发动机材料的技术动向

作为减小发动机零部件之间摩擦力的措施大致可分为以下三种:一是减小零部件之间的实际接触面积;二是使零部件之间形成低的剪应力;三是减小零部件之间的输入负载。

减小零部件之间的实际接触。减小零部件的表面粗糙度有助于减小零部件之间的实际接触,这是因为从临界润滑区域到混合润滑区域中,摩擦力产生的根源主要是零部件表面粗糙凸起部分之间的接触而产生的。另外,在零部件之间接触面压高的情况下,会担心摩擦造成表面粗糙度的恶化。因此,作为初期维持表面平滑度的有效方法是对平滑面进行表面硬质处理。在直接传动式机械传动阀中,由于摩擦力分担比最高的气门杆和凸轮凸起部之间的最大面压高达0.7GPa ,因此以往除了对母材进行渗碳处理或渗氮处理等热处理外,还在表面平滑处理后进行表面真空蒸发镀膜处理,如镀氮化钛(TiN )膜、氮化铬(CrN 、Cr2N )膜,最近有的已开始采用镀类金刚石(DLC )膜。这些镀膜的硬度一般都在2000HV 以上。其中,还有的超过了3000HV ,大大超过了以往的渗碳处理(大约800HV )和渗氮处理(大约900HV )的硬度。形成镀膜后的表面非常平滑,Ra 低于0.03。

在不改变表面最初粗糙度的基础上,通过滑动可以使配对材的表面变得平滑,由此可以进一步降低摩擦力,这种方法也可应用于上述的气门杆。采用电弧离子镀膜法镀的TiN 膜和DLC 膜,在成膜时熔融的原料颗粒飞到被加工件的表面并粘附下来后会变为颗粒状凸起物。让表面适度留下这种凸起,在滑动中可以使配对材的表面粗糙度变得平滑,由此可有效降低摩擦力。尤其是,对于凸轮凸起部等非正圆复

杂形状的零部件,可以说与其通过加工使其平滑,不如采取磨合的办法使其变得平滑更有效。

目前,大部分的发动机缸孔的构造是把由灰口铸铁制作的套管铸入铝合金气缸体内。铸铁的热传导率(50W/m·k )比铝材(100W/m·k )低,而且铸铁的厚度为数毫米。另外,铸铁和铝的界面也会因铸造后的凝固收缩产生的紧固力而发生微小裂隙,它是阻碍热传导的主要因素。另一方面,最近为提高燃烧室内的散热性,希望能一面抑制高输出功率发动机或紧凑式涡轮等发生爆震,一面确保压缩比。用铸铁套管替代缸孔,需对铸铁进行喷镀处理,由此,既能提高界面的密封性,又能减薄管壁,大幅度改善该部位的换热和传热。另外,作为喷镀特有的现象是,在膜内导入某种程度的空隙,空隙裸露在表层,可以提高缸孔表面的保油性。由于不需要采用以往那种用发动机缸孔的珩磨网纹加工孔来确保保油性,因此可以使缸孔表面变得平滑。它除了具有上述传热特性好的优点外,还可以有效降低边界至混合润滑区域的摩擦力。

形成低剪应力。关于零部件表面粗糙度凸起间的接触,以包括凸起的整个表面层作为低剪应力材料,是减小粗糙度和单独降低摩擦力的方法,可以采用固体润滑剂。尤其是,在面压不是那么高的情况下,可以采用所谓的软镀层,即把作为固体润滑剂的颗粒状的二硫化钼(MoS2)或石墨、四氟乙烯(PTFE )分散到聚酰胺树脂(PAI )中的镀膜,或直接把MoS2颗粒对着被加工件高速照射后获得的镀膜等。这种镀膜可以应用于发动机部件中接触面积大的活塞杆、曲轴轴承合金表

面层。

另一方面,对于面压高的零部件,如果采用前述的软镀层,镀膜的耐磨性是一个问题。因此,开发了在采用硬质且无润滑的情况下,以摩擦系数与固体润滑剂一样低的DLC 镀膜为基础,在润滑情况下可获得相同效果的镀膜。本文要介绍的是不含氢的DLC 膜(无氢DLC 膜)和含Si 的DLC 膜(Si-DLC )。两者在表面处理和设计思路方面与以往有很大的不同,镀膜本身没有单独的特性,与润滑油或润滑油中所含水分的组合,可以明显降低摩擦力。前者会因润滑油中的摩擦调整剂吸附到表面,后者会因润滑油中的水分吸附到表面而形成由单分子构成的吸附膜,由此会大大减小部件之间的摩擦。在发动机润滑油的摩擦过程中,降低DLC 膜中的含氢量,并使润滑油含有最佳的添加剂,可以显著减小摩擦力。该方法已应用于气门杆和活塞环。DLC 膜中添加Si 的方法已应用于发动机控制阀的往复杆。

降低输入负载。摩擦力是负载和摩擦系数的积。不仅减小摩擦系数很重要,而且降低负载也很重要。活塞销是连接连杆和活塞的部件。活塞销的长度和活塞轴承部的宽度是一个重要的设计因素,它与销/活塞间往复滑动时发生热胶着的面压有关。作为改善热胶着性的措施有DLC 膜的应用等。减小活塞销和活塞滑动部的宽度,能有效减小活塞的重量,由此可降低输入的负载。另外,根据活塞的重量,可以设计出连杆和曲轴的强度,因此它可以有效减小这些零部件的重量,还可减小曲轴周围的摩擦力。

为减小活塞环和缸孔间的摩擦力,近年来已开始采用CrN 膜替代

以往的镀Cr 或氮化处理技术。镀Cr 膜的厚度大约100μm ,而耐磨损性好的CrN 膜

的厚度很薄只有25μm ,它可减小膜厚度的偏差范围。结果,不改变活塞环张力的下限值,只将中间值设定小一些,就可减小活塞环和缸孔间的摩擦力。另外,由于CrN 膜的磨损量小,因此可以维持活塞环外表面初期的曲率,抑制伴随磨损而增加的接触范围,这一点也有助于减小摩擦力。

izaksjw

作为减小发动机零部件之间摩擦力的措施大致可分为以下三种:一是减小零部件之间的实际接触面积;二是使零部件之间形成低的剪应力;三是减小零部件之间的输入负载。

减小零部件之间的实际接触。减小零部件的表面粗糙度有助于减小零部件之间的实际接触,这是因为从临界润滑区域到混合润滑区域中,摩擦力产生的根源主要是零部件表面粗糙凸起部分之间的接触而产生的。另外,在零部件之间接触面压高的情况下,会担心摩擦造成表面粗糙度的恶化。因此,作为初期维持表面平滑度的有效方法是对平滑面进行表面硬质处理。在直接传动式机械传动阀中,由于摩擦力分担比最高的气门杆和凸轮凸起部之间的最大面压高达0.7GPa ,因此以往除了对母材进行渗碳处理或渗氮处理等热处理外,还在表面平滑处理后进行表面真空蒸发镀膜处理,如镀氮化钛(TiN )膜、氮化铬(CrN 、Cr2N )膜,最近有的已开始采用镀类金刚石(DLC )膜。这些镀膜的硬度一般都在2000HV 以上。其中,还有的超过了3000HV ,大大超过了以往的渗碳处理(大约800HV )和渗氮处理(大约900HV )的硬度。形成镀膜后的表面非常平滑,Ra 低于0.03。

在不改变表面最初粗糙度的基础上,通过滑动可以使配对材的表面变得平滑,由此可以进一步降低摩擦力,这种方法也可应用于上述的气门杆。采用电弧离子镀膜法镀的TiN 膜和DLC 膜,在成膜时熔融的原料颗粒飞到被加工件的表面并粘附下来后会变为颗粒状凸起物。让表面适度留下这种凸起,在滑动中可以使配对材的表面粗糙度变得平滑,由此可有效降低摩擦力。尤其是,对于凸轮凸起部等非正圆复

杂形状的零部件,可以说与其通过加工使其平滑,不如采取磨合的办法使其变得平滑更有效。

目前,大部分的发动机缸孔的构造是把由灰口铸铁制作的套管铸入铝合金气缸体内。铸铁的热传导率(50W/m·k )比铝材(100W/m·k )低,而且铸铁的厚度为数毫米。另外,铸铁和铝的界面也会因铸造后的凝固收缩产生的紧固力而发生微小裂隙,它是阻碍热传导的主要因素。另一方面,最近为提高燃烧室内的散热性,希望能一面抑制高输出功率发动机或紧凑式涡轮等发生爆震,一面确保压缩比。用铸铁套管替代缸孔,需对铸铁进行喷镀处理,由此,既能提高界面的密封性,又能减薄管壁,大幅度改善该部位的换热和传热。另外,作为喷镀特有的现象是,在膜内导入某种程度的空隙,空隙裸露在表层,可以提高缸孔表面的保油性。由于不需要采用以往那种用发动机缸孔的珩磨网纹加工孔来确保保油性,因此可以使缸孔表面变得平滑。它除了具有上述传热特性好的优点外,还可以有效降低边界至混合润滑区域的摩擦力。

形成低剪应力。关于零部件表面粗糙度凸起间的接触,以包括凸起的整个表面层作为低剪应力材料,是减小粗糙度和单独降低摩擦力的方法,可以采用固体润滑剂。尤其是,在面压不是那么高的情况下,可以采用所谓的软镀层,即把作为固体润滑剂的颗粒状的二硫化钼(MoS2)或石墨、四氟乙烯(PTFE )分散到聚酰胺树脂(PAI )中的镀膜,或直接把MoS2颗粒对着被加工件高速照射后获得的镀膜等。这种镀膜可以应用于发动机部件中接触面积大的活塞杆、曲轴轴承合金表

面层。

另一方面,对于面压高的零部件,如果采用前述的软镀层,镀膜的耐磨性是一个问题。因此,开发了在采用硬质且无润滑的情况下,以摩擦系数与固体润滑剂一样低的DLC 镀膜为基础,在润滑情况下可获得相同效果的镀膜。本文要介绍的是不含氢的DLC 膜(无氢DLC 膜)和含Si 的DLC 膜(Si-DLC )。两者在表面处理和设计思路方面与以往有很大的不同,镀膜本身没有单独的特性,与润滑油或润滑油中所含水分的组合,可以明显降低摩擦力。前者会因润滑油中的摩擦调整剂吸附到表面,后者会因润滑油中的水分吸附到表面而形成由单分子构成的吸附膜,由此会大大减小部件之间的摩擦。在发动机润滑油的摩擦过程中,降低DLC 膜中的含氢量,并使润滑油含有最佳的添加剂,可以显著减小摩擦力。该方法已应用于气门杆和活塞环。DLC 膜中添加Si 的方法已应用于发动机控制阀的往复杆。

降低输入负载。摩擦力是负载和摩擦系数的积。不仅减小摩擦系数很重要,而且降低负载也很重要。活塞销是连接连杆和活塞的部件。活塞销的长度和活塞轴承部的宽度是一个重要的设计因素,它与销/活塞间往复滑动时发生热胶着的面压有关。作为改善热胶着性的措施有DLC 膜的应用等。减小活塞销和活塞滑动部的宽度,能有效减小活塞的重量,由此可降低输入的负载。另外,根据活塞的重量,可以设计出连杆和曲轴的强度,因此它可以有效减小这些零部件的重量,还可减小曲轴周围的摩擦力。

为减小活塞环和缸孔间的摩擦力,近年来已开始采用CrN 膜替代

以往的镀Cr 或氮化处理技术。镀Cr 膜的厚度大约100μm ,而耐磨损性好的CrN 膜

的厚度很薄只有25μm ,它可减小膜厚度的偏差范围。结果,不改变活塞环张力的下限值,只将中间值设定小一些,就可减小活塞环和缸孔间的摩擦力。另外,由于CrN 膜的磨损量小,因此可以维持活塞环外表面初期的曲率,抑制伴随磨损而增加的接触范围,这一点也有助于减小摩擦力。

izaksjw


相关文章

  • 浅谈电机的起源于发展方向
  • 电机的起源与发展方向 郑州科技工业学校 机电工程部 吴晓平 中文摘要:电机是我们生活的主要部分.它的诞生到现在经历了差不多两百年的时间.他为我们的生活和生产带来了很多便利.但近期一直发展缓慢,它的发展前景将如何?在这里,我就此谈一些我的浅薄 ...查看


  • 航空零部件制造行业现状及发展趋势分析
  • 2015年版中国航空零部件制造市场专题研 究分析与发展前景预测报告 报告编号:1511590 行业市场研究属于企业战略研究范畴,作为当前应用最为广泛的咨询服务,其研究成果以报告形式呈现,通常包含以下内容: 一份专业的行业研究报告,注重指导企 ...查看


  • 2017-2022年中国无人机市场专项调研报告(目录)
  • 2017-2022年中国无人机市场专项调 研报告(目录) www.chyxx.com 公司介绍 北京智研科研咨询有限公司成立于2008年,是一家从事市场调研.产业研究的专业咨询机构,拥有强大的调研团队和数据资源,主要产品有多用户报告.可行性 ...查看


  • 最新商业模式100个案例
  • 最新商业模式100 (下)个案例 一.轻资产运营 [案例八十一]铜锣湾超限站 [基本概况] 截至2005年,国内各地上马的MALL多达百余家,但运营商们往往都局限于一隅.被手头的几个项目 MALL是一个专业而复杂的系统.除了房产开发,还涉及 ...查看


  • 美国国防制造技术主要发展策略_2012年美国国防制造技术发展动向_高彬彬
  • 新视点 NEW VIEWPOINT 美国国防制造技术主要发展策略 --2012年美国国防制造技术发展动向 Key Development Strategy of American Defense Manufacturing Technolo ...查看


  • 2016年世界武器装备与军事技术发展新动向
  • 作者:方 勇 本文由作者授权发布 2016年,世界主要国家注重武器装备和军事技术发展的战略谋划,强化核.导弹防御.太空和网络空间等战略威慑力量发展,推进适应"多作战域作战"要求的新型武器装备发展.人工智能技术.高超声速技 ...查看


  • 2016年通用航空行业现状及发展趋势分析
  • 中国通用航空行业市场调查研究及发展趋 势预测报告(2016年版) 报告编号:1683262 行业市场研究属于企业战略研究范畴,作为当前应用最为广泛的咨询服务,其研究成果以报告形式呈现,通常包含以下内容: 一份专业的行业研究报告,注重指导企业 ...查看


  • 新型航空材料的"子丑寅卯"
  • "一代材料,一代装备",原中央军委副主席.国防部长曹刚川在考察中航工业航材院时曾这样说.深入研究钛合金五十年的中国科学院院士曹春晓认同道:"材料研究和装备制造必然是相互促进的,没有先进的材料,就无法制造出先进的 ...查看


  • 建筑节能调研及发展前景分析
  • 2015-2020年中国建筑节能行业研究分析及 市场前景预测报告 报告编号:1523137 行业市场研究属于企业战略研究范畴,作为当前应用最为广泛的咨询服务,其研究成果以报告形式呈现,通常包含以下内容: 一份专业的行业研究报告,注重指导企业 ...查看


热门内容