-W 适用于mkg质量工质 ∆u=q-w 1kg质量工质

注意: 该方程适用于闭口系统、任何工质、任何过程。

由于反映的是热量、内能、膨胀功三者关系,因而该方程也适用于开口系统、任何工质、任何过程.

特别的: 对可逆过程 ∆u=q-⎰pdv

12

思考为什么?

二、.循环过程第一定律表达式

δq=δw

结论: 第一类永动机不可能制造出来 思考:为什么

三、理想气体内能变化计算

由δqv=duv=cvdT得:

du=cvdT,∆u=⎰cvdT

12

适用于理想气体一切过程或者实际气体定容过程

或: ∆u=cv(T2-T1)

用定值比热计算

t2t1

t20

t10

∆u=⎰cvdt=⎰cvdt-⎰cvdt=cvm

用平均比热计算

t20

⋅t2-cvm

t10⋅t1

cv=f(T)的经验公式代入∆u=⎰cvdT积分。

1

2

理想气体组成的混合气体的内能: U=U1+U2+ +Un=∑Ui=∑miui

i=1

i=1

nn

2.4 开口系统能量方程

由质量守恒原理:

进入控制体的质量一离开控制体的质量=控制体中质量的增量 能量守恒原理:

进入控制体的能量一控制体输出的能量=控制体中储存能的增量 设控制体在dτ时间内:

12

c1+gz1)δm1 212

离开控制体的能量=δWS+(h2+c2+gz2)δm2

2

控制体储存能的变化dEcv=(E+dE)cv-Ecv

进入控制体的能量=δQ+(h1+

代入后得到:

2

+gz2)δm2-(h1+c12+gz1)δm1+dEcv δQ=δWS+(h2+c2

注意:本方程适用于任何工质,稳态稳流、不稳定流动的一切过程,也适用于闭口系统

1212

2.5 开口系统稳态稳流能量方程 一 稳态稳流工况

工质以恒定的流量连续不断地进出系统,系统内部及界面上各点工质的状态参数和宏观运动参数都保持一定,不随时间变化,称稳态稳流工况。

条件:1.符合连续性方程

2.系统与外界传递能量,收入=支出,且不随时间变化

δq=dh+dc2+gdz+δws

适用于任何工质,稳态稳流热力过程

12

二 技术功

在热力过程中可被直接利用来作功的能量,称为技术功。 技术功=膨胀功+流动功

wt=w+p1v1-p2v2

特别的:对可逆过程:

2

wt=-⎰vdp

1

思考:为什么?注意:技术功是过程量

公式:dh=δq-δws

适用于任何工质稳态稳流过程,忽略工质动能和位能的变化。

三、理想气体焓的计算

对于理想气体

h=u+RT=f(T)

21

dh=cpdT,∆h=⎰cpdT

适用于理想气体的一切热力过程或者实际气体的定压过程

∆h=cp(T2-T1)

适用于理想气体的一切热力过程或者实际气体的定压过程, 用定值比热计算

t2t1

t20

t10

∆h=⎰cpdt=⎰cpdt-⎰cpdt=cpm

用平均比热计算

t20

⋅t2-cpm

t10⋅t1

cp=f(T)的经验公式代入∆h=⎰cpdT积分。

1

2

思考题:

1.门窗紧闭的房间内有一台电冰箱正在运行,若敞开冰箱的大门就有一股凉气扑面,感到凉爽。于是有人就想通过敞开冰箱大门达到降低室内温度的目的,你认为这种想法可行吗?

2. 既然敞开冰箱大门不能降温,为什么在门窗紧闭的房间内安装空调器后却能使温度降低呢?

3.对工质加热,其温度反而降低,有否可能?

4.对空气边压缩边进行冷却,如空气的放热量为1kJ,对空气的压缩功为6kJ,则此过程中空气的温度是升高,还是降低。

5.空气边吸热边膨胀,如吸热量Q=膨胀功,则空气的温度如何变化。

6.讨论下列问题:

1) 气体吸热的过程是否一定是升温的过程。

2) 气体放热的过程是否一定是降温的过程。

3) 能否以气体温度的变化量来判断过程中气体是吸热还是放热。

7.试分析下列过程中气体是吸热还是放热(按理想气体可逆过程考虑)

1) 压力递降的定温过程。

2) 容积递减的定压过程。

3) 压力和容积均增大两倍的过程。

第3章 气体和蒸汽的性质

3.1 理想气体状态方程

一、理想气体与实际气体

定义:气体分子是一些弹性的,忽略分子相互作用力,不占有体积的质点,

注意:当实际气体p→0 v→∞的极限状态时,气体为理想气体。

二、理想气体状态方程的导出

状态方程的几种形式

1.pv=RT 适用于1千克理想气体。

式中:p—绝对压力

Pa v—比容 m3/kg, T—热力学温度 K

2.pV=mRT 适用于m千克理想气体。

式中V—质量为mkg气体所占的容积

3.pVM=R0T 适用于1千摩尔理想气体。

式中VM=Mv—气体的摩尔容积,m3/kmol;

4.R0=MR—通用气体常数, J/kmol〃K pV=nR0T 适用于n千摩尔理想气体。

式中V—nKmol气体所占有的容积,m3;n—气体的摩尔数,n=

5.

6. m,kmol MP1v1P2v2 =T1T2P1V1P2V2= 仅适用于闭口系统 T1T2

3.2 理想气体的比热

一、比热的定义与单位

定义:单位物量的物体,温度升高或降低1K(1℃)所吸收或放出的热量,称为该物体比热。

c=δq

dT

单位:式中 c—质量比热,kJ/Kg〃k

c'—容积比热,kJ/m3〃k Mc—摩尔比热,kJ/Kmol〃k

换算关系:c'=Mc=cρ022.4

注意:比热不仅取决于气体的性质,还于气体的热力过程及所处的状态有关。

二、定容比热和定压比热

定容比热:cv=δqv

dT=duv⎛∂u⎫= ⎪ dT⎝∂T⎭v

表示:明单位物量的气体在定容情况下升高或降低1K所吸收或放出的热量. 定压比热:cp=δqp

dT=dh dT

表示:单位物量的气体在定压情况下升高或降低1K所吸收或放出的热量。

迈耶公式:cp-cv=R c'p-c'v=ρ0R

Mcp-Mcv=MR=R0

比热比:

κ=cp

cv=c'pc'v=McpMcv cv=nRκR cp= κ-1κ-1

三、定值比热、真实比热与平均比热

1、定值比热:凡分子中原子数目相同因而其运动自由度也相同的气体,它们的摩尔比热值都相等,称为定值比热。

2、真实比热:相应于每一温度下的比热值称为气体的真实比热。

常将比热与温度的函数关系表示为温度的三次多项式

Mcp=a0+a1T+a2T2+a3T3

3.平均比热

思考题:

1.某内径为15.24cm的金属球抽空后放后在一精密的天平上称重,当填充某种气体至7.6bar后又进行了称重,两次称重的重量差的2.25g,当时的室温为27℃,试确定这里何种理想气体。

2.通用气体常数和气体常数有何不同?

3.混合气体处于平衡状态时,各组成气体的温度是否相同,分压力是否相同。

4.混合气体中某组成气体的千摩尔质量小于混合气体的千摩尔质量,问该组成气体在混合气体中的质量成分是否一定小于容积成分,为什么。

第4章 气体和蒸汽的基本热力过程

一、定压过程

q=∆h=h2-h1

∆u=h2-h1-p(v2-v1)

w=q-∆u wt=-⎰vdp=0

二、定容过程

w=⎰pdv=0 q=∆u

∆u=h2-h1-v(p2-p1) wt=-⎰vdp=v(p1-p2)

三、定温过程

q=T(s2-s1) w=q-∆u

wt=q-∆h ∆u=h2-h1-(p2v2-p1v1)

四、绝热过程

q=0 w=-∆u wt=-∆h

∆u=h2-h1-(p2v2-p1v1)

第5章 热力学第二定律

5.1 自然过程的方向性

一、磨擦过程

功可以自发转为热,但热不能自发转为功

二、传热过程

热量只能自发从高温传向低温

三、自由膨胀过程

绝热自由膨胀为无阻膨胀,但压缩过程却不能自发进行

四、混合过程

两种气体混合为混合气体是常见的自发过程

五、燃烧过程

燃料燃烧变为燃烧产物(烟气等),只要达到燃烧条件即可自发进行

结论:自然的过程是不可逆的

5.2 热力学第二定律的实质

克劳修斯说法:热量不可能从低温物体传到高温物体而不引起其它变化

开尔文说法:不可能制造只从一个热源取热使之完全变为机械能,而不引起其它变化的循环发动机。

5.3 卡诺循环与卡诺定理

意义:解决了热变功最大限度的转换效率的问题

一.卡诺循环:

[一] 正循环

组成:两个可逆定温过程、两个可逆绝热过程

过程a-b:工质从热源(T1)可逆定温吸热

b-c:工质可逆绝热(定'熵)膨胀

c-d:工质向冷源(T2)可逆定温放热

d-a:工质可逆绝热(定熵)压缩回复到初始状态。

循环热效率:

ηt=w0q=1-2 q1q1

q1=T1(sb-sa)=面积abefa q2=T2(sc-sd)=面积cdfec

因为 (sb-sa)=(sc-sd) 得到

分析:

1、热效率取决于两热源温度,T1、T2,与工质性质无关。

2、由于T1≠∞, T2≠0,因此热效率不能为1

3、若T1=T2,热效率为零,即单一热源,热机不能实现。

[二] 逆循环:

包括:绝热压缩、定温放热。

定温吸热、绝热膨胀。

制冷系数:ε1c=ηt=1-T2 T1q2q2T2== w0q1-q2T1-T2

供热系数ε2c=q1q1T1 ==w0q1-q2T1-T2

关系:ε2c=ε1c+1

分析:通常T2>T1-T2 所以: ε1c>1

二 卡诺定理:

1、所有工作于同温热源、同温冷源之间的一切热机,以可逆热机的热效率为最高。

2.在同温热源与同温冷源之间的一切可逆热机,其热效率均相等.

思考题

1.自发过程为不可逆过程,那么非自发过程即为可逆过程。此说法对吗?为什么?

2.自然界中一切过程都是不可逆过程,那么研究可逆过程又有什么意义呢?

δQds①工质经历一不可逆循环过程,因T

②不可逆过程的熵变无法计算

③若从某一初态沿可逆和不可逆过程达到同一终态,则不可逆过程中的熵变必定大于可逆过程中的熵变。

4.某热力系统经历一熵增的可逆过程,问该热力系统能否经一绝热过程回复到初态。

5.若工质经历一可逆过程和一不可逆过程,均从同一初始状态出发,且两过程中工质的吸热量相同,问工质终态的熵是否相同?

6.绝热过程是否一定是定熵过程?定熵过程是否一定满足PvK=定值的方程?

答案:可逆绝热过程才是定熵。否,必须为理想气体,可逆绝热,定值比热容。

7.工质经历一个不可逆循环能否回复到初态?

8.用孤立系统熵增原理证明:热量从高温物体传向低温物体的过程是不可逆过程。

第8章 压气机的热力过程

8.1 压气机的理论压缩功

压气机: 用来压缩气体的设备

一、单机活塞式压气机工作过程

吸气过程、压缩过程、排气过程。理想化为可逆过程、无阻力损失.

1.定温压缩轴功的计算

wst=wt=-⎰vdp-p1v1ln

12p2 p1

按稳态稳流能量方程,压气机所消耗的功,一部分用于增加气体的焓,一部分转化为热能向外放出.

对理想气体定温压缩,表示消耗的轴功全部转化成热能向外放出.

wst=QT

2.定熵压缩轴功的计算,

k-1⎡⎤2kRT1⎢⎛p2⎫k⎥⎪wt=-⎰vdp=1- =kws ⎪⎢⎥1k-1⎝p1⎭⎥⎢⎣⎦

按稳态稳流能量方程,绝热压缩消耗的轴功全部用于增加气体的焓,使气体温度升高,该式也适用于不可逆过程

3.多变压缩轴功的计算

n-1⎡⎤n2⎛⎫nRTp⎥=nw 1⎢2⎪wt=-⎰vdp=1- s⎪⎥1n-1⎢ p⎝1⎭⎥⎢⎣⎦

按稳态稳流能量方程,多变压缩消耗的轴功部分用于增加气体的焓,部分对外放热,该式同样适用于不可逆过程

结论: -wstTsn>T2T

可见定温过程耗功最少,绝热过程耗功最多

8.2 多级压缩及中间冷却

由 T2⎛p2⎫⎪= T1⎝p1⎪⎭k-1k

即:压力比越大,其压缩终了温度越高,较高压缩气体常采用中间冷却设备,称多级压气机. 最佳增压比:使多级压缩中间冷却压气机耗功最小时,各级的增压比称为最佳增压比。 压气机的效率:在相同的初态及增压比条件下,可逆压缩过程中压气机所消耗的功与实际不可逆压缩过程中压气机所消耗的功之比,称为压气机的效率。

特点:

1.减小功的消耗,由p-v图可知

2.降低气体的排气温度,减少气体比容

3.每一级压缩比降低,压气机容积效率增高

中间压力的确定: 原则:消耗功最小。

以两级压缩为例,得到:p2/p1=p3/p2

结论:两级压力比相等,耗功最小。

推广为Z级压缩

β1=β2=....=.pz+1/p1

推理:

1.每级进口、出口温度相等.

2.各级压气机消耗功相等.

3.各级气缸及各中间冷却放出和吸收热量相等.

8.5 活塞式压气机余隙影响

一、余隙对排气量的影响

余隙:为了安臵进、排气阀以及避免活塞与汽缸端盖间的碰撞,在汽缸端盖与活塞行程终点间留有一定的余隙,称为余隙容积,简称余隙

活塞式压气机的容积效率:活塞式压气机的有效容积和活塞排量之比,

λv=1-V4-V3 V1-V3

结论:余隙使一部分汽缸容积不能被有效利用,压力比越大越不利。

二 余隙对理论压缩轴功的影响

n-1⎡⎤n⎛⎫n1p2⎥ ⎪wns=p(V1-V2)⎢1- ⎪⎢⎝p1⎭⎥n-1⎢⎥⎣⎦

式中:V=V1-V4为实际吸入的气体体积。

结论:不论压气机有无余隙,压缩每kg气体所需的理论压缩轴功都相同,所以应减少余隙容积。

思考题:

1.在p-v图上,T和s减小的方向分别在哪个方向,在T-s图上p和v减小的方向分别在哪个方向。

2.工质为空气,试在p-v和T-s图上画出n=1.5的膨胀过程和n=1.2的压缩过程的大概位臵,并分析二过程中q、w、∆u的正负。

3.如果气体按

却。

4.在多变过程中热量和功量之间的关系等于什么,即v=c/p规律膨胀,其中c为常数,则此过程中理想气体被加热还是被冷wn/qn =?

5.试在T-s图上用过程线和横坐标之间的面积来分析相同初态和相同终态压力下的定温、多变、绝热压缩中的能量转换关系,比较哪种压缩时耗功量最小。

6.如果气体压缩机在汽缸中采取各种冷却方法后,已能按定温过程进行压缩,这时是否还要采用分级压缩,为什么。

第9章 气体动力循环

9.2 活塞式内燃机实际循环的简化

开式循环(open cycle);

燃烧、传热、排气、膨胀、压缩均为不可逆;

各环节中工质质量、成分稍有变化。

9.3 活塞式内燃机的理想循环

一、混合加热理想循环

01 吸气

12 压缩

23 喷油、燃烧

34 燃烧

45 膨胀作功 50 排气

二、定压加热理想循环

三、定容加热理想循环

第10章 蒸汽动力装置循环

热机:将热能转换为机械能的设备叫做热力原动机。热机的工作循环称为动力循环。 动力循环可分:蒸汽动力循环和燃气动力循环两大类。

10.1蒸汽动力基本循环一朗肯循环

朗肯循环是最简单的蒸汽动力理想循环,热力发电厂的各种较复杂的蒸汽动力循环都是在朗肯循环的基础上予以改进而得到的。

一、装臵与流程

蒸汽动力装臵:锅炉、汽轮机、凝汽器和给水泵等四部分主要设备。

工作原理:p-v、T-s和h-s。

朗肯循环可理想化为:两个定压过程和两个定熵过程。

二、朗肯循环的能量分析及热效率

取汽轮机为控制体,建立能量方程:

η

=h1-h2 h1-h3

三、提高朗肯循环热效率的基本途径

依据:卡诺循环热效率

1、提高平均吸热温度

直接方法式提高蒸汽压力和温度。

2、降低排气温度

..

第11章 制冷循环

11.1 空气压缩制冷循环

空气压缩式制冷:将常温下较高压力的空气进行绝热膨胀,会获得低温低压的空气。 原则:实现逆卡诺循环

工作原理如图:

注意:空气的热物性决定了空气压缩致冷循环的致冷系数低和单位工质的致冷能力小。 ε1=1

T2-1T1=(1p2)p1kk-1 -1

T1 T2-T1或:ε1=

11.2 蒸汽压缩制冷循环

一、实际压缩式制冷循环

蒸气压缩致冷装臵:压缩机、冷凝器、膨胀阀及蒸发器组成。

原理:由蒸发器出来的致冷剂的干饱和蒸气被吸入压缩机,绝热压缩后成为过热蒸气(过程1-2),蒸气进入冷凝器,在定压下冷却(过程2-3),进一步在定压定温下凝结成饱和液体(过程3-4)。饱和液体继而通过一个膨胀阀(又称节流阀或减压阀)经绝热节流降压降温而变成低干度的湿蒸气。

注意:工业上,用节流阀取代膨胀机。

二、制冷剂的压焓图(lgp-h图)

原理:以致冷剂焓作为横坐标,以压力对数为纵坐标,共绘出致冷剂的六种状态参数线簇: 定焓(h)、定压力(p)、定温度(T)、定比容(v)、定熵(s)及定干度(x)线.

蒸气压缩式致冷循环各热力过程在lgp-h图上的表示:

1-2表示压缩机中的绝热压缩过程。2-3-4是冷凝器中的定压冷却过程

4-5为膨胀阀中的绝热节流过程。5-1表示蒸发器内的定压蒸发过程。

三、制冷循环能量分析及致冷系擞

实际蒸气压缩致冷循环整个装臵的能量分析。其致冷系数为

ε1=q2=收获/消耗 w0

制冷剂质量流量:m=

压缩机所需功率:p=Q2 q2mw0 3600冷凝器热负荷:Q1=M(h2-h1)

四、影响制冷系数的主要因素

降低制冷剂的冷凝温度 提高蒸发温度

五、蒸汽喷射制冷循环


相关文章

  • 2012注册环保工程师基础知识大纲
  • 注册环保工程师考试(基础知识)复习内容高等数学 一.高等数学 1.1 空间解析几何 向量代数 直线 平面 柱面 旋转曲面 二次曲面 空间曲线 1.2 微分学 极限 连续 导数 微分 偏导数 全微分 导数与微分的应用 1.3 积分学 不定积分 ...查看


  • 师生交流会议记录1
  • 路桥1102班师生联系会议记录 六月,瓦蓝蓝的天空没有一丝云彩,火热的太阳炙烤着大地.大一下学期即将结束,转眼间一学期又要接近尾声了,同学们也在一起学习了一学期,在这过程中同学们都互帮互助,不耻下问.这学期同学们也上了实训课,为将来实习奠定 ...查看


  • 全面剖析了建筑材料的种类及现状发展
  • 建筑材料 定义: 土建工程中所用材料(水泥.砂.石.木材.金属.沥青.合成树脂.塑料等) 的总称. 应用学科: 水利科技(一级学科):工程力学.工程结构.建筑材料(二级学科):建筑材料(水利)(二级学科) 以上内容由全国科学技术名词审定委员 ...查看


  • 一级注册结构工程师基础考试经验
  • 一级注册结构工程师基础考试经验 报名时间:6月上旬(打为必买书籍) 一注基础考试复习方法:做题!看什么教程都是浮云! 一年一度的注册考试是结构工程师们十分重视的事,不考证,画图什么的都是浮云.而工作之余花太多的时间在注册考试上又会大大的影响 ...查看


  • 岩土基础考试心得
  • 岩土基础考试心得(网上下载的) 本人于2007年大学本科毕业,专业土木工程,2008年参加一级注册结构工程师基础考试,成绩上午82,下午84,总分166(合格标准132):2010年硕士研究生毕业,在甲级院进行勘察工作,改行岩土,2011年 ...查看


  • 华南理工大学材料力学考研经验谈
  • 华南理工大学材料力学考研经验谈 材料力学是华工机械与汽车工程学院很多专业都要考的专业科目,例如机械制造及其自动化.机械电子工程.机械设计及理论.车辆工程和机械工程等专业,这些都是华工机汽学院热门的专业,我报的是第一个(国家重点专业,非常热门 ...查看


  • 清华电子系博士生入学考试复习指南_2013
  • 笔者终于考上了清华大学电子工程系的博士,并已于2012年9月开始课程学习.整整三年啊,最宝贵的青春年华用到了一些很没有意义的事情上.但形势比人强啊,在中国文凭还是很重要的,尤其是我们单位这样一个封闭的地方. 将搜集的资料重新整理一下,方便有 ...查看


  • [结构力学]课程教学大纲
  • <工程力学A Ⅱ>课程教学大纲 课程编号:0801105001 课程名称:工程力学A Ⅱ 英文名称:Engineering Mechanics AⅡ 学 分:3 总 学 时:48 讲课学时:40 实验学时:2 习题课学时:6 适 ...查看


  • 2016中国石油大学考研内部信息
  • 2016 年中国石油大学考研内部信息一.中国石油大学研究生院简介中国石油大学(北京)是一所石油特色鲜明.以工为主.多学科协调发展 的教育部直属的全国重点大学,是设有研究生院的高校之一.1997 年,学校首 批进入国家"211 工程 ...查看


热门内容