泰勒中值定理有关资料

在数学中,泰勒公式是一个用函数在某点的信息描述其附近取值的公式。如果函数足够光滑的话,在已知函数在某一点的各阶导数值的情况之下,泰勒公式可以用这些导数值做系数构建一个多项式来近似函数在这一点的邻域中的值。泰勒公式还给出了这个多项式和实际的函数值之间的偏差。

考虑用多项式去近似地表示一个复杂函数。

自然底数e的具体数值是怎么算来的?

使用Taylor公式的条件是:f(x)n阶可导。其中o((x-x0)^n)表示比无穷小(x-x0)^n更高阶的无穷小。

Taylor公式最典型的应用就是求任意函数的近似值。Taylor公式还可以求等价无穷小,证明不等式,求极限等

我们知道f(x)=f(x.)+f'(x.)(x-x.)+α(根据拉格朗日中值定理导出的有限增量定理有limΔx→0 f(x.+Δx)-f(x.)=f'(x.)Δx),其中误差α是在limΔx→0 即limx→x.的前提下才趋向于0,所以在近似计算中往往不够精确;于是我们需要一个能够足够精确的且能估计出误差的多项式:

我们选取多项函数作为逼近的简单函数,理由很简单:在众多初等函数中,如三角函数,指数函数,对数函数,多项函数等,从算术的观点来看,以多项函数最为简单,因为要计算多项函数的值,只牵涉到加减乘除四则运算,其它函数就没有这么简单

.

泰勒公式的初衷是用多项式来近似表示函数在某点周围的情况。比如说,指数函数ex 在x = 0 的附近可以用以下多项式来近似地表示:

称为指数函数在0处的n

阶泰勒展开公式。这个公式只对0附近的x 有用,x 离0 越远,这个公式就越不准确。实际函数值和多项式的偏差称为泰勒公式的余项。

对于一般的函数,泰勒公式的系数的选择依赖于函数在一点的各阶导数值。这个想法的原由可以由微分的定义开始。微分是函数在一点附近的最佳线性近似:

,其中

也就是说

注意到 和,或 是比h 高阶的无穷小。 。 在a 处的零阶导数和一阶导数都相同。对足够光滑的函数,如果一个多项式在a 处的前n 次导数值都与函数在a 处的前n 次导数值重合,那么这个多项式应该能很好地近似描述函数在a 附近的情况。以下定理说明这是正确的:

定理:

设 n 是一个正整数。如果定义在一个包含 a 的区间上的函数 f

在 a 点处 n

+1 次可导,那么对于这个区间上的任意 x,都有:

[2]

其中的多项式称为函数在a 处的泰勒展开式,剩余的

的高阶无穷小。 是泰勒公式的余项,是

的表达形式有若干种,分别以不同的数学家命名。

在数学中,泰勒公式是一个用函数在某点的信息描述其附近取值的公式。如果函数足够光滑的话,在已知函数在某一点的各阶导数值的情况之下,泰勒公式可以用这些导数值做系数构建一个多项式来近似函数在这一点的邻域中的值。泰勒公式还给出了这个多项式和实际的函数值之间的偏差。

考虑用多项式去近似地表示一个复杂函数。

自然底数e的具体数值是怎么算来的?

使用Taylor公式的条件是:f(x)n阶可导。其中o((x-x0)^n)表示比无穷小(x-x0)^n更高阶的无穷小。

Taylor公式最典型的应用就是求任意函数的近似值。Taylor公式还可以求等价无穷小,证明不等式,求极限等

我们知道f(x)=f(x.)+f'(x.)(x-x.)+α(根据拉格朗日中值定理导出的有限增量定理有limΔx→0 f(x.+Δx)-f(x.)=f'(x.)Δx),其中误差α是在limΔx→0 即limx→x.的前提下才趋向于0,所以在近似计算中往往不够精确;于是我们需要一个能够足够精确的且能估计出误差的多项式:

我们选取多项函数作为逼近的简单函数,理由很简单:在众多初等函数中,如三角函数,指数函数,对数函数,多项函数等,从算术的观点来看,以多项函数最为简单,因为要计算多项函数的值,只牵涉到加减乘除四则运算,其它函数就没有这么简单

.

泰勒公式的初衷是用多项式来近似表示函数在某点周围的情况。比如说,指数函数ex 在x = 0 的附近可以用以下多项式来近似地表示:

称为指数函数在0处的n

阶泰勒展开公式。这个公式只对0附近的x 有用,x 离0 越远,这个公式就越不准确。实际函数值和多项式的偏差称为泰勒公式的余项。

对于一般的函数,泰勒公式的系数的选择依赖于函数在一点的各阶导数值。这个想法的原由可以由微分的定义开始。微分是函数在一点附近的最佳线性近似:

,其中

也就是说

注意到 和,或 是比h 高阶的无穷小。 。 在a 处的零阶导数和一阶导数都相同。对足够光滑的函数,如果一个多项式在a 处的前n 次导数值都与函数在a 处的前n 次导数值重合,那么这个多项式应该能很好地近似描述函数在a 附近的情况。以下定理说明这是正确的:

定理:

设 n 是一个正整数。如果定义在一个包含 a 的区间上的函数 f

在 a 点处 n

+1 次可导,那么对于这个区间上的任意 x,都有:

[2]

其中的多项式称为函数在a 处的泰勒展开式,剩余的

的高阶无穷小。 是泰勒公式的余项,是

的表达形式有若干种,分别以不同的数学家命名。


相关文章

  • 高三数学培优资料(10)用泰勒公式和拉格朗日中值定理来处理高中函数不等式问题(教师版)
  • 2012级高三数学培优资料(10)教师版周基俊 2014.11.16 泰勒公式与拉格朗日中值定理在证明不等式中的简单应用 泰勒公式是高等数学中的重点,也是一个难点,它贯穿于高等数学的始终.泰勒公式的重点就在于使用一个n 次多项式p n (x ...查看


  • 拉格朗日的寂寞
  • 0 题记 阅读提示 本文主要讨论Lagrange中值定理的各种形式(简化形.标准形.参数形&加强形)及其应用: 求极限 证明恒等式 证明不等式 证明与中值ξ有关的命题 讨论函数性态 不定积分理论基础 1 拉格朗日中值定理 如果函数? ...查看


  • 中值定理应用
  • 第三章 微分中值定理与导数的应用 §1内容提要 一.介值定理 1.定理1(零点定理) 设函数f(x)在闭区间[a,b]上连续,且f(a)f(b) ξ使f(ξ)=0 2.定理2(介值定理) 那么对于A与B之设函数f(x)在闭区间[a,b]上连 ...查看


  • 微分中值定理及其应用
  • 钻石卡vip课程教案 第三讲 微分中值定理及其应用 基本信息 课时数 6课时 教学进度 知识精讲课程-高等数学第三章 教学目标 1.掌握微分学中值定理,领会其实质,为微分学的应用打好坚实的理论基础. 2.熟练掌握洛比塔法则,会正确应用它求某 ...查看


  • 微分中值定理
  • 高等数学 ----微分中值定理个人总结 1. 罗尔定理中三条件,闭区间连续,开区间可导,端点处函数值相等是充分的.但不代表结论成立,就一定满足这三个条件. 2. 拉格朗日中值定理只有两个条件,闭区间连续,开区间可导,罗尔定理可看做是其特例: ...查看


  • 用五种方法证明柯西中值定理
  • 用五种方法证明柯西中值定理 黄德丽 (湖州师范学院理学院!! ! 摘&要:从多角度全方面介绍了微分中值定理中柯西中值定理的五种证明方法,其中有利用构造辅助函数,根据罗尔定理证明:利用闭区间套定理证明:借助引理,并应用反证法证明:用达 ...查看


  • (数学分析教案)第六章
  • 第六章 微分中值定理及其应用 (16学时) 引言 在前一章中,我们引进了导数的概念,详细地讨论了计算导数的方法.这样一来,类似于求已知曲线上点的切线问题已获完美解决.但如果想用导数这一工具去分析.解决复杂一些的问题,那么,只知道怎样计算导数 ...查看


  • 中学数学教学论文题目
  • 1.数学中的研究性学习 2.数字危机 3.中学数学中的化归方法 4.高斯分布的启示 5.a2+b2≧2ab的变形推广及应用 6.网络优化 7.泰勒公式及其应用 8.浅谈中学数学中的反证法 9.数学选择题的利和弊 10.浅谈计算机辅助数学教学 ...查看


  • 微积分证明不等式方法
  • 用微积分理论证明不等式的方法 江苏省扬中高级中学 卞国文 212200 高等数学中所涉及到的不等式,大致可分为两种:函数不等式(含变量) 和数值不等式(不含变量) .对于前者,一般可直接或稍加变形构造一函数,从而可通过研究所构造函数的性质, ...查看


热门内容