基本初等函数求导公式
' (1) (C ) =0 ' (3) (sinx ) =cos x
2
'(tanx ) =sec x (5)
μμ-1
'(x ) =μx (2)
' (4) (cosx ) =-sin x
2'(cotx ) =-csc x (6)
' (7) (secx ) =sec x tan x
x x
'(a ) =a ln a (9)
' (8) (cscx ) =-csc x cot x
x x
'(e ) =e (10)
(11)
(loga x ) '=
1
x ln a
(lnx ) '=
(12)
1x ,
(arcsinx ) '=
(13)
1-x 2
11+x 2
(14)
(arccosx ) '=-
1-x 2
11+x 2
(arctanx ) '=
(15)
(arccotx ) '=-
(16)
函数的和、差、积、商的求导法则
v =v (x ) 都可导,则 设u =u (x ) ,
(u ±v ) '=u '±v ' (uv ) '=u 'v +u v '
(Cu ) '=C u '(C 是常数)
(1) (2)
(3)
'
u ⎛⎫u 'v -u v ' ⎪=v v 2
(4) ⎝⎭
反函数求导法则
若函数
x =ϕ(y ) 在某区间I y 内可导、单调且ϕ'(y ) ≠0,则它的反函数y =f (x ) 在对应
I 区间x 内也可导,且
dy 1
=dx 1dx f '(x ) =
dy ϕ'(y ) 或
复合函数求导法则
设y =f (u ) ,而u =ϕ(x ) 且f (u ) 及ϕ(x ) 都可导,则复合函数y =f [ϕ(x )]的导数为
dy dy du =∙
dx du dx 或y '=f '(u ) ∙ϕ'(x ) 。
基本初等函数求导公式
' (1) (C ) =0 ' (3) (sinx ) =cos x
2
'(tanx ) =sec x (5)
μμ-1
'(x ) =μx (2)
' (4) (cosx ) =-sin x
2'(cotx ) =-csc x (6)
' (7) (secx ) =sec x tan x
x x
'(a ) =a ln a (9)
' (8) (cscx ) =-csc x cot x
x x
'(e ) =e (10)
(11)
(loga x ) '=
1
x ln a
(lnx ) '=
(12)
1x ,
(arcsinx ) '=
(13)
1-x 2
11+x 2
(14)
(arccosx ) '=-
1-x 2
11+x 2
(arctanx ) '=
(15)
(arccotx ) '=-
(16)
函数的和、差、积、商的求导法则
v =v (x ) 都可导,则 设u =u (x ) ,
(u ±v ) '=u '±v ' (uv ) '=u 'v +u v '
(Cu ) '=C u '(C 是常数)
(1) (2)
(3)
'
u ⎛⎫u 'v -u v ' ⎪=v v 2
(4) ⎝⎭
反函数求导法则
若函数
x =ϕ(y ) 在某区间I y 内可导、单调且ϕ'(y ) ≠0,则它的反函数y =f (x ) 在对应
I 区间x 内也可导,且
dy 1
=dx 1dx f '(x ) =
dy ϕ'(y ) 或
复合函数求导法则
设y =f (u ) ,而u =ϕ(x ) 且f (u ) 及ϕ(x ) 都可导,则复合函数y =f [ϕ(x )]的导数为
dy dy du =∙
dx du dx 或y '=f '(u ) ∙ϕ'(x ) 。