太阳风暴始于磁旋流(图)

太阳表面下缠紧的磁旋流可以发射出大规模的太阳耀斑。

Some Solar Storms Start With a Twist

Scientists have detected a consistent pattern in the sun's magnetic behavior that precedes solar flares. If the pattern can be unraveled completely, it could give hours or even days of warning to telecommunications companies, electric power grids, and satellite operators to prepare for these dangerous storms.

科学家们探测到,太阳耀斑发生之前磁性行为有着一贯的模式。如果能够彻底搞清这种模式,就可以提前几个小时甚至提前数日向电信公司、电力公司以及卫星运营商发出警告,以便针对这些危险的风暴做好防备工作。

Solar flares threaten all of the artificial objects orbiting our planet, including GPS and telecommunications satellites, occupied spacecraft and the International Space Station. Every so often the sun emits a gigantic burst that includes highly energized x-rays, gamma rays, and charged particles. These surges can injure or even kill astronauts and fry electronic circuits. During such a burst, astronauts must rush to shielded compartments of their spacecraft, and technicians must scramble to place satellites in safe modes. Even on the ground, a large flare can overload power grids.

太阳耀斑会威胁到环绕地球的所有人造物体,包括全球定位系统(GPS)、通信卫星、载人航天器和国际空间站等。太阳时常出现巨大的爆发现象,爆发时释放出高能X射线、伽马射线和带电粒子。这些凶猛的爆发流可能会伤及宇航员,甚至会置他们于死地,还有可能会烧毁电路。在爆发期间,宇航员必须急速回到太空船的保护舱,技术人员必须急忙把人造卫星设置为安全模式。即使在地面上,大规模的耀斑可能会使电网超负荷。

Because of the hazards and short lead times, for decades scientists have been trying to find reliable predictors of solar flares. Progress remained mostly stalled because of the seeming unpredictability of the events. Then in 2001 the Global Oscillation Network Group began operations. GONG comprises six ground-based observing sites that constantly monitor vibrations on the sun's surface for signs of activity deep within its interior.

由于危害大,而且预兆期短,几十年来科学家们一直在努力寻找可靠的太阳耀斑预测手段。从很大程度来说,仍然没有取得进步,因为这些事件好象具有不可预知性。后来在2001年,太阳全球振荡监测网(GONG)启动了。太阳全球振荡监测网是由六个地面观测站组成的,这些观测站时常监测太阳表面的振荡情况,目的是寻找太阳内部深层活动的迹象。

A few years ago, some preliminary observations linked a solar flare to a large magnetic disturbance that seemed to have spiraled up from below the sun's surface. So a team of researchers examined data for 20 more big flares to determine if the same pattern preceded them. It did. The evidence showed a magnetic "twisting that started fast and slowly decreased to almost nothing as the flare occurred," says space scientist and lead author Alysha Reinard of the National Oceanic and Atmospheric Administration in Boulder, Colorado.

几年前,一些初步观测将太阳耀斑跟磁扰现象联系在一起,磁扰好象从太阳表面以下产生,呈螺旋状上升。因此,一个研究小组审查了20次较大规模耀斑的数据资料,以确定在耀斑爆发之前是否会产生相同的模式。确实如此!“磁旋流产生时上升速度极快,然后逐渐变小,随着耀斑的爆发几乎化为乌有,”科罗拉多州博尔德市国家海洋和大气管理局的空间科学家、研究论文的第一作者阿利舍·赖纳德说。

The team suggests in an upcoming paper in The Astrophysical Journal that the spirals result from subsurface turbulence in the sun's superhot gases--the equivalent of what happens on Earth when turbulent winds whip up tornadoes and hurricanes.

在《天体物理学杂志》即将发表的一篇论文中,研究小组提出:磁旋流是由于太阳表面以下超高温气体的动荡而产生的,相当于狂风引起旋风和飓风时地球上所发生的情况。

Reinard says the team has studied data from 1023 magnetic spirals that occurred between 2001 and 2007. In about one-third of the cases, she says, the magnetic vortices preceded a flare--sometimes up to 3 days before it erupted. But for unknown reasons, in the remaining cases the twisting did not presage a flare. Despite that uncertainty, she says, "We are confident that this is the breakthrough we need to understand why flares erupt and to be able to predict them."

赖纳德说,研究小组研究了2001年至2007年所发生的1023个磁旋流的数据资料。她说,其中大约有三分之一的情况,磁旋流发生在耀斑爆发之前,有时早于耀斑长达三天的时间。不知道什么原因,在其余的情况中,磁旋流并没有预示耀斑的到来。赖纳德说:“尽管存在这种不确定因素,我们仍然相信这是一项突破性研究,我们需要了解为何耀斑会爆发,我们需要拥有对此进行预测的能力。”

The findings should provide some "interesting food for thought" for NASA's new Solar Dynamics Observatory mission, says space scientist Scott McIntosh of the National Center for Atmospheric Research, also in Boulder. The mission, which is scheduled to launch in a few weeks, is designed, among other tasks, to study the possible causes of solar flares, so it could help refine the data linking the vortices to the flares. "Exciting times are ahead," McIntosh says.

“这些发现可以为美国国家航空航天管理局新一轮‘太阳动力学观测站’行动提供有趣的思考内容,”博尔德市国家大气研究中心的空间科学家斯科特·麦金托什说。根据计划,该行动要在几周后启动,除了其他任务之外,还要研究引起太阳耀斑的潜在原因,因此该行动有助于使关于磁旋流和耀斑的数据精确化。“令人兴奋的时刻还在后面,”麦金托什说。

太阳表面下缠紧的磁旋流可以发射出大规模的太阳耀斑。

Some Solar Storms Start With a Twist

Scientists have detected a consistent pattern in the sun's magnetic behavior that precedes solar flares. If the pattern can be unraveled completely, it could give hours or even days of warning to telecommunications companies, electric power grids, and satellite operators to prepare for these dangerous storms.

科学家们探测到,太阳耀斑发生之前磁性行为有着一贯的模式。如果能够彻底搞清这种模式,就可以提前几个小时甚至提前数日向电信公司、电力公司以及卫星运营商发出警告,以便针对这些危险的风暴做好防备工作。

Solar flares threaten all of the artificial objects orbiting our planet, including GPS and telecommunications satellites, occupied spacecraft and the International Space Station. Every so often the sun emits a gigantic burst that includes highly energized x-rays, gamma rays, and charged particles. These surges can injure or even kill astronauts and fry electronic circuits. During such a burst, astronauts must rush to shielded compartments of their spacecraft, and technicians must scramble to place satellites in safe modes. Even on the ground, a large flare can overload power grids.

太阳耀斑会威胁到环绕地球的所有人造物体,包括全球定位系统(GPS)、通信卫星、载人航天器和国际空间站等。太阳时常出现巨大的爆发现象,爆发时释放出高能X射线、伽马射线和带电粒子。这些凶猛的爆发流可能会伤及宇航员,甚至会置他们于死地,还有可能会烧毁电路。在爆发期间,宇航员必须急速回到太空船的保护舱,技术人员必须急忙把人造卫星设置为安全模式。即使在地面上,大规模的耀斑可能会使电网超负荷。

Because of the hazards and short lead times, for decades scientists have been trying to find reliable predictors of solar flares. Progress remained mostly stalled because of the seeming unpredictability of the events. Then in 2001 the Global Oscillation Network Group began operations. GONG comprises six ground-based observing sites that constantly monitor vibrations on the sun's surface for signs of activity deep within its interior.

由于危害大,而且预兆期短,几十年来科学家们一直在努力寻找可靠的太阳耀斑预测手段。从很大程度来说,仍然没有取得进步,因为这些事件好象具有不可预知性。后来在2001年,太阳全球振荡监测网(GONG)启动了。太阳全球振荡监测网是由六个地面观测站组成的,这些观测站时常监测太阳表面的振荡情况,目的是寻找太阳内部深层活动的迹象。

A few years ago, some preliminary observations linked a solar flare to a large magnetic disturbance that seemed to have spiraled up from below the sun's surface. So a team of researchers examined data for 20 more big flares to determine if the same pattern preceded them. It did. The evidence showed a magnetic "twisting that started fast and slowly decreased to almost nothing as the flare occurred," says space scientist and lead author Alysha Reinard of the National Oceanic and Atmospheric Administration in Boulder, Colorado.

几年前,一些初步观测将太阳耀斑跟磁扰现象联系在一起,磁扰好象从太阳表面以下产生,呈螺旋状上升。因此,一个研究小组审查了20次较大规模耀斑的数据资料,以确定在耀斑爆发之前是否会产生相同的模式。确实如此!“磁旋流产生时上升速度极快,然后逐渐变小,随着耀斑的爆发几乎化为乌有,”科罗拉多州博尔德市国家海洋和大气管理局的空间科学家、研究论文的第一作者阿利舍·赖纳德说。

The team suggests in an upcoming paper in The Astrophysical Journal that the spirals result from subsurface turbulence in the sun's superhot gases--the equivalent of what happens on Earth when turbulent winds whip up tornadoes and hurricanes.

在《天体物理学杂志》即将发表的一篇论文中,研究小组提出:磁旋流是由于太阳表面以下超高温气体的动荡而产生的,相当于狂风引起旋风和飓风时地球上所发生的情况。

Reinard says the team has studied data from 1023 magnetic spirals that occurred between 2001 and 2007. In about one-third of the cases, she says, the magnetic vortices preceded a flare--sometimes up to 3 days before it erupted. But for unknown reasons, in the remaining cases the twisting did not presage a flare. Despite that uncertainty, she says, "We are confident that this is the breakthrough we need to understand why flares erupt and to be able to predict them."

赖纳德说,研究小组研究了2001年至2007年所发生的1023个磁旋流的数据资料。她说,其中大约有三分之一的情况,磁旋流发生在耀斑爆发之前,有时早于耀斑长达三天的时间。不知道什么原因,在其余的情况中,磁旋流并没有预示耀斑的到来。赖纳德说:“尽管存在这种不确定因素,我们仍然相信这是一项突破性研究,我们需要了解为何耀斑会爆发,我们需要拥有对此进行预测的能力。”

The findings should provide some "interesting food for thought" for NASA's new Solar Dynamics Observatory mission, says space scientist Scott McIntosh of the National Center for Atmospheric Research, also in Boulder. The mission, which is scheduled to launch in a few weeks, is designed, among other tasks, to study the possible causes of solar flares, so it could help refine the data linking the vortices to the flares. "Exciting times are ahead," McIntosh says.

“这些发现可以为美国国家航空航天管理局新一轮‘太阳动力学观测站’行动提供有趣的思考内容,”博尔德市国家大气研究中心的空间科学家斯科特·麦金托什说。根据计划,该行动要在几周后启动,除了其他任务之外,还要研究引起太阳耀斑的潜在原因,因此该行动有助于使关于磁旋流和耀斑的数据精确化。“令人兴奋的时刻还在后面,”麦金托什说。


相关文章

  • 新工艺设备在盘南选煤厂的应用
  • 煤炭加工与综合利用 No.6.2008 COAL PROCESSING&COMPREHENSⅣEUTⅡ.IZATION 33 新工艺设备在盘南选煤厂的应用 支太阳 (盘南煤炭开发有限责任公司选煤厂,贵州六盘水553505) 摘要:介 ...查看


  • 选煤技术的发展
  • 科技倩报开发与经济 文章编号:i005--6033(2009)14-012I--03 SCI-TECHINFORMATIONDEVELOPMENT&ECONOMY2009年第19卷第14期 收捣日期・2009-03--09 选煤技木 ...查看


  • 烟尘浓度对湿法脱硫系统运行的影响及对策
  • 第32卷第2期 2011年6月 电 站 辅 机 V ol. 32N o. 2 Jun. 2011 文章编号:1672 0210(2011) 02 0039 04 烟尘浓度对湿法脱硫系统运行的影响及对策 邹斯诣, 孟驰伟, 陈崇明 1 2 1 ...查看


  • 固液分离用水力旋流器的设计
  • 1 0固液分离用水力旋流器的设计 固液分离用水力旋流器的设计 东北大学 褚良银 素的研究成果, 关键词 自从1891[,有关;但是其于分级方面,而用于固液分离方面的则要少得多.由于水力旋流器具有结构简单.体积小.成本低及处理量大等优点,因而 ...查看


  • 选煤厂水力旋流器选型及应用探讨
  • 第2期 选 煤 技 术 2011年4月COAL PREPARAT I ON TECHNO LOGY 文章编号: 1001-3571(2011) 02-0047-03 N o 2 A pr 2011 选煤厂水力旋流器选型及应用探讨 赵良兴 ( ...查看


  • 脱硫石膏旋流器故障原因分析与处理
  • 脱硫石膏旋流器故障原因分析与处理 潘广强 (华电国际十里泉发电厂,山东 枣庄 277103) 摘 要:针对十里泉电厂330MW 机组脱硫系统石膏旋流器故障原因进行了分析.研究,找出了设计.安装.设备材质等方面存在的问题,并有针对性的进行了整 ...查看


  • 旋流板塔方案
  • xxxx 工程有限公司 方 案 书 2015年4月12日 目录 一. 旋流板塔 ................................................................................ ...查看


  • 旋流板计算书
  • 旋流除雾板设计计算书 一.前言 旋流板技术自70年代由浙江大学研究开发以来,该技术已在工业的脱硫.除尘.传质等行业广泛应用,其传质.除雾.除尘效果相当显著,带来了较好经济效益.本设计DN2200脱硫净氨塔采用2块旋流除雾板对变换气进行气液分 ...查看


  • 水力旋流器工作原理
  • 从理论与生产实践证明:在小直径水力分级旋流器组的结构参数不变的情况下,其受入料压力.入料量.浓度的影响较大. 一.工作原理 水力旋流器的分级原理:矿浆在一定的压力下通过切线方向进料口给入旋流器,于是在旋流器内形成一个回转流.在旋流器中心处矿 ...查看


热门内容