水下钢筋混凝土结构中钢筋锈蚀的原因及评测

水下钢筋混凝土结构中钢筋锈蚀的原因及评测

摘要: 水下混凝土中钢筋锈蚀的现状;水下钢筋混凝土钢筋锈蚀的原因;评定与检测水下混凝土构件中钢筋的锈蚀的状态,对钢筋混凝土构件可做出使用寿命的推测和预见。

随着时间的不断推延,许多水下混凝土构件中的钢筋逐渐被渗水而发生锈蚀,从而导致其构件的耐久性降低,结构安全性也降低[1].因此,引起的工程损坏事例不断发生,由此带来的工程损失及处理费用也迅速增加,这也引起了建筑工程界和路桥部门的高度重视。其中,水下混凝土结构中钢筋的锈蚀较为普遍,特别是沿海地区的闸、涵、桥、防护堤及盐湖地区的水下混凝土较为严重,据资料显示,施工质量较差的混凝土构件,因为钢筋的锈蚀,正常使用几年后,就会产生顺筋胀裂,从而导致结构破坏,以致钢筋混凝土的失效。

一、水下混凝土结构中钢筋锈蚀的原因

混凝土在水化作用时,水泥中氯化钙生成氢氧化钙,使混凝土中含有大量的氢氧根离子,使PH 值一般可达到12.5-13.5,钢筋在这样的高碱环境中,表面容易生成一层钝化膜[2],研究结果表明,这种钝化膜能阻止钢筋的锈蚀,只有这层钝化膜遭到破坏,钢筋开始锈蚀。

1.1 、混凝土碳化引起钢筋锈蚀

因为混凝土硬化后,表面混凝土遇到空气中二氧化碳的作用,使氢氯化钙慢慢经过化学反应变成碳酸钙,使之碱性降低,碳化到钢筋表面时,使钝化膜遭到破坏,钢筋就开始腐蚀,众所周知,大气是二氧化碳的主要来源,大气中通常含0.2%-0.3%的二氧化碳,而且只要有大气存在的地方,就必然存在二氧化碳,而水下混凝土结构也有不少部分存在于二氧化碳环境中,对于普通的硅酸盐而言,水化产生的氢氧化钙可达到整个水化产物的10%-15%,它作为水泥水化产物之一,一方面,它是混凝土高碱度的提供源和保证者,对保护钢筋起着十分重要的作用;另一方面,它又是混凝土中最不稳定的成分之一,很容易与环境中的酸性介质发生中和反应,使混凝土碳化,并逐步延伸钢筋,使钢筋开始锈蚀[3]。

1.2、氯离子引起的钢筋锈蚀

水下混凝土中,氯离子进行混凝土通常有两种途径:其一是“掺入如含有氯盐的外加剂,使用海砂,施工用水含氯盐,在含盐环境中搅拌,浇筑混凝土时,其二是”渗入“环境中的氯盐通常通过混凝土的宏观、微观缺陷,渗入到混凝土中并达到钢筋表面,直接或间接破坏混凝土的包裹作用及钢筋钝化的高碱度两种屏障, 使之发生锈蚀继而锈蚀产物体积膨胀, 使混凝土保护层开裂与脱落[4];在海洋环境中的水下混凝土结构大都是这种情况。氯离子引起钢筋锈蚀可以从以下几个方面分析:

1.2.1 破坏钝化膜

混凝土属于碱性材料,其孔隙溶液的PH 值为12-14[2],因而对钢筋具有较好的保护作用,有利于钢筋表面形成保护钢筋的钝化膜,但这种钝化膜只有在高碱环境中才是稳定的。如果周围环境PH 值降到11.8时,钝化膜就开始变得不稳定,当PH 值继续降到9.88时,钝化膜就开始变得难以生存或逐渐破坏,使得进入混凝土中的氯离子吸附于钝化膜处,并使钝化膜的PH 值迅速降低,逐步酸化,从而使得钝化膜被破坏。

1.2.2形成腐蚀电流

无论混凝土碳化还是氯离子侵蚀,都可以引起钢筋部分锈蚀,在钝化膜破坏处有腐蚀电流产生,在钝化膜破坏还与未破坏区这间存在电位差,有宏电流产生,但微电流要比宏电流大得多。又因为氯离子的存在大大降低了混凝土的电阻率,并且氯离子和铁离子的结合可以形成易容于水的氯化铁,从而加速了腐蚀产物向外的扩散过程,并由于宏观腐蚀电流在钝化膜破坏区边边缘最大,使得靠近钝化区的边缘的局部钝化膜破坏较快,这种现象称为局部锈蚀钢筋的“边缘效应”。

1.2.3氯离子导电作用

正是由于混凝土结构中氯离子的存在,大大降低了阴、阳极之间的欧姆电阻,强化了离子通路,提高了腐蚀电流的效率,从而加速了钢筋的电化学腐蚀过程,氯离子对混凝土中钢筋锈蚀更严重更快速[5].而氯化物是钢筋的一种活化剂,它能置换钝化膜的氧而使钢筋发生溃烂性腐蚀,而氯盐是高吸湿性的盐,它能吸收空气中的水分变成液体,从而使氯离子从扩散作用变成渗透作用,达到氯离子,透过保护区去腐蚀钢筋的目的。

1.2.4氯离子的阳极去极比作用

氯离子不仅促成了钢筋表面的腐蚀电流,而且加速了电流的作用过程,阳极反应过程Fe →2e →Fe 2+, 如果生成的Fe 2+不能及时搬运而积累于阴极表面,则阴极反应就会因此而受阻,相反,如果生成的Fe 2+能及时被搬走,那么。阳极反应过程就会顺利乃至加还进行,Cl 与Fe 相遇就会生成FeCl 2,Cl 能使Fe 消失而加速

阳极过程,通常把阳极过程受阻称做阳极极化作用,而加速阳极过程者,称作阳极去极化作用,氯离子正是发挥了阳极去极化作用的功能。

应该说明的是,在氯离子存在的混凝土中,钢筋通常的锈蚀产物很很难找到FeCl 2的存在,这是由于FeCl 2是可溶的,在向混凝土内扩散遇到氢氧根离子,立

即生成Fe(OH)2的一种沉淀物质又进一步氧化成铁的氧化物,即通常说的“铁锈”,

由此可见,氯离子只起到了“搬运”的作用,而不被消失,也就是说进入混凝土的氯离子,会周而复始地起破坏作用,这也是氯盐危害特点之一。

1.2.5氯离子与水泥的作用及对钢筋锈蚀的影响

水下钢筋混凝土结构中钢筋锈蚀的原因及评测

摘要: 水下混凝土中钢筋锈蚀的现状;水下钢筋混凝土钢筋锈蚀的原因;评定与检测水下混凝土构件中钢筋的锈蚀的状态,对钢筋混凝土构件可做出使用寿命的推测和预见。

随着时间的不断推延,许多水下混凝土构件中的钢筋逐渐被渗水而发生锈蚀,从而导致其构件的耐久性降低,结构安全性也降低[1].因此,引起的工程损坏事例不断发生,由此带来的工程损失及处理费用也迅速增加,这也引起了建筑工程界和路桥部门的高度重视。其中,水下混凝土结构中钢筋的锈蚀较为普遍,特别是沿海地区的闸、涵、桥、防护堤及盐湖地区的水下混凝土较为严重,据资料显示,施工质量较差的混凝土构件,因为钢筋的锈蚀,正常使用几年后,就会产生顺筋胀裂,从而导致结构破坏,以致钢筋混凝土的失效。

一、水下混凝土结构中钢筋锈蚀的原因

混凝土在水化作用时,水泥中氯化钙生成氢氧化钙,使混凝土中含有大量的氢氧根离子,使PH 值一般可达到12.5-13.5,钢筋在这样的高碱环境中,表面容易生成一层钝化膜[2],研究结果表明,这种钝化膜能阻止钢筋的锈蚀,只有这层钝化膜遭到破坏,钢筋开始锈蚀。

1.1 、混凝土碳化引起钢筋锈蚀

因为混凝土硬化后,表面混凝土遇到空气中二氧化碳的作用,使氢氯化钙慢慢经过化学反应变成碳酸钙,使之碱性降低,碳化到钢筋表面时,使钝化膜遭到破坏,钢筋就开始腐蚀,众所周知,大气是二氧化碳的主要来源,大气中通常含0.2%-0.3%的二氧化碳,而且只要有大气存在的地方,就必然存在二氧化碳,而水下混凝土结构也有不少部分存在于二氧化碳环境中,对于普通的硅酸盐而言,水化产生的氢氧化钙可达到整个水化产物的10%-15%,它作为水泥水化产物之一,一方面,它是混凝土高碱度的提供源和保证者,对保护钢筋起着十分重要的作用;另一方面,它又是混凝土中最不稳定的成分之一,很容易与环境中的酸性介质发生中和反应,使混凝土碳化,并逐步延伸钢筋,使钢筋开始锈蚀[3]。

1.2、氯离子引起的钢筋锈蚀

水下混凝土中,氯离子进行混凝土通常有两种途径:其一是“掺入如含有氯盐的外加剂,使用海砂,施工用水含氯盐,在含盐环境中搅拌,浇筑混凝土时,其二是”渗入“环境中的氯盐通常通过混凝土的宏观、微观缺陷,渗入到混凝土中并达到钢筋表面,直接或间接破坏混凝土的包裹作用及钢筋钝化的高碱度两种屏障, 使之发生锈蚀继而锈蚀产物体积膨胀, 使混凝土保护层开裂与脱落[4];在海洋环境中的水下混凝土结构大都是这种情况。氯离子引起钢筋锈蚀可以从以下几个方面分析:

1.2.1 破坏钝化膜

混凝土属于碱性材料,其孔隙溶液的PH 值为12-14[2],因而对钢筋具有较好的保护作用,有利于钢筋表面形成保护钢筋的钝化膜,但这种钝化膜只有在高碱环境中才是稳定的。如果周围环境PH 值降到11.8时,钝化膜就开始变得不稳定,当PH 值继续降到9.88时,钝化膜就开始变得难以生存或逐渐破坏,使得进入混凝土中的氯离子吸附于钝化膜处,并使钝化膜的PH 值迅速降低,逐步酸化,从而使得钝化膜被破坏。

1.2.2形成腐蚀电流

无论混凝土碳化还是氯离子侵蚀,都可以引起钢筋部分锈蚀,在钝化膜破坏处有腐蚀电流产生,在钝化膜破坏还与未破坏区这间存在电位差,有宏电流产生,但微电流要比宏电流大得多。又因为氯离子的存在大大降低了混凝土的电阻率,并且氯离子和铁离子的结合可以形成易容于水的氯化铁,从而加速了腐蚀产物向外的扩散过程,并由于宏观腐蚀电流在钝化膜破坏区边边缘最大,使得靠近钝化区的边缘的局部钝化膜破坏较快,这种现象称为局部锈蚀钢筋的“边缘效应”。

1.2.3氯离子导电作用

正是由于混凝土结构中氯离子的存在,大大降低了阴、阳极之间的欧姆电阻,强化了离子通路,提高了腐蚀电流的效率,从而加速了钢筋的电化学腐蚀过程,氯离子对混凝土中钢筋锈蚀更严重更快速[5].而氯化物是钢筋的一种活化剂,它能置换钝化膜的氧而使钢筋发生溃烂性腐蚀,而氯盐是高吸湿性的盐,它能吸收空气中的水分变成液体,从而使氯离子从扩散作用变成渗透作用,达到氯离子,透过保护区去腐蚀钢筋的目的。

1.2.4氯离子的阳极去极比作用

氯离子不仅促成了钢筋表面的腐蚀电流,而且加速了电流的作用过程,阳极反应过程Fe →2e →Fe 2+, 如果生成的Fe 2+不能及时搬运而积累于阴极表面,则阴极反应就会因此而受阻,相反,如果生成的Fe 2+能及时被搬走,那么。阳极反应过程就会顺利乃至加还进行,Cl 与Fe 相遇就会生成FeCl 2,Cl 能使Fe 消失而加速

阳极过程,通常把阳极过程受阻称做阳极极化作用,而加速阳极过程者,称作阳极去极化作用,氯离子正是发挥了阳极去极化作用的功能。

应该说明的是,在氯离子存在的混凝土中,钢筋通常的锈蚀产物很很难找到FeCl 2的存在,这是由于FeCl 2是可溶的,在向混凝土内扩散遇到氢氧根离子,立

即生成Fe(OH)2的一种沉淀物质又进一步氧化成铁的氧化物,即通常说的“铁锈”,

由此可见,氯离子只起到了“搬运”的作用,而不被消失,也就是说进入混凝土的氯离子,会周而复始地起破坏作用,这也是氯盐危害特点之一。

1.2.5氯离子与水泥的作用及对钢筋锈蚀的影响


相关文章

  • 桥梁竣工验收检查程序
  • 公路桥梁竣工验收检查步骤及内容 公路桥梁竣工验收检查是对桥梁主体结构及其附属构造物进行彻底的.视觉的和系统的检查,对结构的缺损状况做出评估,评定结构构件和整体结构的技术状况,确定桥梁技术状况等级,同时给养管单位建立结构管理和养护的初始档案. ...查看


  • 桥梁养护管理工作制度实施细则
  • 南充市公路桥梁养护管理工作制度实施细则 (试行) 第一章 桥梁养护制度 第一条 桥梁的养护应按部颁<公路养护技术规范>要求进行. 第二条 特大型桥梁所在地公路养护部门应专设桥梁管理所(班)对其进行养护管理. 第三条 桥梁构造物的 ...查看


  • 桩基钢筋笼制作工艺
  • 一.施工方案及工艺流程 1.主要施工方案 1.主要施工方案 本合同段的各种直径全部采用长线法在台座胎具上统一制作.钢筋笼分3-6节加工制作,基本节长9m ,最后一节为调整节.钢筋笼主筋连接接头采用滚轧直螺纹钢筋连接接头,主筋与箍筋连接宜点焊 ...查看


  • 浅析风力抽水机的使用与维护
  • 风力抽水机也叫风力扬水机,俗称风车,是靠风力转化成机械动力将水从低处运送到高处的一种机械.作为一种价格低廉,运行可靠,无污染,一次投资.长期受益的灌溉机械,深受广大农民朋友的青睐.风力抽水机利用大自然形成的风能做动力,不用电.不用油.无污染 ...查看


  • 高性能混凝土的应用
  • 建材与装饰2008年7月施工技术 高性能混凝土的应用 应文赞 (厦门高诚信建设监理有限公司) 摘 随着时间的推移,混凝土由于受到外要:目前我国的桥梁工程建设绝大多数是以钢筋混凝土和预应力混凝土为主的结构形式, 来荷载及有害环境侵蚀,混凝土结 ...查看


  • 混凝土耐久性
  • 学校: 北方工业大学 课程: 混凝土耐久性 班级: 土木研-14 姓名: 蔡朋朋 学号: [1**********]01 指导教师:何世钦 水工混凝土耐久性(论文) 摘要:混凝土耐久性现已作为建筑工程的焦点.混凝土的耐久性是指混凝土在使用条 ...查看


  • 大体积砼 裂缝控制
  • 网络教育学院 本科生毕业论文(设计) 题目:水工大体积混凝土裂缝控制技术的研究学习中心:江苏徐州沛县学院奥鹏学习中心[17]A层专 年 学 学次:业:专科起点本科水利水电工程秋季级:2013年号:生:[1**********]2张洪波 莫仁 ...查看


  • 钻孔灌注桩施工组织设计
  • 灌注桩施工组织设计 一.本施工组织设计适用范围 施工组织设计适用于雅周镇与204国道连接线道路工程YZL2标内焦港河大桥.双新河小桥.夏营河小桥. 二.编制依据及执行标准 1.合同文件 2.设计交底.图纸答疑 3.施工技术规范及标准 (1) ...查看


  • 引桥施工工艺及要求
  • 引桥施工方法 1.上部结构施工方法 引桥箱梁采用有支架逐跨浇筑.逐跨张拉的施工方法.施工接缝设在大约1/5跨径处,将箱梁腹板中的连续束在此处锚固,在下一段箱梁施工时采用联接器接长,这样即可减小预应力损失,又可方便施工. 2.下部结构施工方法 ...查看


热门内容